0
Research Papers

Nonlinear Dynamics of Dacron Aortic Prostheses Conveying Pulsatile Flow

[+] Author and Article Information
Eleonora Tubaldi

Mem. ASME
Department of Mechanical Engineering,
McGill University,
Macdonald Engineering Building,
817 Sherbrooke Street West,
Montreal, QC H3A 0C3, Canada
e-mail: eleonora.tubaldi@mail.mcgill.ca

Michael P. Païdoussis

Professor
Fellow ASME
Department of Mechanical Engineering,
McGill University,
Macdonald Engineering Building,
817 Sherbrooke Street West,
Montreal, QC H3A 0C3, Canada
e-mail: michael.paidoussis@mcgill.ca

Marco Amabili

Professor
Fellow ASME
Department of Mechanical Engineering,
McGill University,
Macdonald Engineering Building,
817 Sherbrooke Street West,
Montreal, QC H3A 0C3 Canada
e-mail: marco.amabili@mcgill.ca

Manuscript received August 15, 2017; final manuscript received December 31, 2017; published online March 19, 2018. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 140(6), 061004 (Mar 19, 2018) (12 pages) Paper No: BIO-17-1365; doi: 10.1115/1.4039284 History: Received August 15, 2017; Revised December 31, 2017

This study addresses the dynamic response to pulsatile physiological blood flow and pressure of a woven Dacron graft currently used in thoracic aortic surgery. The model of the prosthesis assumes a cylindrical orthotropic shell described by means of nonlinear Novozhilov shell theory. The blood flow is modeled as Newtonian pulsatile flow, and unsteady viscous effects are included. Coupled fluid–structure Lagrange equations for open systems with wave propagation subject to pulsatile flow are applied. Physiological waveforms of blood pressure and velocity are approximated with the first eight harmonics of the corresponding Fourier series. Time responses of the prosthetic wall radial displacement are considered for two physiological conditions: at rest (60 bpm) and at high heart rate (180 bpm). While the response at 60 bpm reproduces the behavior of the pulsatile pressure, higher harmonics frequency contributions are observed at 180 bpm altering the shape of the time response. Frequency-responses show resonance peaks for heart rates between 130 bpm and 200 bpm due to higher harmonics of the pulsatile flow excitation. These resonant peaks correspond to unwanted high-frequency radial oscillations of the vessel wall that can compromise the long-term functioning of the prosthesis in case of significant physical activity. Thanks to this study, the dynamic response of Dacron prostheses to pulsatile flow can be understood as well as some possible complications in case of significant physical activity.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cronenwett, J. L. , and Johnston, K. W. , 2014, Rutherford's Vascular Surgery, Elsevier Health Sciences, Philadelphia, PA.
Bronzino, J. D. , 1999, Biomedical Engineering Handbook, CRC Press, Boca Raton, FL.
Silver, F. , 1994, Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach, Chapman & Hall, London. [CrossRef]
Sauvage, L. , 1986, “ Dacron Arterial Grafts,” Vascular Graft Update: Safety and Performance, ASTM Publication, Fairfield, PA.
Tremblay, D. , Zigras, T. , Cartier, R. , Leduc, L. , Butany, J. , Mongrain, R. , and Leask, R. L. , 2009, “ A Comparison of Mechanical Properties of Materials Used in Aortic Arch Reconstruction,” Ann. Thorac. Surg., 88(5), pp. 1484–1491. [CrossRef] [PubMed]
Chlupac, J. , Filova, E. , and Bacakova, L. , 2009, “ Blood Vessel Replacement: 50 Years of Development and Tissue Engineering Paradigms in Vascular Surgery,” Physiol. Res., 58, pp. 119–139.
Spadaccio, C. , Nappi, F. , Al-Attar, N. , Sutherland, F. W. , Acar, C. , Nenna, A. , Trombetta, M. , Chello, M. , and Rainer, A. , 2016, “ Old Myths, New Concerns: The Long-Term Effects of Ascending Aorta Replacement With Dacron Grafts. Not All That Glitters is Gold,” J. Cardiovasc. Transl. Res., 9(4), pp. 334–342. [CrossRef] [PubMed]
Spadaccio, C. , Rainer, A. , Barbato, R. , Chello, M. , and Meyns, B. , 2013, “ The Fate of Large-Diameter Dacron® Vascular Grafts in Surgical Practice: Are We Really Satisfied?,” Int. J. Cardiol., 168(5), pp. 5028–5029. [CrossRef] [PubMed]
Miyawaki, F. , How, T. , and Annis, D. , 1990, “ Effect of Compliance Mismatch on Flow Disturbances in a Model of an Arterial Graft Replacement,” Med. Biol. Eng. Comput., 28(5), pp. 457–464. [CrossRef] [PubMed]
Maeta, H. , and Hori, M. , 1985, “ Effects of a Lack of Aortic ‘Windkessel’ Properties on the Left Ventricle,” Jpn. Circ. J., 49(2), pp. 232–237. [CrossRef] [PubMed]
Appleyard, R. F. , and Sauvage, L. R. , 1986, “ Haemodynamic Consequences of Arterial Replacement With a Synthetic Graft,” Cardiovasc. Res., 20(1), pp. 26–35. [CrossRef] [PubMed]
Kim, S. Y. , Hinkamp, T. J. , Jacobs, W. R. , Lichtenberg, R. C. , Posniak, H. , and Pifarré, R. , 1995, “ Effect of an Inelastic Aortic Synthetic Vascular Graft on Exercise Hemodynamics,” Ann. Thorac. Surg., 59(4), pp. 981–989. [CrossRef] [PubMed]
McDonald, D. A. , 1974, Blood Flow in Arteries, Edward Arnold, London.
Westerhof, N. , Lankhaar, J.-W. , and Westerhof, B. E. , 2009, “ The Arterial Windkessel,” Med. Biol. Eng. Comput., 47(2), pp. 131–141. [CrossRef] [PubMed]
Mehigan, D. , Fitzpatrick, B. , Browne, H. , and Bouchier-Hayes, D. , 1984, “ Is Compliance Mismatch the Major Cause of Anastomotic Arterial Aneurysms? Analysis of 42 Cases,” J. Cardiovasc. Surg., 26, pp. 147–150.
Abbott, W. M. , Megerman, J. , Hasson, J. E. , L'Italien, G. , and Warnock, D. F. , 1987, “ Effect of Compliance Mismatch on Vascular Graft Patency,” J. Vasc. Surg., 5(2), pp. 376–382. [CrossRef] [PubMed]
Lee, J. M. , and Wilson, G. J. , 1986, “ Anisotropic Tensile Viscoelastic Properties of Vascular Graft Materials Tested at Low Strain Rates,” Biomaterials, 7(6), pp. 423–431. [CrossRef] [PubMed]
Hasegawa, M. , and Azuma, T. , 1979, “ Mechanical Properties of Synthetic Arterial Grafts,” J. Biomech., 12(7), pp. 509–517. [CrossRef] [PubMed]
Tubaldi, E. , Amabili, M. , and Païdoussis, M. P. , 2016, “ Fluid–Structure Interaction for Nonlinear Response of Shells Conveying Pulsatile Flow,” J. Sound Vib., 371, pp. 252–276. [CrossRef]
Amabili, M. , Pellicano, F. , and Païdoussis, M. , 2000, “ Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid—Part IV: Large-Amplitude Vibrations With Flow,” J. Sound Vib., 237(4), pp. 641–666. [CrossRef]
Amabili, M. , Karagiozis, K. , and Païdoussis, M. , 2009, “ Effect of Geometric Imperfections on Non-Linear Stability of Circular Cylindrical Shells Conveying Fluid,” Int. J. Non-Linear Mech., 44(3), pp. 276–289. [CrossRef]
Païdoussis, M. P. , 2003, Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 2, Academic Press, London.
Shapiro, A. H. , 1977, “ Steady Flow in in Collapsible Tubes,” ASME J. Biomech. Eng., 99(3), pp. 126–147. [CrossRef]
Knowlton, F. , and Starling, E. , 1912, “ The Influence of Variations in Temperature and Blood‐Pressure on the Performance of the Isolated Mammalian Heart,” J. Physiol., 44(3), pp. 206–219. [CrossRef] [PubMed]
Kamm, R. D. , and Shapiro, A. H. , 1979, “ Unsteady Flow in a Collapsible Tube Subjected to External Pressure or Body Forces,” J. Fluid Mech., 95(01), pp. 1–78. [CrossRef]
Womersley, J. R. , 1955, “ Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube-I: The Linear Approximation for Long Waves,” Philos. Mag., 46(373), pp. 199–221. [CrossRef]
Moodie, T. B. , Mainardi, F. , and Tait, R. J. , 1985, “ Pressure Pulses in Fluid Filled Distensible Tubes,” Meccanica, 20(1), pp. 33–37. [CrossRef]
Bertram, C. , 2009, “ Fluid Flow in Distensible Vessels,” Clin. Exp. Pharmacol. Physiol., 36(2), pp. 206–216. [CrossRef] [PubMed]
Malek, A. M. , Alper, S. L. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” JAMA, 282(21), pp. 2035–2042. [CrossRef] [PubMed]
Laurent, S. , Boutouyrie, P. , Asmar, R. , Gautier, I. , Laloux, B. , Guize, L. , Ducimetiere, P. , and Benetos, A. , 2001, “ Aortic Stiffness is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients,” Hypertension, 37(5), pp. 1236–1241. [CrossRef] [PubMed]
Korteweg, D. J. , 1878, “ Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren,” Ann. Phys., 241(12), pp. 525–542. [CrossRef]
Fung, Y. C. , 1997, Biomechanics: Circulation, Springer Science & Business Media, New York. [CrossRef]
Pedley, T. J. , 1980, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, UK. [CrossRef]
Nichols, W. , O'Rourke, M. , and Vlachopoulos, C. , 2011, McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, CRC Press, Boca Raton, FL.
Hughes, T. J. , 1974, A Study of the One-Dimensional Theory of Arterial Pulse Propagation, Structural Engineering Laboratory, University of California Berkeley, Berkeley, CA.
van de Vosse, F. N. , and Stergiopulos, N. , 2011, “ Pulse Wave Propagation in the Arterial Tree,” Annu. Rev. Fluid Mech., 43(1), pp. 467–499. [CrossRef]
Chandra, S. , Raut, S. S. , Jana, A. , Biederman, R. W. , Doyle, M. , Muluk, S. C. , and Finol, E. A. , 2013, “ Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling,” ASME J. Biomech. Eng., 135(8), p. 081001. [CrossRef]
Heil, M. , and Hazel, A. L. , 2011, “ Fluid-Structure Interaction in Internal Physiological Flows,” Annu. Rev. Fluid Mech., 43(1), pp. 141–162. [CrossRef]
Taylor, C. A. , Hughes, T. J. , and Zarins, C. K. , 1998, “ Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158(1–2), pp. 155–196. [CrossRef]
Hughes, T. J. , Liu, W. K. , and Zimmermann, T. K. , 1981, “ Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows,” Comput. Methods Appl. Mech. Eng., 29(3), pp. 329–349. [CrossRef]
Taylor, C. A. , and Figueroa, C. , 2009, “ Patient-Specific Modeling of Cardiovascular Mechanics,” Annu. Rev. Biomed. Eng., 11(1), pp. 109–134. [CrossRef] [PubMed]
Formaggia, L. , Gerbeau, J.-F. , Nobile, F. , and Quarteroni, A. , 2001, “ On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels,” Comput. Methods Appl. Mech. Eng., 191(6–7), pp. 561–582. [CrossRef]
Quarteroni, A. , and Veneziani, A. , 2003, “ Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations,” Multiscale Model. Simul., 1(2), pp. 173–195. [CrossRef]
Olufsen, M. S. , Peskin, C. S. , Kim, W. Y. , Pedersen, E. M. , Nadim, A. , and Larsen, J. , 2000, “ Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28(11), pp. 1281–1299. [CrossRef] [PubMed]
Hughes, T. J. , and Lubliner, J. , 1973, “ On the One-Dimensional Theory of Blood Flow in the Larger Vessels,” Math. Biosci., 18(1–2), pp. 161–170. [CrossRef]
Fung, Y. C. , 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer Science & Business Media, New York.
Humphrey, J. D. , 2013, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer Science & Business Media, New York.
Han, H.-C. , Chesnutt, J. K. , Garcia, J. R. , Liu, Q. , and Wen, Q. , 2013, “ Artery Buckling: New Phenotypes, Models, and Applications,” Ann. Biomed. Eng., 41(7), pp. 1399–1410. [CrossRef] [PubMed]
Tang, D. , Yang, C. , Kobayashi, S. , and Ku, D. N. , 2001, “ Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid-Wall Interactions,” ASME J. Biomech. Eng., 123(6), pp. 548–557. [CrossRef]
Pedley, T. , and Luo, X. , 1998, “ Modelling Flow and Oscillations in Collapsible Tubes,” Theor. Comput. Fluid Dyn., 10(1–4), pp. 277–294. [CrossRef]
Amabili, M. , Karazis, K. , Mongrain, R. , Païdoussis, M. P. , and Cartier, R. , 2012, “ A Three-Layer Model for Buckling of a Human Aortic Segment Under Specific Flow-Pressure Conditions,” Int. J. Numer. Methods Biomed. Eng., 28(5), pp. 495–512. [CrossRef]
Cheng, G. C. , Loree, H. M. , Kamm, R. D. , Fishbein, M. C. , and Lee, R. T. , 1993, “ Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation,” Circulation, 87(4), pp. 1179–1187. [CrossRef] [PubMed]
Tang, D. , Yang, C. , Kobayashi, S. , Zheng, J. , Woodard, P. K. , Teng, Z. , Billiar, K. , Bach, R. , and Ku, D. N. , 2009, “ 3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis,” ASME J. Biomech. Eng., 131(6), p. 061010.
Taylor, C. A. , and Humphrey, J. , 2009, “ Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics,” Comput. Methods Appl. Mech. Eng., 198(45–46), pp. 3514–3523. [CrossRef] [PubMed]
Hale, J. , McDonald, D. , and Womersley, J. , 1955, “ Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number,” J. Physiol., 128(3), pp. 629–640. [CrossRef] [PubMed]
Ku, D. N. , 1997, “ Blood Flow in Arteries,” Annu. Rev. Fluid Mech., 29(1), pp. 399–434. [CrossRef]
Setchi, A. , Mestel, A. J. , Siggers, J. H. , Parker, K. H. , Tan, M. W. , and Wong, K. , 2013, “ Mathematical Model of Flow Through the Patent Ductus Arteriosus,” J. Math. Biol., 67(6–7), pp. 1487–1506. [CrossRef] [PubMed]
Tubaldi, E. , Amabili, M. , and Païdoussis, M. P. , 2017, “ Nonlinear Dynamics of Shells Conveying Pulsatile Flow With Pulse-Wave Propagation. Theory and Numerical Results for a Single Harmonic Pulsation,” J. Sound Vib., 396, pp. 217–245. [CrossRef]
De Langre, E. , 2000, “ Ondes variqueuses absolument instables dans un canal élastique,” C. R. De L'Académie Des Sci.-Ser. IIB-Mech. Phys. Astron., 328(1), pp. 61–65.
Wolfram, S. , 1999, The Mathematica® Book, Version 4, Cambridge University Press, Cambridge, UK.
Rocha, L. , Sepulveda, A. , Pontes, A. , Viana, J. , Santos, I. C. , and Tavares, J. M. R. , 2011, “ Study of Pressure Sensors Placement Using an Abdominal Aortic Aneurysm (AAA) Model,” Technology and Medical Sciences, Taylor & Francis, London, p. 261. [CrossRef]
Mills, C. , Gabe, I. , Gault, J. , Mason, D. , Ross, J. , Braunwald, E. , and Shillingford, J. , 1970, “ Pressure-Flow Relationships and Vascular Impedance in Man,” Cardiovasc. Res., 4(4), pp. 405–417. [CrossRef] [PubMed]
Rowland, T. W. , Garrard, M. , Marwood, S. , Guerra, M. E. , Roche, D. , and Unnithan, V. B. , 2009, “ Myocardial Performance During Progressive Exercise in Athletic Adolescent Males,” Med. Sci. Sports Exercise, 41(9), pp. 1721–1728. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of the shell conveying pulsatile flow with boundary conditions at the shell ends

Grahic Jump Location
Fig. 2

(a) Flow velocity at rest (blue line) and during exercise (green line), (b) transmural pressure values in the aortic segment; dotted line: physiological data [62], continuous line: Fourier series with N = 8

Grahic Jump Location
Fig. 3

Computed time response of the nondimensionalized radial displacement w/h of the Dacron prosthesis, ζ = 0.04, (a) at rest (HR = 60 bpm) and (b) during exercise (HR = 180 bpm); dotted line: x = L/4, dashed line: x = L/2, continuous line: x = 3L/4

Grahic Jump Location
Fig. 4

Computed time response of the Dacron prosthesis under physiological pulsatile pressure and velocity at rest conditions, ζ = 0.04, HR = 60 bpm; (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0

Grahic Jump Location
Fig. 5

Computed time response of the Dacron prosthesis under physiological pulsatile pressure and velocity during exercise, ζ = 0.04, HR = 180 bpm; (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0

Grahic Jump Location
Fig. 6

Frequency spectrum of the response of the Dacron prosthesis to physiological pulsatile pressure and velocity at rest conditions, ζ = 0.04, HR = 60 bpm; (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0

Grahic Jump Location
Fig. 7

Frequency spectrum of the response of the Dacron prosthesis to physiological pulsatile pressure and velocity during exercise, ζ = 0.04, HR = 180 bpm; (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0

Grahic Jump Location
Fig. 8

Frequency response curves of the axisymmetric modes: (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0 obtained by varying the HR; ζ = 0.01 (black line), ζ = 0.02 (green line), ζ = 0.03 (red line), ζ = 0.04 (blue line), ζ = 0.05 (magenta line)

Grahic Jump Location
Fig. 9

Maximum (continuous line) and minimum (dashed line) frequency response curves of the axisymmetric modes, ζ = 0.04; (a) w1,0, (b) w2,0, (c) w3,0, and (d) w4,0

Grahic Jump Location
Fig. 10

Bifurcation diagrams for the asymmetric modes, ζ = 0.01; (a) w1,2, (b) w2,2, (c) w3,2, and (d) w4,2; T and 2T stand for periodic response with the excitation period and twice the excitation period, respectively

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In