Research Papers

Effects of Increased Arterial Stiffness on Atherosclerotic Plaque Amounts

[+] Author and Article Information
Kellie V. Stoka, Justine A. Maedeker, Jesse D. Procknow

Department of Mechanical Engineering
and Materials Science,
Washington University,
St. Louis, MO 63130

Lisa Bennett, Siddharth A. Bhayani, William S. Gardner

Department of Biomedical Engineering,
Saint Louis University,
St. Louis, MO 63130

Austin J. Cocciolone

Department of Mechanical Engineering
and Materials Science,
Washington University,
One Brookings Dr., CB 1185,
St. Louis, MO 63130

Tezin A. Walji, Clarissa S. Craft

Department of Cell Biology and Physiology,
Washington University,
St. Louis, MO 63130

Jessica E. Wagenseil

Department of Mechanical Engineering
and Materials Science,
Washington University,
One Brookings Dr., CB 1185,
St. Louis, MO 63130
e-mail: jessica.wagenseil@wustl.edu

1Corresponding author.

Manuscript received October 27, 2017; final manuscript received January 4, 2018; published online March 5, 2018. Assoc. Editor: Raffaella De Vita.

J Biomech Eng 140(5), 051007 (Mar 05, 2018) (10 pages) Paper No: BIO-17-1488; doi: 10.1115/1.4039175 History: Received October 27, 2017; Revised January 04, 2018

Increased arterial stiffness is associated with atherosclerosis in humans, but there have been limited animal studies investigating the relationship between these factors. We bred elastin wildtype (Eln+/+) and heterozygous (Eln+/−) mice to apolipoprotein E wildtype (Apoe+/+) and knockout (Apoe−/−) mice and fed them normal diet (ND) or Western diet (WD) for 12 weeks. Eln+/− mice have increased arterial stiffness. Apoe−/− mice develop atherosclerosis on ND that is accelerated by WD. It has been reported that Apoe−/− mice have increased arterial stiffness and that the increased stiffness may play a role in atherosclerotic plaque progression. We found that Eln+/+Apoe−/− arterial stiffness is similar to Eln+/+Apoe+/+ mice at physiologic pressures, suggesting that changes in stiffness do not play a role in atherosclerotic plaque progression in Apoe−/− mice. We found that Eln+/−Apoe−/− mice have increased structural arterial stiffness compared to Eln+/+Apoe−/− mice, but they only have increased amounts of ascending aortic plaque on ND, not WD. The results suggest a change in atherosclerosis progression but not end stage disease in Eln+/−Apoe−/− mice due to increased arterial stiffness. Possible contributing factors include increased blood pressure and changes in circulating levels of interleukin-6 (IL6) and transforming growth factor beta 1 (TGF-β1) that are also associated with Eln+/− genotype.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Yamashina, A. , Tomiyama, H. , Arai, T. , Hirose, K. , Koji, Y. , Hirayama, Y. , Yamamoto, Y. , and Hori, S. , 2003, “ Brachial-Ankle Pulse Wave Velocity as a Marker of Atherosclerotic Vascular Damage and Cardiovascular Risk,” Hypertens. Res., 26(8), pp. 615–622. [CrossRef] [PubMed]
Gosling, R. G. , and Budge, M. M. , 2003, “ Terminology for Describing the Elastic Behavior of Arteries,” Hypertension, 41(6), pp. 1180–1182. [CrossRef] [PubMed]
Palombo, C. , and Kozakova, M. , 2016, “ Arterial Stiffness, Atherosclerosis and Cardiovascular Risk: Pathophysiologic Mechanisms and Emerging Clinical Indications,” Vasc. Pharmacol., 77, pp. 1–7. [CrossRef]
Birukov, K. G. , 2009, “ Cyclic Stretch, Reactive Oxygen Species, and Vascular Remodeling,” Antioxid. Redox Signal, 11(7), pp. 1651–1667. [CrossRef] [PubMed]
Isenberg, B. C. , Dimilla, P. A. , Walker, M. , Kim, S. , and Wong, J. Y. , 2009, “ Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength,” Biophys J., 97(5), pp. 1313–1322. [CrossRef] [PubMed]
Zhang, S. H. , Reddick, R. L. , Piedrahita, J. A. , and Maeda, N. , 1992, “ Spontaneous Hypercholesterolemia and Arterial Lesions in Mice Lacking Apolipoprotein E,” Science, 258(5081), pp. 468–471. [CrossRef] [PubMed]
Whitman, S. C. , 2004, “ A Practical Approach to Using Mice in Atherosclerosis Research,” Clin. Biochem. Rev., 25(1), pp. 81–93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853358/ [PubMed]
Agianniotis, A. , and Stergiopulos, N. , 2012, “ Wall Properties of the Apolipoprotein E-Deficient Mouse Aorta,” Atherosclerosis, 223(2), pp. 314–320. [CrossRef] [PubMed]
Cilla, M. , Perez, M. M. , Pena, E. , and Martinez, M. A. , 2016, “ Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice,” Ann. Biomed. Eng., 44(7), pp. 2202–2217. [CrossRef] [PubMed]
Cheng, C. , Tempel, D. , van Haperen, R. , van der Baan, A. , Grosveld, F. , Daemen, M. J. , Krams, R. , and de Crom, R. , 2006, “ Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress,” Circulation, 113(23), pp. 2744–2753. [CrossRef] [PubMed]
Faury, G. , Pezet, M. , Knutsen, R. H. , Boyle, W. A. , Heximer, S. P. , McLean, S. E. , Minkes, R. K. , Blumer, K. J. , Kovacs, A. , Kelly, D. P. , Li, D. Y. , Starcher, B. , and Mecham, R. P. , 2003, “ Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency,” J. Clin Invest., 112(9), pp. 1419–1428. [CrossRef] [PubMed]
Wagenseil, J. E. , Nerurkar, N. L. , Knutsen, R. H. , Okamoto, R. J. , Li, D. Y. , and Mecham, R. P. , 2005, “ Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries,” Am. J. Physiol. Heart. Circ. Physiol., 289(3), pp. H1209–H1217. [CrossRef] [PubMed]
Maedeker, J. A. , Stoka, K. V. , Bhayani, S. A. , Gardner, W. S. , Bennett, L. , Procknow, J. D. , Staiculescu, M. C. , Walji, T. A. , Craft, C. S. , and Wagenseil, J. E. , 2016, “ Hypertension and Decreased Aortic Compliance Due to Reduced Elastin Amounts Do Not Increase Atherosclerotic Plaque Accumulation in Ldlr-/- Mice,” Atherosclerosis, 249, pp. 22–29. [CrossRef] [PubMed]
Li, D. Y. , Faury, G. , Taylor, D. G. , Davis, E. C. , Boyle, W. A. , Mecham, R. P. , Stenzel, P. , Boak, B. , and Keating, M. T. , 1998, “ Novel Arterial Pathology in Mice and Humans Hemizygous for Elastin,” J. Clin. Invest., 102(10), pp. 1783–1787. [CrossRef] [PubMed]
Amin, M. , Kunkel, A. G. , Le, V. P. , and Wagenseil, J. E. , 2011, “ Effect of Storage Duration on the Mechanical Behavior of Mouse Carotid Artery,” ASME J. Biomech. Eng., 133(7), p. 071007. [CrossRef]
Dobrin, P. B. , 1996, “ Effect of Histologic Preparation on the Cross-Sectional Area of Arterial Rings,” J. Surg. Res., 61(2), pp. 413–415. [CrossRef] [PubMed]
Humphrey, J. D. , 2002, Cardiovascular Solid Mechanics, Springer-Verlag, New York. [CrossRef]
Fonck, E. , Prod'hom, G. , Roy, S. , Augsburger, L. , Rufenacht, D. A. , and Stergiopulos, N. , 2007, “ Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model,” Am. J. Physiol. Heart Circ. Physiol., 292(6), pp. H2754–H2763. [CrossRef] [PubMed]
Semenkovich, C. F. , Coleman, T. , and Daugherty, A. , 1998, “ Effects of Heterozygous Lipoprotein Lipase Deficiency on Diet-Induced Atherosclerosis in Mice,” J. Lipid Res., 39(6), pp. 1141–1151. http://www.jlr.org/content/39/6/1141.long [PubMed]
Tangirala, R. K. , Rubin, E. M. , and Palinski, W. , 1995, “ Quantitation of Atherosclerosis in Murine Models: Correlation Between Lesions in the Aortic Origin and in the Entire Aorta, and Differences in the Extent of Lesions Between Sexes in LDL Receptor-Deficient and Apolipoprotein E-Deficient Mice,” J. Lipid Res., 36(11), pp. 2320–2328. http://www.jlr.org/content/36/11/2320.long [PubMed]
Ghasemi, A. , and Zahediasl, S. , 2012, “ Normality Tests for Statistical Analysis: A Guide for Non-Statisticians,” Int. J. Endocrinol. Metab., 10(2), pp. 486–489. [CrossRef] [PubMed]
Harwell, M. R. , Rubinstein, E. N. , Hayes, W. S. , and Olds, C. C. , 1992, “ Summarizing Monte Carlo Results in Methodological Research - the 1-Factor and 2-Factor Fixed Effects Anova Cases,” J. Educ. Stat., 17(4), pp. 315–339. [CrossRef]
Turner, M. D. , Nedjai, B. , Hurst, T. , and Pennington, D. J. , 2014, “ Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease,” Biochim. Biophys. Acta, 1843(11), pp. 2563–2582. [CrossRef] [PubMed]
Mallat, Z. , Gojova, A. , Marchiol-Fournigault, C. , Esposito, B. , Kamate, C. , Merval, R. , Fradelizi, D. , and Tedgui, A. , 2001, “ Inhibition of Transforming Growth Factor-Beta Signaling Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Mice,” Circ. Res., 89(10), pp. 930–934. [CrossRef] [PubMed]
Huang, Y. , Guo, X. , and Kassab, G. S. , 2006, “ Axial Nonuniformity of Geometric and Mechanical Properties of Mouse Aorta is Increased During Postnatal Growth,” Am. J. Physiol. Heart Circ. Physiol., 290(2), pp. H657–H664. [CrossRef] [PubMed]
Bersi, M. R. , Khosravi, R. , Wujciak, A. J. , Harrison, D. G. , and Humphrey, J. D. , 2017, “ Differential Cell-Matrix Mechanoadaptations and Inflammation Drive Regional Propensities to Aortic Fibrosis, Aneurysm or Dissection in Hypertension,” J. R. Soc. Interface, 14(136), p. 20170327.
Ferruzzi, J. , Bersi, M. R. , Uman, S. , Yanagisawa, H. , and Humphrey, J. D. , 2015, “ Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex,” ASME J. Biomech. Eng., 137(3), p. 031007.
van Popele, N. M. , Grobbee, D. E. , Bots, M. L. , Asmar, R. , Topouchian, J. , Reneman, R. S. , Hoeks, A. P. , van der Kuip, D. A. , Hofman, A. , and Witteman, J. C. , 2001, “ Association Between Arterial Stiffness and Atherosclerosis: The Rotterdam Study,” Stroke, 32(2), pp. 454–460. [CrossRef] [PubMed]
Tham, D. M. , Martin-McNulty, B. , Wang, Y. X. , Da Cunha, V. , Wilson, D. W. , Athanassious, C. N. , Powers, A. F. , Sullivan, M. E. , and Rutledge, J. C. , 2002, “ Angiotensin II Injures the Arterial Wall Causing Increased Aortic Stiffening in Apolipoprotein E-Deficient Mice,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 283(6), pp. R1442–R1449. [CrossRef] [PubMed]
van Thiel, B. S. , van der Pluijm, I. , Te Riet, L. , Essers, J. , and Danser, A. H. , 2015, “ The Renin-Angiotensin System and Its Involvement in Vascular Disease,” Eur. J. Pharmacol., 763(Pt. A), pp. 3–14. [CrossRef] [PubMed]
Van Herck, J. L. , De Meyer, G. R. , Martinet, W. , Van Hove, C. E. , Foubert, K. , Theunis, M. H. , Apers, S. , Bult, H. , Vrints, C. J. , and Herman, A. G. , 2009, “ Impaired Fibrillin-1 Function Promotes Features of Plaque Instability in Apolipoprotein E-Deficient Mice,” Circulation, 120(24), pp. 2478–2487. [CrossRef] [PubMed]
Van der Donckt, C. , Van Herck, J. L. , Schrijvers, D. M. , Vanhoutte, G. , Verhoye, M. , Blockx, I. , Van Der Linden, A. , Bauters, D. , Lijnen, H. R. , Sluimer, J. C. , Roth, L. , Van Hove, C. E. , Fransen, P. , Knaapen, M. W. , Hervent, A. S. , De Keulenaer, G. W. , Bult, H. , Martinet, W. , Herman, A. G. , and De Meyer, G. R. , 2015, “ Elastin Fragmentation in Atherosclerotic Mice Leads to Intraplaque Neovascularization, Plaque Rupture, Myocardial Infarction, Stroke, and Sudden Death,” Eur. Heart J., 36(17), pp. 1049–1058. [CrossRef] [PubMed]
Habashi, J. P. , Judge, D. P. , Holm, T. M. , Cohn, R. D. , Loeys, B. L. , Cooper, T. K. , Myers, L. , Klein, E. C. , Liu, G. , Calvi, C. , Podowski, M. , Neptune, E. R. , Halushka, M. K. , Bedja, D. , Gabrielson, K. , Rifkin, D. B. , Carta, L. , Ramirez, F. , Huso, D. L. , and Dietz, H. C. , 2006, “ Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome,” Science, 312(5770), pp. 117–121. [CrossRef] [PubMed]
Kothapalli, D. , Liu, S. L. , Bae, Y. H. , Monslow, J. , Xu, T. , Hawthorne, E. A. , Byfield, F. J. , Castagnino, P. , Rao, S. , Rader, D. J. , Pure, E. , Phillips, M. C. , Lund-Katz, S. , Janmey, P. A. , and Assoian, R. K. , 2012, “ Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening,” Cell Rep., 2(5), pp. 1259–1271. [CrossRef] [PubMed]
Kaess, B. M. , Rong, J. , Larson, M. G. , Hamburg, N. M. , Vita, J. A. , Levy, D. , Benjamin, E. J. , Vasan, R. S. , and Mitchell, G. F. , 2012, “ Aortic Stiffness, Blood Pressure Progression, and Incident Hypertension,” JAMA, 308(9), pp. 875–881. [CrossRef] [PubMed]
Mayet, J. , and Hughes, A. , 2003, “ Cardiac and Vascular Pathophysiology in Hypertension,” Heart, 89(9), pp. 1104–1109. [CrossRef] [PubMed]
Osei-Owusu, P. , Knutsen, R. H. , Kozel, B. A. , Dietrich, H. H. , Blumer, K. J. , and Mecham, R. P. , 2014, “ Altered Reactivity of Resistance Vasculature Contributes to Hypertension in Elastin Insufficiency,” Am. J. Physiol. Heart Circ. Physiol., 306(5), pp. H654–H666. [CrossRef] [PubMed]
Matt, P. , Schoenhoff, F. , Habashi, J. , Holm, T. , Van Erp, C. , Loch, D. , Carlson, O. D. , Griswold, B. F. , Fu, Q. , De Backer, J. , Loeys, B. , Huso, D. L. , McDonnell, N. B. , Van Eyk, J. E. , Dietz, H. C. , and The GenTAC Consortium, 2009, “ Circulating Transforming Growth Factor-β in Marfan Syndrome,” Circulation, 120(6), pp. 526–532. [CrossRef] [PubMed]
Erren, M. , Reinecke, H. , Junker, R. , Fobker, M. , Schulte, H. , Schurek, J. O. , Kropf, J. , Kerber, S. , Breithardt, G. , Assmann, G. , and Cullen, P. , 1999, “ Systemic Inflammatory Parameters in Patients With Atherosclerosis of the Coronary and Peripheral Arteries,” Arterioscler., Thromb., Vasc. Biol., 19(10), pp. 2355–2363. [CrossRef]
Anwar, M. A. , Shalhoub, J. , Lim, C. S. , Gohel, M. S. , and Davies, A. H. , 2012, “ The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression,” J. Vasc. Res., 49(6), pp. 463–478. [CrossRef] [PubMed]
Guo, X. , and Wang, X. F. , 2009, “ Signaling Cross-Talk Between TGF-Beta/BMP and Other Pathways,” Cell Res., 19(1), pp. 71–88. [CrossRef] [PubMed]
Topper, J. N. , 2000, “ TGF-Beta in the Cardiovascular System: Molecular Mechanisms of a Context-Specific Growth Factor,” Trends Cardiovasc. Med., 10(3), pp. 132–137. [CrossRef] [PubMed]
Le, V. P. , and Wagenseil, J. E. , 2012, “ Echocardiographic Characterization of Postnatal Development in Mice With Reduced Arterial Elasticity,” Cardiovasc. Eng. Technol., 3(4), pp. 424–438. [CrossRef] [PubMed]
Cunningham, K. S. , and Gotlieb, A. I. , 2005, “ The Role of Shear Stress in the Pathogenesis of Atherosclerosis,” Lab Invest., 85(1), pp. 9–23. [CrossRef] [PubMed]
Myers, J. G. , Moore, J. A. , Ojha, M. , Johnston, K. W. , and Ethier, C. R. , 2001, “ Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery,” Ann. Biomed. Eng., 29(2), pp. 109–120. [CrossRef] [PubMed]
Oyama, N. , Gona, P. , Salton, C. J. , Chuang, M. L. , Jhaveri, R. R. , Blease, S. J. , Manning, A. R. , Lahiri, M. , Botnar, R. M. , Levy, D. , Larson, M. G. , O'Donnell, C. J. , and Manning, W. J. , 2008, “ Differential Impact of Age, Sex, and Hypertension on Aortic Atherosclerosis: The Framingham Heart Study,” Arterioscler., Thromb., Vasc. Biol., 28(1), pp. 155–159. [CrossRef]
Robertson, I. B. , and Rifkin, D. B. , 2016, “ Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins,” Cold Spring Harbor Perspect. Biol., 8(6), p. a021907. https://www.ncbi.nlm.nih.gov/pubmed/27252363


Grahic Jump Location
Fig. 1

In vivo axial stretch ratios (a) were measured by imaging the carotid artery before and after dissection. Individual measurements are shown with mean±SD. P values are from one-way ANOVA for Eln genotype. Mean carotid artery pressure-diameter curves from in vitro mechanical tests are shown for mice on ND (b) or WD (c) for 12 weeks after weaning. Significant effect of *Eln genotype or #Apoe genotype by three-way ANOVA.

Grahic Jump Location
Fig. 2

Inner and outer carotid artery boundaries were traced on images of H&E stained sections to obtain unloaded dimensions. Representative sections for four of the eight groups are shown in (a). Scale bars = 50 μm. Eln+/− arteries have smaller unloaded diameters (b) and thicknesses (c). P values are from one-way ANOVA for Eln genotype. Results for three-way ANOVA are given in the text. Individual measurements are shown with mean±SD.

Grahic Jump Location
Fig. 3

Circumferential Cauchy stress-stretch relationships for the carotid arteries were calculated from the pressure-diameter behavior and the unloaded dimensions for each group on ND (a) and WD (b). Mean±SD.

Grahic Jump Location
Fig. 4

Physiologic values of the systolic circumferential Cauchy stress (a), systolic circumferential stretch (b), structural stiffness (Ep) (c), and material stiffness (Einc) (d) for the carotid artery were calculated using the mechanical test data and measured blood pressures. P values are from one-way ANOVA for Eln genotype. Results for three-way ANOVA are given in the text. Overall, Eln+/ carotid arteries have smaller systolic circumferential Cauchy stresses and larger Ep than Eln+/+. Individual measurements are shown with mean±SD.

Grahic Jump Location
Fig. 5

Representative carotid artery sections stained with VVG (top) and PSR (bottom) for groups on WD. VVG stains elastic fibers black, muscle brown, and collagen pink. PSR stains collagen red on a pale yellow background. (Please refer to online article for color figures.) Note the additional layer of elastic fibers in Eln+/− VVG images (white arrows) and the clear outline of collagen fibers around the elastic fibers in Eln+/+ PSR images (black arrows). Scale bars = 10 μm.

Grahic Jump Location
Fig. 6

Quantification of total plaque area at the aortic root (a). P value is from one-way ANOVA for Eln genotype. Results for three-way ANOVA are given in the text. Individual measurements are shown with mean±SD. Representative images of Apoe−/− aortic root sections stained with oil red O are shown in panels (b)–(e).

Grahic Jump Location
Fig. 7

Quantification of the percentage of the ascending aorta lumen area covered in plaque (a). P value is from one-way ANOVA for Eln genotype. Results for three-way ANOVA are given in the text. Individual measurements are shown with mean±SD. Representative images of Apoe−/− ascending aorta en face preparations stained with oil red O are shown in panels (b)–(e).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In