0
Research Papers

Finite Element Study to Evaluate the Biomechanical Performance of the Spine After Augmenting Percutaneous Pedicle Screw Fixation With Kyphoplasty in the Treatment of Burst Fractures

[+] Author and Article Information
Shady S. Elmasry

Biomechanics Research Laboratory,
Department of Industrial Engineering,
University of Miami,
1251 Memorial Drive,
McArthur Engineering Building, #156,
Coral Gables, FL 33146
e-mail: shady.elmasry.cu@gmail.com

Shihab S. Asfour

Biomechanics Research Laboratory,
Department of Industrial Engineering,
University of Miami,
1251 Memorial Drive,
McArthur Engineering Building, #268,
Coral Gables, FL 33146
e-mail: sasfour@miami.edu

Francesco Travascio

Mem. ASME
Biomechanics Research Laboratory,
Department of Industrial Engineering,
University of Miami,
1251 Memorial Drive,
McArthur Engineering Building, #276,
Coral Gables, FL 33146
e-mail: f.travascio@miami.edu

1Corresponding author.

Manuscript received July 22, 2017; final manuscript received January 12, 2018; published online March 21, 2018. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 140(6), 061005 (Mar 21, 2018) (7 pages) Paper No: BIO-17-1323; doi: 10.1115/1.4039174 History: Received July 22, 2017; Revised January 12, 2018

Percutaneous pedicle screw fixation (PPSF) is a well-known minimally invasive surgery (MIS) employed in the treatment of thoracolumbar burst fractures (TBF). However, hardware failure and loss of angular correction are common limitations caused by the poor support of the anterior column of the spine. Balloon kyphoplasty (KP) is another MIS that was successfully used in the treatment of compression fractures by augmenting the injured vertebral body with cement. To overcome the limitations of stand-alone PPSF, it was suggested to augment PPSF with KP as a surgical treatment of TBF. Yet, little is known about the biomechanical alteration occurred to the spine after performing such procedure. The objective of this study was to evaluate and compare the immediate post-operative biomechanical performance of stand-alone PPSF, stand-alone-KP, and KP-augmented PPSF procedures. Novel three-dimensional (3D) finite element (FE) models of the thoracolumbar junction that describes the fractured spine and the three investigated procedures were developed and tested under mechanical loading conditions. The spinal stiffness, stresses at the implanted hardware, and the intradiscal pressure at the upper and lower segments were measured and compared. The results showed no major differences in the measured parameters between stand-alone PPSF and KP-augmented PPSF procedures, and demonstrated that the stand-alone KP may restore the stiffness of the intact spine. Accordingly, there was no immediate post-operative biomechanical advantage in augmenting PPSF with KP when compared to stand-alone PPSF, and fatigue testing may be required to evaluate the long-term biomechanical performance of such procedures.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Oppenheimer, J. H. , DeCastro, I. , and McDonnell, D. E. , 2009, “Minimally Invasive Spine Technology and Minimally Invasive Spine Surgery: A Historical Review,” Neurosurg. Focus, 27(3), p. E9. [CrossRef] [PubMed]
Pneumaticos, S. G. , Triantafyllopoulos, G. K. , and Giannoudis, P. V. , 2013, “Advances Made in the Treatment of Thoracolumbar Fractures: Current Trends and Future Directions,” Injury, 44(6), pp. 703–712. [CrossRef] [PubMed]
Wood, K. B. , Li, W. , Lebl, D. S. , and Ploumis, A. , 2014, “Management of Thoracolumbar Spine Fractures,” Spine J., 14(1), pp. 145–164. [CrossRef] [PubMed]
Korovessis, P. , Hadjipavlou, A. , and Repantis, T. , 2008, “Minimal Invasive Short Posterior Instrumentation Plus Balloon Kyphoplasty With Calcium Phosphate for Burst and Severe Compression Lumbar Fractures,” Spine, 33(6), pp. 658–667. [CrossRef] [PubMed]
Korovessis, P. , Repantis, T. , Petsinis, G. , Iliopoulos, P. , and Hadjipavlou, A. , 2008, “Direct Reduction of Thoracolumbar Burst Fractures by Means of Balloon Kyphoplasty With Calcium Phosphate and Stabilization With Pedicle-Screw Instrumentation and Fusion,” Spine, 33(4), pp. E100–E108. [CrossRef] [PubMed]
Zhang, L. , Zou, J. , Gan, M. , Shi, J. , Li, J. , and Yang, H. , 2013, “Treatment of Thoracolumbar Burst Fractures: Short-Segment Pedicle Instrumentation Versus Kyphoplasty,” Acta Orthop. Belg., 79(6), pp. 718–725. https://pdfs.semanticscholar.org/20d0/fd50ad222edf4f95d31bc2e6e6e72e081df5.pdf [PubMed]
Adamson, T. E. , 2001, “Microendoscopic Posterior Cervical Laminoforaminotomy for Unilateral Radiculopathy: Results of a New Technique in 100 Cases,” J. Neurosurg.: Spine, 95(1), pp. 51–57. [CrossRef]
Allen, T. L. , Tatli, Y. , and Lutz, G. E. , 2009, “Fluoroscopic Percutaneous Lumbar Zygapophyseal Joint Cyst Rupture: A Clinical Outcome Study,” Spine J., 9(5), pp. 387–395. [CrossRef] [PubMed]
Anand, N. , Baron, E. M. , Thaiyananthan, G. , Khalsa, K. , and Goldstein, T. B. , 2008, “Minimally Invasive Multilevel Percutaneous Correction and Fusion for Adult Lumbar Degenerative Scoliosis: A Technique and Feasibility Study,” Clinical Spine Surg., 21(7), pp. 459–467.
German, J. W. , Adamo, M. A. , Hoppenot, R. G. , Blossom, J. H. , and Nagle, H. A. , 2008, “Perioperative Results Following Lumbar Discectomy: Comparison of Minimally Invasive Discectomy and Standard Microdiscectomy,” J. Neurosurg., 25(2), p. E20. http://thejns.org/doi/full/10.3171/FOC/2008/25/8/E20
Ni, W.-F. , Huang, Y.-X. , Chi, Y.-L. , Xu, H.-Z. , Lin, Y. , Wang, X.-Y. , Huang, Q.-S. , and Mao, F.-M. , 2010, “Percutaneous Pedicle Screw Fixation for Neurologic Intact Thoracolumbar Burst Fractures,” Clin. Spine Surg., 23(8), pp. 530–537. https://journals.lww.com/jspinaldisorders/Abstract/2010/12000/Percutaneous_Pedicle_Screw_Fixation_for_Neurologic.8.aspx
Fuentes, S. , Blondel, B. , Metellus, P. , Gaudart, J. , Adetchessi, T. , and Dufour, H. , 2010, “Percutaneous Kyphoplasty and Pedicle Screw Fixation for the Management of Thoraco-Lumbar Burst Fractures,” Eur. Spine J., 19(8), pp. 1281–1287. [CrossRef] [PubMed]
Kim, S.-M. , Lim, T. J. , Paterno, J. , Park, J. , and Kim, D. H. , 2005, “Biomechanical Comparison: Stability of Lateral-Approach Anterior Lumbar Interbody Fusion and Lateral Fixation Compared With Anterior-Approach Anterior Lumbar Interbody Fusion and Posterior Fixation in the Lower Lumbar Spine,” J. Neurosurg.: Spine, 2(1), pp. 62–68. [CrossRef] [PubMed]
Mahar, A. , Kim, C. , Wedemeyer, M. , Mitsunaga, L. , Odell, T. , Johnson, B. , and Garfin, S. , 2007, “Short-Segment Fixation of Lumbar Burst Fractures Using Pedicle Fixation at the Level of the Fracture,” Spine, 32(14), pp. 1503–1507. [CrossRef] [PubMed]
Norton, R. P. , Milne, E. L. , Kaimrajh, D. N. , Eismont, F. J. , Latta, L. L. , and Williams, S. K. , 2014, “Biomechanical Analysis of Four-Versus Six-Screw Constructs for Short-Segment Pedicle Screw and Rod Instrumentation of Unstable Thoracolumbar Fractures,” Spine J., 14(8), pp. 1734–1739. [CrossRef] [PubMed]
Belkoff, S. M. , Mathis, J. M. , Jasper, L. E. , and Deramond, H. , 2001, “The Biomechanics of Vertebroplasty: The Effect of Cement Volume on Mechanical Behavior,” Spine, 26(14), pp. 1537–1541. [CrossRef] [PubMed]
Dean, J. , Ison, K. , and Gishen, P. , 2000, “The Strengthening Effect of Percutaneous Vertebroplasty,” Clin. Radiol., 55(6), pp. 471–476. [CrossRef] [PubMed]
Blondel, B. , Fuentes, S. , Metellus, P. , Adetchessi, T. , Pech-Gourg, G. , and Dufour, H. , 2009, “Severe Thoracolumbar Osteoporotic Burst Fractures: Treatment Combining Open Kyphoplasty and Short-Segment Fixation,” Orthop. Traumatol.: Surg. Res., 95(5), pp. 359–364. [CrossRef] [PubMed]
Garfin, S. R. , Yuan, H. A. , and Reiley, M. A. , 2001, “New Technologies in Spine: Kyphoplasty and Vertebroplasty for the Treatment of Painful Osteoporotic Compression Fractures,” Spine, 26(14), pp. 1511–1515. [CrossRef] [PubMed]
Wardlaw, D. , Cummings, S. R. , Van Meirhaeghe, J. , Bastian, L. , Tillman, J. B. , Ranstam, J. , Eastell, R. , Shabe, P. , Talmadge, K. , and Boonen, S. , 2009, “Efficacy and Safety of Balloon Kyphoplasty Compared With Non-Surgical Care for Vertebral Compression Fracture (FREE): A Randomised Controlled Trial,” Lancet, 373(9668), pp. 1016–1024. [CrossRef] [PubMed]
Acosta, F. L. , Aryan, H. E. , Taylor, W. R. , and Ames, C. P. , 2005, “Kyphoplasty-Augmented Short-Segment Pedicle Screw Fixation of Traumatic Lumbar Burst Fractures: Initial Clinical Experience and Literature Review,” Neurol. Focus, 18(3), pp. 1–6. [CrossRef]
Afzal, S. , Akbar, S. , and Dhar, S. A. , 2008, “Short Segment Pedicle Screw Instrumentation and Augmentation Vertebroplasty in Lumbar Burst Fractures: An Experience,” Eur. Spine J., 17(3), pp. 336–341. [CrossRef] [PubMed]
Ackerman, M. J., 1999, “The Visible Human Project: A Resource for education,” Acad Med., 74(6), pp. 667–670. https://www.ncbi.nlm.nih.gov/pubmed/10386094
Elmasry, S. , Asfour, S. , and Travascio, F. , 2016, “Implications of Spine Fixation on the Adjacent Lumbar Levels for Surgical Treatment of Thoracolumbar Burst Fractures: A Finite Element Analysis,” J. Spine Care, 1(1), pp. 1–5. http://www.oatext.com/Implications-of-spine-fixation-on-the-adjacent-lumbar-levels-for-surgical-treatment-of-thoracolumbar-burst-fractures-a-finite-element-analysis.php
Cowin, S. C. , 2001, Bone Mechanics Handbook, 2nd ed., CRC Press, Boca Raton, FL.
Travascio, F. , Asfour, S. , Gjolaj, J. , Latta, L. , and Elmasry, S. , 2015, “Implications of Decompressive Surgical Procedures for Lumbar Spine Stenosis on the Biomechanics of the Adjacent Segment: A Finite Element Analysis,” J. Spine, 4(10), p. 2. https://www.omicsonline.org/open-access/implications-of-decompressive-surgical-procedures-for-lumbar-spine-stenosis-on-the-biomechanics-of-the-adjacent-segment-a-finite-element-analysis-2165-7939-1000220.php?aid=50370
Schmidt, H. , Heuer, F. , Simon, U. , Kettler, A. , Rohlmann, A. , Claes, L. , and Wilke, H.-J. , 2006, “Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus,” Clin. Biomech., 21(4), pp. 337–344. [CrossRef]
Shirazi-Adl, A. , Ahmed, A. M. , and Shrivastava, S. C. , 1986, “Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression,” Spine, 11(9), pp. 914–927. [CrossRef] [PubMed]
Zander, T. , Rohlmann, A. , Calisse, J. , and Bergmann, G. , 2001, “Estimation of Muscle Forces in the Lumbar Spine During Upper-Body Inclination,” Clin. Biomech., 16(Suppl. 1), pp. S73–S80. [CrossRef]
Antoniou, J. , Steffen, T. , Nelson, F. , Winterbottom, N. , Hollander, A. P. , Poole, R. A. , Aebi, M. , and Alini, M. , 1996, “The Human Lumbar Intervertebral Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration,” J. Clin. Invest., 98(4), pp. 996–1003. [CrossRef] [PubMed]
Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Rawlins, B. A. , Weidenbaum, M. , and Mow, V. C. , 1998, “Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression,” J. Biomech., 31(6), pp. 535–544. [CrossRef] [PubMed]
Zhu, Q. , Jackson, A. R. , and Gu, W. Y. , 2012, “Cell Viability in Intervertebral Disc Under Various Nutritional and Dynamic Loading Conditions: 3D Finite Element Analysis,” J. Biomech., 45(16), pp. 2769–2777. [CrossRef] [PubMed]
Schmidt, H. , Galbusera, F. , Rohlmann, A. , Zander, T. , and Wilke, H.-J. , 2012, “Effect of Multilevel Lumbar Disc Arthroplasty on Spine Kinematics and Facet Joint Loads in Flexion and Extension: A Finite Element Analysis,” Eur. Spine J., 21(S5), pp. 663–674. [CrossRef]
Pintar, F. A. , Yoganandan, N. , Myers, T. , Elhagediab, A. , and Sances, A. , 1992, “Biomechanical Properties of Human Lumbar Spine Ligaments,” J. Biomech., 25(11), pp. 1351–1356. [CrossRef] [PubMed]
Silva, M. J. , Keaveny, T. M. , and Hayes, W. C. , 1997, “Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body,” Spine, 22(2), pp. 140–150. [CrossRef] [PubMed]
Natarajan, R. N. , and Andersson, G. B. , 1999, “The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading,” Spine, 24(18), pp. 1873–1881. [CrossRef] [PubMed]
Périé, D. , Korda, D. , and Iatridis, J. C. , 2005, “Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability,” J. Biomech., 38(11), pp. 2164–2171. [CrossRef] [PubMed]
Lewis, G. , 1997, “Properties of Acrylic Bone Cement: State of the Art Review,” J. Biomed. Mater. Res. Part A, 38(2), pp. 155–182. [CrossRef]
Villarraga, M. L. , Bellezza, A. J. , Harrigan, T. P. , Cripton, P. A. , Kurtz, S. M. , and Edidin, A. A. , 2005, “The Biomechanical Effects of Kyphoplasty on Treated and Adjacent Nontreated Vertebral Bodies,” J. Spinal Disord. Tech., 18(1), pp. 84–91. [CrossRef] [PubMed]
Kim, Y. , 2007, “Finite Element Analysis of Anterior Lumbar Interbody Fusion: Threaded Cylindrical Cage and Pedicle Screw Fixation,” Spine, 32(23), pp. 2558–2568. [CrossRef] [PubMed]
Elmasry, S. S. , Asfour, S. S. , and Travascio, F. , 2017, “Effectiveness of Pedicle Screw Inclusion at the Fracture Level in Short-Segment Fixation Constructs for the Treatment of Thoracolumbar Burst Fractures: A Computational Biomechanics Analysis,” Comput. Methods Biomech. Biomed. Eng., 20(13), pp. 1412–1420.
Alanay, A. , Acaroglu, E. , Yazici, M. , Oznur, A. , and Surat, A. , 2001, “Short-Segment Pedicle Instrumentation of Thoracolumbar Burst Fractures: Does Transpedicular Intracorporeal Grafting Prevent Early Failure?,” Spine, 26(2), pp. 213–217. [CrossRef] [PubMed]
Danisa, O. A. , Shaffrey, C. I. , Jane, J. A. , Whitehill, R. , Wang, G.-J. , Szabo, T. A. , Hansen, C. A. , Shaffrey, M. E. , and Chan, D. P. , 1995, “Surgical Approaches for the Correction of Unstable Thoracolumbar Burst Fractures: A Retrospective Analysis of Treatment Outcomes,” J. Neurosurg., 83(6), pp. 977–983. [CrossRef] [PubMed]
Dabirrahmani, D. , Becker, S. , Hogg, M. , Appleyard, R. , Baroud, G. , and Gillies, M. , 2012, “Mechanical Variables Affecting Balloon Kyphoplasty Outcome-A Finite Element Study,” Comput. Methods Biomech. Biomed. Eng., 15(3), pp. 211–220. [CrossRef]
Vadapalli, S. , Sairyo, K. , Goel, V. K. , Robon, M. , Biyani, A. , Khandha, A. , and Ebraheim, N. A. , 2006, “Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion–A Finite Element Study,” Spine, 31(26), pp. E992–E998. [CrossRef] [PubMed]
Maas, S. A. , Ellis, B. J. , Ateshian, G. A. , and Weiss, J. A. , 2012, “FEBio: Finite Elements for Biomechanics,” ASME J. Biomech. Eng., 134(1), p. 011005. [CrossRef]
Lee, Y. S. , and Sung, J. K. , 2005, “Long-Term Follow-Up Results of Short-Segment Posterior Screw Fixation for Thoracolumbar Burst Fractures,” J. Korean Neurosurg. Soc., 37, pp. 416–421. https://www.jkns.or.kr/upload/pdf/0042005081.pdf
Blondel, B. , Fuentes, S. , Pech-Gourg, G. , Adetchessi, T. , Tropiano, P. , and Dufour, H. , 2011, “Percutaneous Management of Thoracolumbar Burst Fractures: Evolution of Techniques and Strategy,” Orthop. Traumatol.: Surg. Res., 97(5), pp. 527–532. [CrossRef] [PubMed]
Maestretti, G. , Cremer, C. , Otten, P. , and Jakob, R. P. , 2007, “Prospective Study of Standalone Balloon Kyphoplasty With Calcium Phosphate Cement Augmentation in Traumatic Fractures,” Eur. Spine J., 16(5), pp. 601–610. [CrossRef] [PubMed]
Boszczyk, B. , Bierschneider, M. , Potulski, M. , Robert, B. , Vastmans, J. , and Jaksche, H. , 2002, “Extended Kyphoplasty Indications for Stabilization of Osteoporotic Vertebral Compression Fractures,” Der Unfallchirurg, 105(10), pp. 952–957. [CrossRef] [PubMed]
Bironneau, A. , Bouquet, C. , Millet-Barbe, B. , Leclercq, N. , Pries, P. , and Gayet, L.-E. , 2011, “Percutaneous Internal Fixation Combined With Kyphoplasty for Neurologically Intact Thoracolumbar Fractures: A Prospective Cohort Study of 24 Patients With One Year of Follow-Up,” Orthop. Traumatol.: Surg. Res., 97(4), pp. 389–395. [CrossRef] [PubMed]
Panjabi, M. h, T. , Oxland, R. , Lin, R. , and McGowen, T. , 1994, “Thoracolumbar Burst Fracture: A Biomechanical Investigation of Its Multidirectional Flexibility,” Spine, 19(5), pp. 578–585. [CrossRef] [PubMed]
Krüger, A. , Zettl, R. , Ziring, E. , Mann, D. , Schnabel, M. , and Ruchholtz, S. , 2010, “Kyphoplasty for the Treatment of Incomplete Osteoporotic Burst Fractures,” Eur. Spine J., 19(6), pp. 893–900. [CrossRef] [PubMed]
Baroud, G. , Nemes, J. , Heini, P. , and Steffen, T. , 2003, “Load Shift of the Intervertebral Disc After A Vertebroplasty: A Finite-Element Study,” Eur. Spine J., 12(4), pp. 421–426. [CrossRef] [PubMed]
Wycisk, E. , Solbach, A. , Siddique, S. , Herzog, D. , Walther, D. , and Emmelmann, C. , “Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties,” Phys. Procedia, 56, pp. 371–378. [CrossRef]
Panjabi, M. M. , Oxland, T. , Yamamoto, I. , and Crisco, J. , 1994, “Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves,” J. Bone Jt. Surg., 76(3), pp. 413–424. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

FE models of the investigated procedures: (a) fracture spine, (b) stand-alone KP, (c) stand-alone PPSF, and (d) KP + PPSF

Grahic Jump Location
Fig. 2

Relative rotation (ROM) between T12 and L2 for all investigated loading conditions

Grahic Jump Location
Fig. 3

MIP for all investigated procedures: (a) at T12-L1 and (b) at L1-L2

Grahic Jump Location
Fig. 4

Maximum von Mises stress in the PPSF and KP + PPSF hardware: (a) posterior rods and (b) pedicle screws

Grahic Jump Location
Fig. 5

Stress distribution in the hardware of KP + PPSF during axial torsion

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In