0
Research Papers

Effect of Local Coil Density on Blood Flow Stagnation in Densely Coiled Cerebral Aneurysms: A Computational Study Using a Cartesian Grid Method

[+] Author and Article Information
Tomohiro Otani

Mem. ASME
Department of Mechanical Science
and Bioengineering,
Graduate School of Engineering Science,
Osaka University,
1-3 Machikaneyamacho,
Toyonaka-shi 560-8531, Osaka, Japan
e-mail: otani@me.es.osaka-u.ac.jp

Takuya Shindo

Department of Systems Science,
School of Engineering Science,
Osaka University,
1-3 Machikaneyamacho,
Toyonaka-shi 560-8531, Osaka, Japan
e-mail: t.shindo@biomech.me.es.osaka-u.ac.jp

Satoshi Ii

Department of Mechanical Science
and Bioengineering,
Graduate School of Engineering Science,
Osaka University,
1-3 Machikaneyamacho,
Toyonaka-shi 560-8531, Osaka, Japan
e-mail: sii@me.es.osaka-u.ac.jp

Masayuki Hirata

Department of Neurosurgery,
Graduate School of Medicine and
Global Center for Medical Engineering and
Informatics (MEI Center),
Osaka University,
2-2 Yamadaoka,
Suita-shi 560-0871, Osaka, Japan
e-mail: mhirata@nsurg.med.osaka-u.ac.jp

Shigeo Wada

Department of Mechanical Science
and Bioengineering,
Graduate School of Engineering Science,
Osaka University,
1-3 Machikaneyamacho,
Toyonaka-shi 560-8531, Osaka, Japan
e-mail: shigeo@me.es.osaka-u.ac.jp

1Corresponding author.

Manuscript received July 14, 2017; final manuscript received December 10, 2017; published online February 12, 2018. Assoc. Editor: Alison Marsden.

J Biomech Eng 140(4), 041013 (Feb 12, 2018) (8 pages) Paper No: BIO-17-1308; doi: 10.1115/1.4039150 History: Received July 14, 2017; Revised December 10, 2017

Aneurysm recurrence is the most critical concern following coil embolization of a cerebral aneurysm. Adequate packing density (PD) and coil uniformity are believed necessary to achieve sufficient flow stagnation, which decreases the risk of aneurysm recurrence. The effect of coil distribution on the extent of flow stagnation, however, especially in cases of dense packing (high PD), has received less attention. Thus, the cause of aneurysm recurrence despite dense packing is still an open question. The primary aim of this study is to evaluate the effect of local coil density on the extent of blood flow stagnation in densely coiled aneurysms. For this purpose, we developed a robust computational framework to determine blood flow using a Cartesian grid method, by which the complex fluid pathways in coiled aneurysms could be flexibly treated using an implicit function. This tool allowed us to conduct blood flow analyses in two patient-specific geometries with 50 coil distribution patterns in each aneurysm at clinically adequate PD. The results demonstrated that dense packing in the aneurysm may not necessarily block completely the inflow into the aneurysm and local flow that formed in the neck region, whose strength was inversely related to this local PD. This finding suggests that local coil density in the neck region still plays an important role in disturbing the remaining local flow, which possibly prevents thrombus formation in a whole aneurysm sac, increasing the risk of aneurysm regrowth and subsequent recurrence.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ferns, S. P. , Sprengers, M. E. S. , van Rooij, W. J. , Rinkel, G. J. E. , Van Rijn, J. C. , Bipat, S. , Sluzewski, M. , and Majoie, C. B. L. M. , 2009, “ Coiling of Intracranial Aneurysms: A Systematic Review on Initial Occlusion and Reopening and Retreatment Rates,” Stroke, 40(8), pp. e523–e529. [CrossRef] [PubMed]
Raymond, J. , Guilbert, F. , Weill, A. , Georganos, S. A. , Juravsky, L. , Lamoureux, J. , Chagnon, M. , and Roy, D. , 2003, “ Long-Term Angiographic Recurrences after Selective Endovascular Treatment of Aneurysms With Detachable Coils,” Stroke, 34(6), pp. 1398–1403. [CrossRef] [PubMed]
Roy, D. , Milot, G. , and Raymond, J. , 2001, “ Endovascular Treatment of Unruptured Aneurysms,” Stroke, 32(9), pp. 1998–2004. [CrossRef] [PubMed]
Sluzewski, M. , van Rooij, W. J. , Slob, M. J. , Bescós, J. O. , Slump, C. H. , Wijnalda, D. , Rooij, W. J. V. , and Wijnalda, D. , 2004, “ Relation Between Aneurysm Volume, Packing, and Compaction in 145 Cerebral Aneurysms Treated With Coils,” Radiology, 231(3), pp. 653–658. [CrossRef] [PubMed]
Raymond, J. , Darsaut, T. , Salazkin, I. , Gevry, G. , and Bouzeghrane, F. , 2008, “ Mechanisms of Occlusion and Recanalization in Canine Carotid Bifurcation Aneurysms Embolized With Platinum Coils: An Alternative Concept,” AJNR Am. J. Neuroradiol., 29(4), pp. 745–752. [CrossRef] [PubMed]
Hasan, D. M. , Nadareyshvili, A. I. , Hoppe, A. L. , Mahaney, K. B. , Kung, D. K. , and Raghavan, M. L. , 2012, “ Cerebral Aneurysm Sac Growth as the Etiology of Recurrence After Successful Coil Embolization,” Stroke, 43(3), pp. 866–868. [CrossRef] [PubMed]
Groden, C. , Laudan, J. , Gatchell, S. , and Zeumer, H. , 2001, “ Three-Dimensional Pulsatile Flow Simulation Before and After Endovascular Coil Embolization of a Terminal Cerebral Aneurysm,” J. Cereb. Blood Flow Metab., 21(12), pp. 1464–1471. [CrossRef] [PubMed]
Cha, K. S. , Balaras, E. , Lieber, B. B. , Sadasivan, C. , and Wakhloo, A. K. , 2007, “ Modeling the Interaction of Coils With the Local Blood Flow After Coil Embolization of Intracranial Aneurysms,” ASME J. Biomech. Eng., 129(6), pp. 873–879. [CrossRef]
Kakalis, N. M. P. , Mitsos, A. P. , Byrne, J. V. , and Ventikos, Y. , 2008, “ The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment,” IEEE Trans. Med. Imaging, 27(6), pp. 814–824. [CrossRef] [PubMed]
Mitsos, A. P. , Kakalis, N. M. P. , Ventikos, Y. P. , and Byrne, J. V. , 2008, “ Haemodynamic Simulation of Aneurysm Coiling in an Anatomically Accurate Computational Fluid Dynamics Model: Technical Note,” Neuroradiology, 50(4), pp. 341–347. [CrossRef] [PubMed]
Morales, H. G. , Kim, M. , Vivas, E. E. , Villa-Uriol, M. C. , Larrabide, I. , Sola, T. , Guimaraens, L. , and Frangi, A. F. , 2011, “ How Do Coil Configuration and Packing Density Influence Intra-Aneurysmal Hemodynamics?,” Am. J. Neuroradiol., 32(10), pp. 1935–1941. [CrossRef]
Morales, H. G. , Larrabide, I. , Geers, A. J. , San Román, L. , Blasco, J. , Macho, J. M. , and Frangi, A. F. , 2013, “ A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic Path Planning,” IEEE Trans. Med. Imaging, 32(1), pp. 119–129. [CrossRef] [PubMed]
Babiker, M. H. , Chong, B. , Gonzalez, L. F. , Cheema, S. , and Frakes, D. H. , 2013, “ Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics,” J. Biomech., 46(16), pp. 2809–2816. [CrossRef] [PubMed]
Damiano, R. J. , Ma, D. , Xiang, J. , Siddiqui, A. H. , Snyder, K. V. , and Meng, H. , 2015, “ Finite Element Modeling of Endovascular Coiling and Flow Diversion Enables Hemodynamic Prediction of Complex Treatment Strategies for Intracranial Aneurysm,” J. Biomech., 48(12), pp. 3332–3340. [CrossRef] [PubMed]
Nair, P. , Chong, B. W. , Indahlastari, A. , Ryan, J. , Workman, C. , Haithem Babiker, M. , Yadollahi Farsani, H. , Baccin, C. E. , and Frakes, D. , 2016, “ Hemodynamic Characterization of Geometric Cerebral Aneurysm Templates Treated With Embolic Coils,” ASME J. Biomech. Eng., 138(2), p. 021011. [CrossRef]
Otani, T. , Ii, S. , Shigematsu, T. , Fujinaka, T. , Hirata, M. , Ozaki, T. , and Wada, S. , 2017, “ Computational Study for the Effects of Coil Configuration on Blood Flow Characteristics in Coil-Embolized Cerebral Aneurysm,” Med. Biol. Eng. Comput., 55(5), pp. 697–710. [CrossRef] [PubMed]
Piotin, M. , Spelle, L. , Mounayer, C. , Salles-Rezende, M. T. , Giansante-Abud, D. , Vanzin-Santos, R. , and Moret, J. , 2007, “ Intracranial Aneurysms: Treatment With Bare Platinum Coils—Aneurysm Packing, Complex Coils, and Angiographic Recurrence,” Radiology, 243(2), pp. 500–508. [CrossRef] [PubMed]
Mehra, M. , Hurley, M. C. , Gounis, M. J. , King, R. M. , Shaibani, A. , Dabus, G. , Labdag, F. E. , Levy, E. I. , and Bendok, B. R. , 2011, “ The Impact of Coil Shape Design on Angiographic Occlusion, Packing Density and Coil Mass Uniformity in Aneurysm Embolization: An In Vivo Study,” J. Neurointerv. Surg., 3(2), pp. 131–136. [CrossRef] [PubMed]
Chueh, J. , Vedantham, S. , Wakhloo, A. K. , Carniato, S. L. , Puri, A. S. , Bzura, C. , Coffin, S. , Bogdanov, A. A. , and Gounis, M. J. , 2015, “ Aneurysm Permeability Following Coil Embolization: Packing Density and Coil Distribution,” J. Neurointerv. Surg., 7(9), pp. 676–681. [CrossRef] [PubMed]
Otani, T. , Ii, S. , Shigematsu, T. , Fujinaka, T. , Hirata, M. , Ozaki, T. , and Wada, S. , 2016, “ A Computational Approach for Blood Flow Analysis in the Densely Coiled Cerebral Aneurysm,” IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, Oct. 31–Nov. 2, pp. 342–345.
Ohtake, Y. , Belyaev, A. , Alexa, M. , Turk, G. , and Seidel, H.-P. , 2003, “ Multi-Level Partition of Unity Implicits,” ACM Trans. Graph., 22(3), pp. 463–470. [CrossRef]
Sethian, J. A. , 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science, Cambridge University Press, Cambridge, UK.
Ford, M. D. , Hoi, Y. , Piccinelli, M. , Antiga, L. , and Steinman, D. A. , 2009, “ An Objective Approach to Digital Removal of Saccular Aneurysms: Technique and Applications,” Br. J. Radiol., 82(SI 1), pp. S55–S61. [CrossRef] [PubMed]
White, J. B. , Ken, C. G. M. , Cloft, H. J. , and Kallmes, D. F. , 2008, “ Coils in a Nutshell: A Review of Coil Physical Properties,” Am. J. Neuroradiol., 29(7), pp. 1242–1246. [CrossRef]
Morales, H. G. , Larrabide, I. , Geers, A. J. , Aguilar, M. L. , and Frangi, A. F. , 2013, “ Newtonian and Non-Newtonian Blood Flow in Coiled Cerebral Aneurysms,” J. Biomech., 46(13), pp. 2158–2164. [CrossRef] [PubMed]
Weymouth, G. D. , and Yue, D. K. P. , 2011, “ Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems,” J. Comput. Phys., 230(16), pp. 6233–6247. [CrossRef]
Ii, S. , Mohd Aib, M. A. H. , Watanabe, Y. , and Wada, S. , 2017, “ Physically Consistent Data Assimilation Method Based on Feedback Control for Patient-Specific Blood Flow Analysis,” Int. J. Numer. Methods Biomed. Eng., 34(1), p. e2910.
Dukowicz, J. K. , and Dvinsky, A. S. , 1992, “ Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations,” J. Comput. Phys., 102(2), pp. 336–347. [CrossRef]
Liu, X. X.-D. , Osher, S. , and Chan, T. , 1994, “ Weighted Essentially Non-Oscillatory Schemes,” J. Comput. Phys., 115(1), pp. 200–212. [CrossRef]
Jiang, G.-S. , and Shu, C.-W. , 1996, “ Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., 126(1), pp. 202–228. [CrossRef]
Cebral, J. R. , Castro, M. A. , Putman, C. M. , and Alperin, N. , 2008, “ Flow-Area Relationship in Internal Carotid and Vertebral Arteries,” Physiol. Meas., 29(5), pp. 585–594. [CrossRef] [PubMed]
Geers, A. , Larrabide, I. , Morales, H. , and Frangi, A. , 2014, “ Approximating Hemodynamics of Cerebral Aneurysms With Steady Flow Simulations,” J. Biomech., 47(1), pp. 178–185. [CrossRef] [PubMed]
Hathcock, J. J. , 2006, “ Flow Effects on Coagulation and Thrombosis,” Arterioscler. Thromb. Vasc. Biol., 26(8), pp. 1729–1737. [CrossRef] [PubMed]
Sadasivan, C. , Fiorella, D. J. , Woo, H. H. , Lieber, B. B. , Surgery, N. , Road, N. , and Brook, S. , 2013, “ Physical Factors Effecting Cerebral Aneurysm Pathophysiology,” Ann. Biomed. Eng., 41(7), pp. 1347–1365. [CrossRef] [PubMed]
Cebral, J. R. , and Raschi, M. , 2013, “ Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review,” Ann. Biomed. Eng., 41(7), pp. 1366–1383. [CrossRef] [PubMed]
Weisel, J. W. , 2008, “ Biophysics. Enigmas of Blood Clot Elasticity,” Science, 320(5875), pp. 456–457. [CrossRef] [PubMed]
Cito, S. , Mazzeo, M. D. , and Badimon, L. , 2013, “ A Review of Macroscopic Thrombus Modeling Methods,” Thromb. Res., 131(2), pp. 116–124. [CrossRef] [PubMed]
Sadato, A. , Adachi, K. , Hayakawa, M. , Kato, Y. , and Hirose, Y. , 2016, “ Effects of Anatomic Characteristics of Aneurysms on Packing Density in Endovascular Coil Embolization: Analysis of a Single Center's Experience,” Neurosurg. Rev., 39(1), pp. 109–114. [CrossRef] [PubMed]
Morales, H. G. , Larrabide, I. , Geers, A. J. , Dai, D. , Kallmes, D. F. , and Frangi, A. F. , 2012, “ Analysis and Quantification of Endovascular Coil Distribution Inside Saccular Aneurysms Using Histological Images,” J. Neurointerv. Surg., 5(Suppl. 3), pp. 33–38.
Sadasivan, C. , Brownstein, J. , Patel, B. , Dholakia, R. , Santore, J. , Al-Mufti, F. , Puig, E. , Rakian, A. , Fernandez-Prada, K. D. , Elhammady, M. S. , Farhat, H. , Fiorella, D. J. , Woo, H. H. , Aziz-Sultan, M. A. , and Lieber, B. B. , 2013, “ In Vitro Quantification of the Size Distribution of Intrasaccular Voids Left after Endovascular Coiling of Cerebral Aneurysms,” Cardiovasc. Eng. Technol., 4(1), pp. 63–74. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 2

Patient-specific aneurysm geometries of case A (left) and case B (right)

Grahic Jump Location
Fig. 1

Workflow of blood flow simulation in the coiled aneurysm using Cartesian grid method. (a) and (b) The surface geometry of the aneurysm with parent arteries are reconstructed from medical images (a) and projected onto the Cartesian grid using the SDF (b). (c) Coil deployment simulation is conducted using the implicit surface of the aneurysm and balloon geometry (shown in green) modeled by the algorithm of Ford et al. [23]. (d) and (e) the coils in the aneurysm (d) are also projected onto the Cartesian grid, and the fluid domain is identified by the VOF function (e). The aneurysm surface in (e) shows the iso-surface of the VOF = 0.5.

Grahic Jump Location
Fig. 9

Volume ratio of the low shear rate region (<50 s−1) against the distance from the aneurysm neck to its fundus in the aneurysms in case A (left) and case B (right). Error bars show the maximum and minimum ranges.

Grahic Jump Location
Fig. 3

Grid convergence test: fine (grid size 25 μm); medium (grid size 37.5 μm); and coarse (grid size 50 μm). (a) The velocity profile was measured along the red line, which is located along the y-direction. (b) Profiles of velocity components (ux, uy, uz).

Grahic Jump Location
Fig. 4

Representative velocity fields in the cross-sectional plane of coiled aneurysms in case A (top) and case B (bottom)

Grahic Jump Location
Fig. 5

Representative shear rate fields in the cross-sectional plane of coiled aneurysms in case A (top) and case B (bottom). Note that the color bars were set by log-scale.

Grahic Jump Location
Fig. 6

SDF from the aneurysm neck to the fundus in case A (left) and case B (right)

Grahic Jump Location
Fig. 7

Spatial proportion of kinetic energy in aneurysms from the aneurysm neck to the fundus in case A (top) and case B (bottom) before (left) and after (right) coiling. Error bars show maximum and minimum ranges.

Grahic Jump Location
Fig. 8

Relations between the FER in the whole aneurysm and the local PD of coils in regions with the distance from neck of 0–0.5 mm (top), 0.5–1.0 mm (middle), and 1.0–1.5 mm (bottom) in case A (left) and case B (right). Lines show the results of the regression analysis using a log-linear model (lny = ax + b). R2 is the coefficient of determination; p indicates the significance of the coefficient.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In