Research Papers

Flow–Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model

[+] Author and Article Information
Anvar Gilmanov

Saint Anthony Falls Laboratory,
University of Minnesota,
Minneapolis, MN 55414
e-mail: gilmanov.anvar@gmail.com

Henryk Stolarski

Department of Civil, Environmental,
and Geo-Engineering,
University of Minnesota,
Minneapolis, MN 55414
e-mail: stola001@umn.edu

Fotis Sotiropoulos

College of Engineering and Applied Sciences,
Stony Brook University,
Stony Brook, NY 11794-2200
e-mail: fotis.sotiropoulos@stonybrook.edu

1Corresponding author.

Manuscript received December 20, 2016; final manuscript received December 28, 2017; published online January 23, 2018. Assoc. Editor: Keefe B. Manning.

J Biomech Eng 140(4), 041003 (Jan 23, 2018) (9 pages) Paper No: BIO-16-1530; doi: 10.1115/1.4038885 History: Received December 20, 2016; Revised December 28, 2017

The blood flow patterns in the region around the aortic valve depend on the geometry of the aorta and on the complex flow–structure interaction between the pulsatile flow and the valve leaflets. Consequently, the flow depends strongly on the constitutive properties of the tissue, which can be expected to vary between healthy and diseased heart valves or native and prosthetic valves. The main goal of this work is to qualitatively demonstrate that the choice of the constitutive model of the aortic valve is critical in analysis of heart hemodynamics. To accomplish that two different constitutive models were used in curvilinear immersed boundary–finite element–fluid–structure interaction (CURVIB-FE-FSI) method developed by Gilmanov et al. (2015, “A Numerical Approach for Simulating Fluid Structure Interaction of Flexible Thin Shells Undergoing Arbitrarily Large Deformations in Complex Domains,” J. Comput. Phys., 300, pp. 814–843.) to simulate an aortic valve in an anatomic aorta at physiologic conditions. The two constitutive models are: (1) the Saint-Venant (StV) model and (2) the modified May-Newman&Yin (MNY) model. The MNY model is more general and includes nonlinear, anisotropic effects. It is appropriate to model the behavior of both prosthetic and biological tissue including native valves. Both models are employed to carry out FSI simulations of the same valve in the same aorta anatomy. The computed results reveal dramatic differences in both the vorticity dynamics in the aortic sinus and the wall shear-stress patterns on the aortic valve leaflets and underscore the importance of tissue constitutive models for clinically relevant simulations of aortic valves.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Gilmanov, A. , Le, T. , and Sotiropoulos, F. , 2015, “ A Numerical Approach for Simulating Fluid Structure Interaction of Flexible Thin Shells Undergoing Arbitrarily Large Deformations in Complex Domains,” J. Comput. Phys., 300, pp. 814–843. [CrossRef]
Sotiropoulos, F. , Le, T. , and Gilmanov, A. , 2016, “ Fluid Mechanics of Heart Valves and Their Replacements,” Annu. Rev., 48, pp. 259–283.
Back, M. , Gasser, T. C. , Miche, J.-B. , and Caligiuri, G. , 2013, “ Biomechanical Factors in the Biology of Aortic Wall and Aortic Valve Diseases,” Cardiovasc. Res., 99(2), pp. 232–241. [CrossRef] [PubMed]
Weinberg, E. J. , and Mofrad, M. R. K. , 2005, “ On the Constitutive Models for Heart Valve Leaflet Mechanics,” Cardiovasc. Eng., 5(1), pp. 37–43. [CrossRef]
Fan, R. , and Sacks, M. , 2014, “ Simulation of Planar Soft Tissues Using a Structural Constitutive Model: Finite Element Implementation and Validation,” J. Biomech., 47(9), pp. 2043–2054. [CrossRef] [PubMed]
Ge, L. , and Sotiropoulos, F. , 2010, “ Direction and Magnitude of Blood Flow Shear Stresses on the Leaflets of Aortic Valves: Is There a Link With Valve Calcification?,” ASME J. Biomech. Eng., 132(1), p. 014505.
Sotiropoulos, F. , Aidun, C. , Borazjani, I. , and MacMeccan, R. , 2011, “ Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells,” Image-Based Computational Modeling of the Human Circulatory and Pulmonary. Methods and Applications, K. B. Chandran , H. S. Udaykumar , and J. M. Reinhardt , eds., Springer, Boston, MA, pp. 105–156. [CrossRef]
Claiborne, T. E. , Xenos, M. , Sheriff, J. , Chiu, W.-C. , Soares, J. , Alemu, Y. , Gupta, S. , Judex, S. , Slepian, M. J. , and Bluestein, D. , 2013, “ Towards Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve Via Device Thrombogenicity Emulation (DTE),” ASAIO J., 59(3), pp. 275–283. [CrossRef] [PubMed]
Votta, E. , Le, T. , Stevanella, M. , Fusini, L. , Caiani, E. , Redaelli, A. , and Sotiropoulos, F. , 2013, “ Toward Patient-Specific Simulations of Cardiac Valves: State-of-the-Art and Future Directions,” J. Biomech., 46(2), pp. 217–228. [CrossRef] [PubMed]
Sotiropoulos, F. , and Yang, X. , 2014, “ Immersed Boundary Methods for Simulating Fluid–Structure Interaction,” Prog. Aerosp. Sci., 65, pp. 1–21. [CrossRef]
Gilmanov, A. , and Sotiropoulos, F. , 2015, “ Comparative Hemodynamics in an Aorta With Bicuspid and Trileaflet Valves,” Theor. Comput. Fluid Dyn., 30(1–2), pp. 67–85. [CrossRef]
Tezduyar, T. , Takizawa, K. , Brummer, T. , and Chen, P. R. , 2011, “ Space-Time Fluid-Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms,” Numer. Methods Biol. Eng., 27(11), pp. 1665–1710. [CrossRef]
Hsu, M.-C. , Kamensky, D. , Xu, F. , Kiendl, J. , Wang, C. , Wu, M. C. H. , Mineroff, J. , Reali, A. , Bazilevs, Y. , and Sacks, M. S. , 2015, “ Dynamic and Fluid-Structure Interaction Simulations of Bioprosthetic Heart Valves Using Parametric Design With T-Splines and Fung-Type Material Models,” Comput. Mech., 55(6), pp. 1211–1225. [CrossRef] [PubMed]
Fedele, M. , Dede, E. F. L. , and Quarteroni, A. , 2016, “A Patient-Specific Aortic valve Model Based on Moving Resistive Immersed Implicit Surfaces,” Ph.D. dissertation, Politecnico di Milano, Milano, Italy. https://www.ncbi.nlm.nih.gov/pubmed/28593469
Nobari, S. , Mongrain, R. , Leask, R. , and Cartier, R. , 2013, “ The Effect of Aortic Wall and Aortic Leaflet Stiffening on Coronary Hemodynamic: A Fluid-Structure Interaction Study,” Med. Biol. Eng. Comput., 51(8), pp. 923–936. [CrossRef] [PubMed]
Bavo, A. M. , Rocatello, G. , Iannaccone, F. , Degroote, J. , Vierendeels, J. , and Segers, P. , 2015, “ Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison Between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation,” PLoS One, 11(4), p. e0154517. [CrossRef]
Kamensky, D. , Hsu, M.-C. , Schillinger, D. , Evans, J. A. , Aggarwal, A. , Bazilevs, Y. , Sacks, M. S. , and Hughes, T. J. R. , 2015, “ An Immersogeometric Variational Framework for Fluid-Structure Interaction: Application to Bioprosthetic Heart Valves,” Comput. Methods Appl. Mech. Eng., 284, pp. 1005–1053. [CrossRef] [PubMed]
Flamini, V. , De Anda, A. , and Griffith, B. E. , 2016, “ Immersed Boundary-Finite Element Model of Fluid-Structure Interaction in the Aortic Root,” Theor. Comput. Fluid Dyn., 30(1–2), pp. 139–164. [CrossRef] [PubMed]
Sturla, F. , Votta, E. , Stevanella, M. , Conti, C. A. , and Redaelli, A. , 2016, “ Impact of Modeling Fluid-Structure Interaction in the Computational Analysis of Aortic Root Biomechanics,” Med. Eng. Phys., 35(12), pp. 1721–1730. [CrossRef]
Wu, W. , Pott, D. , Mazza, B. , Sironi, T. , Dordoni, E. , Chiastra, C. , Petrini, L. , Pennati, G. , Dubini, G. , Steinseifer, U. , Sonntag, S. , Kuetting, M. , and Migliavacca, F. , 2016, “ Fluid-Structure Interaction Model of a Percutaneous Aortic Valve: Comparison With an In Vitro Test and Feasibility Study in a Patient-Specific Case,” Ann. Biomed. Eng., 44(2), pp. 590–603. [CrossRef] [PubMed]
Hsu, M.-C. , Kamensky, D. , Bazilevs, Y. , Sacks, M. S. , and Hughes, T. J. R. , 2014, “ Fluid-Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation,” Comput. Mech., 54, pp. 1055–1071.
Piatti, F. , Sturla, F. , Marom, G. , Sheriff, J. , Claiborne, T. E. , Slepian, M. J. , Redaelli, A. , and Bluestein, D. , 2015, “ Hemodynamic and Thrombogenic Analysis of a Trileaflet Polymeric Valve Using a Fluid-Structure Interaction Approach,” J. Biomech., 48(13), pp. 3650–3658. [CrossRef] [PubMed]
Morganti, S. , Auricchio, F. , Benson, D. , Gambarin, F. , Hartmann, S. , Hughes, T. , and Reali, A. , 2015, “ Patient-Specific Isogeometric Structural Analysis of Aortic Valve Closure,” Comput. Methods Appl. Mech. Eng., 284, pp. 508–520. [CrossRef]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2010, “ High-Resolution Fluid-Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta,” Ann. Biomed. Eng., 38(2), pp. 326–344. [CrossRef] [PubMed]
Le, T. B. , and Sotiropoulos, F. , 2013, “ Fluid-Structure Interaction of an Aortic Heart Valve Prosthesis Driven by an Animated Anatomic Left Ventricle,” J. Comput. Phys., 244, pp. 41–62. [CrossRef] [PubMed]
Stolarski, H. , Gilmanov, A. , and Sotiropoulos, F. , 2013, “ Non-Linear Rotation-Free 3-Node Shell Finite-Element Formulation,” Int. J. Numer. Methods Eng., 95(9), pp. 740–770. [CrossRef]
Tepole, A. B. , Kabari, H. , Bletzinger, K.-U. , and Kuhl, E. , 2015, “ Isogeometric Kirchhoff-Love Shell Formulations for Biological Membranes,” Comput. Methods Appl. Mech. Eng., 293, pp. 328–347. [CrossRef] [PubMed]
Gilmanov, A. , Stolarski, H. , and Sotiropoulos, F. , 2016, “ Non-Linear Rotation-Free Shell Finite-Element Models for Aortic Heart Valves,” J. Biomech., 50, pp. 56–62.
Ge, L. , and Sotiropoulos, F. , 2007, “ A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries,” J. Comput. Phys., 225(2), pp. 1782–1809. [CrossRef] [PubMed]
Gilmanov, A. , and Sotiropoulos, F. , 2005, “ A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies,” J. Comput. Phys., 207(2), p. 457. [CrossRef]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2008, “ Curvilinear Immersed Boundary Method for Simulating Fluid-Structure Interaction With Complex 3D Rigid Bodies,” J. Comput. Phys., 227(16), pp. 7587–7620. [CrossRef] [PubMed]
Felippa, C. A. , Park, K. C. , and Farhat, C. , 2001, “ Partitioned Analysis of Coupled Mechanical Systems,” Comput. Methods Appl. Mech. Eng., 190(24–25), pp. 3247–3270. [CrossRef]
Fernandez, M. , Gerbeau, J.-F. , and Grandmont, C. , 2007, “ A Projection Semi-Implicit Scheme for the Coupling of an Elastic Structure With an Incompressible Fluid,” Int. J. Numer. Methods Eng., 69(4), pp. 794–821. [CrossRef]
Bathe, K. , 1996, Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs, NJ.
May-Newman, K. , and Yin, F. , 1998, “ A Constitutive Law for Mitral Valve Tissue,” ASME J. Biomech. Eng., 120(1), pp. 38–47. [CrossRef]
Holzapfel, G. A. , and Ogden, R. W. , 2010, “ Constitutive Modelling of Arteries,” Proc. R. Soc. A, 466(2118), pp. 1551–1597. [CrossRef]
Gould, P. L. , Cataloglu, A. , and Clark, R. E. , 1976, “ Mathematical Modelling of Human Aortic Valve Leaflets,” Appl. Math. Modell., 1(1), pp. 33–36. [CrossRef]
May-Newman, K. , Lam, C. , and Yin, F. C. P. , 2009, “ A Hyperelastic Constitutive Law for Aortic Valve Tissue,” ASME J. Biomech. Eng., 131(8), p. 081009.
Prot, V. , Skallerud, B. , and Holzapfel, G. A. , 2007, “ Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics. Constitutive Modelling and Finite Element Implementation,” Int. J. Numer. Methods Eng., 71(8), pp. 987–1008. [CrossRef]
Li, J. , Luob, X. , and Kuang, Z. , 2001, “ A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves,” J. Biomech., 34(10), pp. 1279–1289. [CrossRef] [PubMed]
Balachandran, K. , Sucosky, P. , and Yoganathan, A. P. , 2011, “ Hemodynamics and Mechanobiology of Aortic Valve Inflammation and Calcification,” Int. J. Inflammation, 2011, p. 263870.
Cataloglu, G. P. L. , and Clark, R. E. , 2001, “ Refined Stress Analysis of Human Aortic Heart Valves,” J. Eng. Mech. Div., 102, pp. 135–150.
Liu, J. S. , Lu, P. C. , and Chu, S. H. , 2000, “ Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses,” ASME J. Biomech. Eng., 122(2), pp. 118–124. [CrossRef]
Carmody, C. , Burriesci, G. , Howard, I. , and Patterson, E. , 2006, “ An Approach to the Simulation of Fluid-Structure Interaction in the Aortic Valve,” J. Biomech., 39(1), pp. 158–169. [CrossRef] [PubMed]
Loudon, C. , and Tordesillas, A. , 1998, “ The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow,” J. Theor. Biol., 191(1), pp. 63–78. [CrossRef] [PubMed]
Garcia, D. , and Kadem, L. , 2006, “ What Do You Mean by Aortic Valve Area: Geometric Orifice Area, Effective Orifice Area, or Gorlin Area?,” J. Heart Valve Dis., 15(5), pp. 601–608. https://www.icr-heart.com/?cid=1657 [PubMed]
Anderson, D. , Tennehill, J. , and Pletcher, R. , 1984, Computational Fluid Mechanics and Head Transfer, Hemisphere, New York.
Kheradvar, A. , and Pedrizzetti, G. , 2012, Vortex Formation in the Cardiovascular System, Springer-Verlag, London. [CrossRef]
Falahatpisheh, A. , and Kheradvar, A. , 2014, “ A Measure of Axisymmetry for Vortex Rings,” Eur. J. Mech. B, 49(Part A), pp. 264–271. [CrossRef]
Batchelor, G. , 1973, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, UK.
Aslam, A. K. , Aslam, A. F. , Vasavad, B. C. , and Khan, I. A. , 2007, “ Prosthetic Heart Valves: Types and Echocardiographic Evaluation,” Int. J. Cardiol., 122(2), pp. 99–110. [CrossRef] [PubMed]
Hunt, J. , Wray, A. , and Moin, P. , 1988, “ Eddies, Streams, and Convergence Zones in Turbulent Flows,” Summer Program, pp. 193–208. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
Ku, D. N. , 1997, “ Blood Flow in Arteries,” Annu. Rev. Fluid Mech., 29, pp. 399–434. [CrossRef]
Entezari, P. , Schnell, S. , Mahadevia, R. , Malaisrie, C. , McCarthy, P. , Mendelson, M. , Collins, J. , Carr, J. C. , Markl, M. , and Barker, A. J. , 2013, “ From Unicuspid to Quadricuspid: Influence of Aortic Valve Morphology on Aortic Three-Dimensional Hemodynamics,” J. Magn. Reson. Imaging, 40(6), pp. 1342–1346.
Malek, A. , Alper, S. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” J. Am. Med. Assoc., 282(21), pp. 2035–2042. [CrossRef]


Grahic Jump Location
Fig. 3

Calculated time history of geometric orifice area GOA(t) (a) and mean velocity Vm(t) through the orifice area (b) for tri-leaflet aortic valve with different constitutive relationship for StV (dashed-dot-dot) and MNY (solid line) models. Dashed line is the prescribed inflow flux.

Grahic Jump Location
Fig. 4

Time history of dissipation energy Ediss(t) (a) and kinetic energy Ek(t) (b) for the StV (dash-dot-dot line) and MNY (solid line) models. Dashed line is the prescribed inflow flux.

Grahic Jump Location
Fig. 1

(a) Computational domain for the FSI simulations of a trileaflet aortic valve in an anatomic aorta. (b) Straight line is Saint-Venant and curved solid line is MNY (S11(E11)) and curved dashed line is MNY (S22(E22)). (Online version of this figure is in color).

Grahic Jump Location
Fig. 2

Temporal variation of prescribed at the inlet flux (dashed line, left axis) and calculated (dash-dot-dot line for the StV model and solid line for the MNY model) transvalvular pressure gradient (right axis) at the centerline of the aorta

Grahic Jump Location
Fig. 5

Time history of average magnitude of vorticity Ωa(t) (a) and impulse |Ia(t)| (b) for the StV (dash-dot-dot line) and MNY (solid line) models. Dashed line is the prescribed inflow flux.

Grahic Jump Location
Fig. 6

Comparison of instantaneous contours of vorticity on a plane through the aorta during systolic phase showing the opening process of the StV aortic valve (first column) and MNY aortic valve (second column). The third and fourth columns are the instantaneous iso-surfaces of the Q-criterion [52] for StV and MNY models, respectively. The dot in the inset of each figure identifies the corresponding instant during the cardiac cycle: (a) ta = 0.128 s, (b) tb = 0.16 s, and (c) tc = 0.192 s. (Online version of this figure is in color).

Grahic Jump Location
Fig. 7

Contours of wall shear stresses (WSS, in Pa) and limiting streamlines (LSL, white lines with arrows, indicating direction of a blood flow) on the StV aortic valve (left column) and MNY aortic valve (right column) leaflet surfaces from the ventricular side (bottom row) and aortic side (top row) at the peak systole (t = 0.23 s.) (Online version of this figure is in color).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In