Review Article

The “Stressful” Life of Cell Adhesion Molecules: On the Mechanosensitivity of Integrin Adhesome

[+] Author and Article Information
Hengameh Shams

Molecular Cell Biomechanics Laboratory,
Departments of Bioengineering and
Mechanical Engineering,
University of California,
Berkeley, CA 94720-1762

Brenton D. Hoffman

Department of Biomedical Engineering,
Duke University,
Durham, NC 27708

Mohammad R. K. Mofrad

Molecular Cell Biomechanics Laboratory,
Departments of Bioengineering and
Mechanical Engineering,
University of California,
208A Stanley Hall #1762,
Berkeley, CA 94720-1762;
Molecular Biophysics and Integrated
Bioimaging Division,
Lawrence Berkeley National Lab,
Berkeley, CA 94720
e-mail: mofrad@berkeley.edu

1Corresponding author.

Manuscript received June 30, 2017; final manuscript received December 12, 2017; published online January 18, 2018. Editor: Victor H. Barocas.

J Biomech Eng 140(2), 020807 (Jan 18, 2018) (7 pages) Paper No: BIO-17-1287; doi: 10.1115/1.4038812 History: Received June 30, 2017; Revised December 12, 2017

Cells have evolved into complex sensory machines that communicate with their microenvironment via mechanochemical signaling. Extracellular mechanical cues trigger complex biochemical pathways in the cell, which regulate various cellular processes. Integrin-mediated focal adhesions (FAs) are large multiprotein complexes, also known as the integrin adhesome, that link the extracellular matrix (ECM) to the actin cytoskeleton, and are part of powerful intracellular machinery orchestrating mechanotransduction pathways. As forces are transmitted across FAs, individual proteins undergo structural and functional changes that involve a conversion of chemical to mechanical energy. The local composition of early adhesions likely defines the regional stress levels and determines the type of newly recruited proteins, which in turn modify the local stress distribution. Various approaches have been used for detecting and exploring molecular mechanisms through which FAs are spatiotemporally regulated, however, many aspects are yet to be understood. Current knowledge on the molecular mechanisms of mechanosensitivity in adhesion proteins is discussed herein along with important questions yet to be addressed, are discussed.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Mofrad, M. R. K. , and Kamm, R. D. , eds., 2014, Cellular Mechanotransduction: Diverse Perspectives From Molecules to Tissues, Cambridge University Press, New York.
Hoffman, B. D. , Grashoff, C. , and Schwartz, M. A. , 2011, “ Dynamic Molecular Processes Mediate Cellular Mechanotransduction,” Nature, 475(7356), pp. 316–323. [CrossRef] [PubMed]
Ingber, D. E. , 2003, “ Mechanosensation Through Integrins: Cells Act Locally But Think Globally,” Proc. Natl. Acad. Sci. U. S. A., 100(4), pp. 1472–1474. [CrossRef] [PubMed]
Katta, S. , Krieg, M. , and Goodman, M. B. , 2015, “ Feeling Force: Physical and Physiological Principles Enabling Sensory Mechanotransduction,” Annu. Rev. Cell Dev. Biol., 31(1), pp. 347–371. [CrossRef] [PubMed]
Goldmann, W. H. , and Isenberg, G. , 1991, “ Kinetic Determination of Talin-Actin,” Biochem. Biophys. Res. Commun., 178(2), pp. 718–723. [CrossRef] [PubMed]
Watson, P. A. , 1991, “ Function Follows Form: Generation of Intracellular Signals by Cell Deformation,” FASEB J., 5(7), pp. 2013–2019. http://www.fasebj.org/content/5/7/2013.long [PubMed]
Hu, X. , Jing, C. , Xu, X. , Nakazawa, N. , Cornish, V. W. , Margadant, F. M. , and Sheetz, M. P. , 2016, “ Cooperative Vinculin Binding to Talin Mapped by Time-Resolved Super Resolution Microscopy,” Nano Lett., 16(7), pp. 4062–4068. [CrossRef] [PubMed]
Ehrlicher, A. J. , Nakamura, F. , Hartwig, J. H. , Weitz, D. A. , and Stossel, T. P. , 2011, “ Mechanical Strain in Actin Networks Regulates FilGAP and Integrin Binding to Filamin A,” Nature, 478(7368), pp. 260–263. [CrossRef] [PubMed]
Yao, M. , Qiu, W. , Liu, R. , Efremov, A. K. , Cong, P. , Seddiki, R. , Payre, M. , Lim, C. T. , Ladoux, B. , Mège, R.-M. , and Yan, J. , 2014, “ Force-Dependent Conformational Switch of α-Catenin Controls Vinculin Binding,” Nat. Commun., 5(4525), pp. 1–11.
Roskoski, R. , 2012, “ ERK1/2 MAP Kinases: Structure, Function, and Regulation,” Pharmacol. Res., 66(2), pp. 105–143. [CrossRef] [PubMed]
Garakani, K. , Shams, H. , and Mofrad, M. R. K. , 2017, “ Mechanosensitive Conformation of Vinculin Regulates Its Binding to MAPK1,” Biophys. J., 112(9), pp. 1885–1893. [CrossRef] [PubMed]
Kong, F. , Li, Z. , Parks, W. M. , Dumbauld, D. W. , García, A. J. , Mould, A. P. , Humphries, M. J. , and Zhu, C. , 2013, “ Cyclic Mechanical Reinforcement of Integrin-Ligand Interactions,” Mol. Cell., 49(6), pp. 1060–1068. [CrossRef] [PubMed]
Guo, B. , and Guilford, W. H. , 2006, “ Mechanics of Actomyosin Bonds in Different Nucleotide States Are Tuned to Muscle Contraction,” Proc. Natl. Acad. Sci., 103(26), pp. 9844–9849. [CrossRef]
Buckley, C. D. , Tan, J. , Anderson, K. L. , Hanein, D. , Volkmann, N. , Weis, W. I. , Nelson, W. J. , and Dunn, A. R. , 2014, “ The Minimal Cadherin-Catenin Complex Binds to Actin Filaments Under Force,” Science, 346(6209), pp. 1254211–1254218.
Huang, D. L. , Bax, N. A. , Buckley, C. D. , Weis, W. I. , and Dunn, A. R. , 2017, “ Vinculin Forms a Directionally Asymmetric Catch Bond With F-Actin,” Science, 357(6352), pp. 703–706. [CrossRef] [PubMed]
Schwarz, U. S. , and Gardel, M. L. , 2012, “ United We Stand—Integrating the Actin Cytoskeleton and Cell-Matrix Adhesions in Cellular Mechanotransduction,” J. Cell Sci., 125(13), pp. 3051–3060. [CrossRef] [PubMed]
Na, S. , Collin, O. , Chowdhury, F. , Tay, B. , Ouyang, M. , Wang, Y. , and Wang, N. , 2008, “ Rapid Signal Transduction in Living Cells Is a Unique Feature of Mechanotransduction,” Proc. Natl. Acad. Sci., 105(18), pp. 6626–6631. [CrossRef]
Barry, A. K. , Wang, N. , and Leckband, D. E. , 2015, “ Local VE-Cadherin Mechanotransduction Triggers Long-Ranged Remodeling of Endothelial Monolayers,” J. Cell Sci., 128(7), pp. 1341–1351. [CrossRef] [PubMed]
Ingber, D. E. , 2006, “ Cellular Mechanotransduction: Putting All the Pieces Together Again,” FASEB J., 20(7), pp. 811–827. [CrossRef] [PubMed]
Winograd-Katz, S. E. , Fässler, R. , Geiger, B. , and Legate, K. R. , 2014, “ The Integrin Adhesome: From Genes and Proteins to Human Disease,” Nat. Rev. Mol. Cell Biol., 15(4), pp. 273–288. [CrossRef] [PubMed]
Mofrad, M. R. K. , 2009, “ Rheology of the Cytoskeleton,” Annu. Rev. Fluid Mech., 41(1), pp. 433–453. [CrossRef]
Lele, T. P. , Thodeti, C. K. , Pendse, J. , and Ingber, D. E. , 2008, “ Investigating Complexity of Protein-Protein Interactions in Focal Adhesions,” Biochem. Biophys. Res. Commun., 369(3), pp. 929–934. [CrossRef] [PubMed]
Jahed, Z. , Shams, H. , Mehrbod, M. , and Mofrad, M. R. K. , 2014, “ Mechanotransduction Pathways Linking the Extracellular Matrix to the Nucleus,” Int. Rev. Cell Mol. Biol., 310, pp. 171–220. [CrossRef] [PubMed]
Case, L. B. , and Waterman, C. M. , 2015, “ Integration of Actin Dynamics and Cell Adhesion by a Three-Dimensional, Mechanosensitive Molecular Clutch,” Nat. Cell Biol., 17(8), pp. 955–963. [CrossRef] [PubMed]
Galbraith, C. G. , Yamada, K. M. , and Sheetz, M. P. , 2002, “ The Relationship Between Force and Focal Complex Development,” J. Cell Biol., 159(4), pp. 695–705. [CrossRef] [PubMed]
Burridge, K. , Fath, K. , Kelly, T. , Nuckolls, G. , and Turner, C. , 1988, “ Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton,” Annu. Rev. Cell Biol., 4, pp. 487–525. [CrossRef] [PubMed]
Kanchanawong, P. , Shtengel, G. , Pasapera, A. M. , Ramko, E. B. , Davidson, M. W. , Hess, H. F. , and Waterman, C. M. , 2010, “ Nanoscale Architecture of Integrin-Based Cell Adhesions,” Nature, 468(7323), pp. 580–584. [CrossRef] [PubMed]
Case, L. B. , Baird, M. A. , Shtengel, G. , Campbell, S. L. , Hess, H. F. , Davidson, M. W. , and Waterman, C. M. , 2015, “ Molecular Mechanism of Vinculin Activation and Nanoscale Spatial Organization in Focal Adhesions,” Nat. Cell Biol., 17(7), pp. 880–892. [CrossRef] [PubMed]
Beningo, K. A. , Dembo, M. , Kaverina, I. , Small, J. V. , and Wang, Y. L. , 2001, “ Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts,” J. Cell Biol., 153(4), pp. 881–887. [CrossRef] [PubMed]
Roca-Cusachs, P. , del Rio, A. , Puklin-Faucher, E. , Gauthier, N. C. , Biais, N. , and Sheetz, M. P. , 2013, “ Integrin-Dependent Force Transmission to the Extracellular Matrix by α-Actinin Triggers Adhesion Maturation,” Proc. Natl. Acad. Sci. U. S. A., 110(15), pp. E1361–E1370. [CrossRef] [PubMed]
Ciobanasu, C. , Faivre, B. , and Le Clainche, C. , 2014, “ Reconstituting Actomyosin-Dependent Mechanosensitive Protein Complexes In Vivo,” Nat. Protoc., 10(1), pp. 75–89. [CrossRef] [PubMed]
Alenghat, F. J. , and Ingber, D. E. , 2002, “ Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins,” Sci. STKE, 2002(119), pp. 1–4.
Kolahi, K. S. , and Mofrad, M. R. K. , 2010, “ Mechanotransduction: A Major Regulator of Homeostasis and Development,” Wiley Interdiscip. Rev. Syst. Biol. Med., 2(6), pp. 625–639. [CrossRef] [PubMed]
Barbee, K. A. , Mundel, T. , Lal, R. , and Davies, P. F. , 1995, “ Subcellular Distribution of Shear Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers,” Am. J. Physiol., 268(4), pp. H1765–H1772. [PubMed]
Lehoux, S. , and Tedgui, A. , 2003, “ Cellular Mechanics and Gene Expression in Blood Vessels,” J. Biomech., 36(5), pp. 631–643. [CrossRef] [PubMed]
Humphrey, J. D. , Dufresne, E. R. , and Schwartz, M. A. , 2014, “ Mechanotransduction and Extracellular Matrix Homeostasis,” Nat. Rev. Mol. Cell Biol., 15(12), pp. 802–812. [CrossRef] [PubMed]
Fouchard, J. , Bimbard, C. , Bufi, N. , Durand-Smet, P. , Proag, A. , Richert, A. , Cardoso, O. , and Asnacios, A. , 2014, “ Three-Dimensional Cell Body Shape Dictates the Onset of Traction Force Generation and Growth of Focal Adhesions,” Proc. Natl. Acad. Sci. U. S. A., 111(36), pp. 13075–13080. [CrossRef] [PubMed]
Martiel, J. L. , Leal, A. , Kurzawa, L. , Balland, M. , Wang, I. , Vignaud, T. , Tseng, Q. , and Théry, M. , 2015, “ Measurement of Cell Traction Forces With ImageJ,” Methods Cell Biol., 125, pp. 269–287. [CrossRef] [PubMed]
Gardel, M. L. , Sabass, B. , Ji, L. , Danuser, G. , Schwarz, U. S. , and Waterman, C. M. , 2008, “ Traction Stress in Focal Adhesions Correlates Biphasically With Actin Retrograde Flow Speed,” J. Cell Biol., 183(6), pp. 999–1005. [CrossRef] [PubMed]
Plotnikov, S. V. , Pasapera, A. M. , Sabass, B. , and Waterman, C. M. , 2012, “ Force Fluctuations Within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration,” Cell, 151(7), pp. 1513–1527. [CrossRef] [PubMed]
Wang, Y.-L. , 2007, “ Flux at Focal Adhesions: Slippage Clutch, Mechanical Gauge, or Signal Depot,” Sci. STKE, 2007(377), pp. 1–3.
Pollard, T. D. , and Cooper, J. A. , 2009, “ Actin, a Central Player in Cell Shape and Movement,” Science, 326(5957), pp. 1208–1212. [CrossRef] [PubMed]
Trichet, L. , Le Digabel, J. , Hawkins, R. J. , Vedula, S. R. K. , Gupta, M. , Ribrault, C. , Hersen, P. , Voituriez, R. , and Ladoux, B. , 2012, “ Evidence of a Large-Scale Mechanosensing Mechanism for Cellular Adaptation to Substrate Stiffness,” Proc. Natl. Acad. Sci., 109(18), pp. 6933–6938. [CrossRef]
Ponti, A. , Machacek, M. , Gupton, S. L. , Waterman-Storer, C. M. , and Danuser, G. , 2004, “ Two Distinct Actin Networks Drive the Protrusion Migrating Cells,” Science, 305(5691), pp. 1782–1786.
Hu, K. , Ji, L. , Applegate, K. T. , Danuser, G. , and Waterman-Storer, C. M. , 2007, “ Differential Transmission of Actin Motion Within Focal Adhesions,” Science, 315(80), pp. 111–115. [CrossRef] [PubMed]
Geiger, B. , Spatz, J. P. , and Bershadsky, A. D. , 2009, “ Environmental Sensing Through Focal Adhesions,” Nat. Rev. Mol. Cell Biol., 10(1), pp. 21–33. [CrossRef] [PubMed]
Oakes, P. W. , and Gardel, M. L. , 2014, “ Stressing the Limits of Focal Adhesion Mechanosensitivity,” Curr. Opin. Cell Biol., 30(1), pp. 68–73. [CrossRef] [PubMed]
Choi, C. K. , Vicente-Manzanares, M. , Zareno, J. , Whitmore, L. A. , Mogilner, A. , and Horwitz, A. R. , 2008, “ Actin and Alpha-Actinin Orchestrate the Assembly and Maturation of Nascent Adhesions in a Myosin II Motor-Independent Manner,” Nat. Cell Biol., 10(9), pp. 1039–1050. [CrossRef] [PubMed]
Oakes, P. W. , Beckham, Y. , Stricker, J. , and Gardel, M. L. , 2012, “ Tension Is Required But Not Sufficient for Focal Adhesion Maturation Without a Stress Fiber Template,” J. Cell Biol., 196(3), pp. 363–374. [CrossRef] [PubMed]
Tojkander, S. , Gateva, G. , and Lappalainen, P. , 2012, “ Actin Stress Fibers–Assembly, Dynamics and Biological Roles,” J. Cell Sci., 125(8), pp. 1855–1864. [CrossRef] [PubMed]
Pellegrin, S. , and Mellor, H. , 2007, “ Actin Stress Fibres,” J. Cell Sci., 120(20), pp. 3491–3499. [CrossRef] [PubMed]
Kirchenbüchler, D. , Born, S. , Kirchgessner, N. , Houben, S. , Hoffmann, B. , and Merkel, R. , 2010, “ Substrate, Focal Adhesions, and Actin Filaments: A Mechanical Unit With a Weak Spot for Mechanosensitive Proteins,” J. Phys. Condens. Matter, 22(19), pp. 194109–194119.
Kuo, J.-C. , Han, X. , Hsiao, C.-T. , Yates, J. R. , and Waterman, C. M. , 2011, “ Analysis of the Myosin-II-Responsive Focal Adhesion Proteome Reveals a Role for β-Pix in Negative Regulation of Focal Adhesion Maturation,” Nat. Cell Biol., 13(4), pp. 383–393. [CrossRef] [PubMed]
Grashoff, C. , Hoffman, B. D. , Brenner, M. D. , Zhou, R. , Parsons, M. , Yang, M. T. , McLean, M. A. , Sligar, S. G. , Chen, C. S. , Ha, T. , and Schwartz, M. A. , 2010, “ Measuring Mechanical Tension Across Vinculin Reveals Regulation of Focal Adhesion Dynamics,” Nature, 466(7303), pp. 263–266. [CrossRef] [PubMed]
Kumar, A. , Ouyang, M. , Van den Dries, K. , McGhee, E. J. , Tanaka, K. , Anderson, M. D. , Groisman, A. , Goult, B. T. , Anderson, K. I. , and Schwartz, M. A. , 2016, “ Talin Tension Sensor Reveals Novel Features of Focal Adhesion Force Transmission and Mechanosensitivity,” J. Cell Biol., 213(3), pp. 371–383. [CrossRef] [PubMed]
Dill, K. A. , and Bromberg, S. , 2010, Molecular Driving Forces, Garland Science, Taylor & Francis, London.
von Wichert, G. , Haimovich, B. , Feng, G.-S. , and Sheetz, M. P. , 2003, “ Force-Dependent Integrin-Cytoskeleton Linkage Formation Requires Downregulation of Focal Complex Dynamics by Shp2,” EMBO J., 22(19), pp. 5023–5035. [CrossRef] [PubMed]
Wolfenson, H. , Lavelin, I. , and Geiger, B. , 2013, “ Dynamic Regulation of the Structure and Functions of Integrin Adhesions,” Dev. Cell., 24(5), pp. 447–458. [CrossRef] [PubMed]
Wolfenson, H. , Henis, Y. I. , Geiger, B. , and Bershadsky, A. D. , 2009, “ The Heel and Toe of the Cell's Foot: A Multifaceted Approach for Understanding the Structure and Dynamics of Focal Adhesions,” Cell Motil. Cytoskeleton, 66(11), pp. 1017–1029. [CrossRef] [PubMed]
Shams, H. , Golji, J. , Garakani, K. , and Mofrad, M. R. K. , 2016, “ Dynamic Regulation of α-Actinin's Calponin Homology Domains on F-Actin,” Biophys. J., 110(6), pp. 1444–1455. [CrossRef] [PubMed]
Shams, H. , Golji, J. , and Mofrad, M. R. K. , 2012, “ A Molecular Trajectory of α -Actinin Activation,” Biophys. J., 103(10), pp. 2050–2059. [CrossRef] [PubMed]
Schiller, H. B. , and Fässler, R. , 2013, “ Mechanosensitivity and Compositional Dynamics of Cell–Matrix Adhesions,” EMBO Rep., 14(6), pp. 509–519. [CrossRef] [PubMed]
Golji, J. , and Mofrad, M. R. K. , 2014, “ The Talin Dimer Structure Orientation Is Mechanically Regulated,” Biophys. J., 107(8), pp. 1802–1809. https://www.ncbi.nlm.nih.gov/pubmed/25418161
Yao, M. , Goult, B. T. , Chen, H. , Cong, P. , Sheetz, M. P. , and Yan, J. , 2014, “ Mechanical Activation of Vinculin Binding to Talin Locks Talin in an Unfolded Conformation,” Sci. Rep., 4(4610), pp. 1–7.
Wei, G. , Xi, W. , Nussinov, R. , and Ma, B. , 2016, “ Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell,” Chem. Rev., 116(11), pp. 6516–6551. [CrossRef] [PubMed]
Chen, H. , Cohen, D. M. , Choudhury, D. M. , Kioka, N. , and Craig, S. W. , 2005, “ Spatial Distribution and Functional Significance of Activated Vinculin in Living Cells,” J. Cell Biol., 169(3), pp. 459–470. [CrossRef] [PubMed]
Cost, A.-L. , Ringer, P. , Chrostek-Grashoff, A. , and Grashoff, C. , 2015, “ How to Measure Molecular Forces in Cells: A Guide to Evaluating Genetically-Encoded FRET-Based Tension Sensors,” Cell. Mol. Bioeng., 8(1), pp. 96–105. [CrossRef] [PubMed]
Erdmann, T. , and Schwarz, U. S. , 2006, “ Bistability of Cell-Matrix Adhesions Resulting From Nonlinear Receptor-Ligand Dynamics,” Biophys. J., 91(6), pp. L60–L62. [CrossRef] [PubMed]
Li, Y. , Bhimalapuram, P. , and Dinner, A. R. , 2010, “ Model for How Retrograde Actin Flow Regulates Adhesion Traction Stresses,” J. Phys. Condens. Matter, 22(19), pp. 1–11.
Goksoy, E. , Ma, Y.-Q. , Wang, X. , Kong, X. , Perera, D. , Plow, E. F. , and Qin, J. , 2008, “ Structural Basis for the Autoinhibition of Talin in Regulating Integrin Activation,” Mol. Cell., 31(1), pp. 124–133. [CrossRef] [PubMed]
Song, X. , Yang, J. , Hirbawi, J. , Ye, S. , Perera, H. D. , Goksoy, E. , Dwivedi, P. , Plow, E. F. , Zhang, R. , and Qin, J. , 2012, “ A Novel Membrane-Dependent On/Off Switch Mechanism of Talin FERM Domain at Sites of Cell Adhesion,” Cell Res., 22(11), pp. 1533–1545. [CrossRef] [PubMed]
Gayrard, C. , and Borghi, N. , 2015, “ FRET-Based Molecular Tension Microscopy,” Methods, 94(2016), pp. 33–42. [CrossRef] [PubMed]
LaCroix, A. S. , Rothenberg, K. E. , Berginski, M. E. , Urs, A. N. , and Hoffman, B. D. , 2015, “ Construction, Imaging, and Analysis of FRET-Based Tension Sensors in Living Cells,” Methods Cell Biol., 125, pp. 161–186. [CrossRef] [PubMed]
Nordenfelt, P. , Elliott, H. L. , and Springer, T. A. , 2016, “ Coordinated Integrin Activation by Actin-Dependent Force During T-Cell Migration,” Nat. Commun., 7(13119), pp. 1–15. [CrossRef]
Meng, F. , Suchyna, T. M. , Lazakovitch, E. , Gronostajski, R. M. , and Sachs, F. , 2011, “ Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins,” Cell. Mol. Bioeng., 4(2), pp. 148–159. [CrossRef] [PubMed]
Ringer, P. , Weißl, A. , Cost, A.-L. , Freikamp, A. , Sabass, B. , Mehlich, A. , Tramier, M. , Rief, M. , and Grashoff, C. , 2017, “ Multiplexing Molecular Tension Sensors Reveals Piconewton Force Gradient Across Talin-1,” Nat. Methods, 14(11), pp. 1090–1096. [CrossRef] [PubMed]
Golji, J. , Lam, J. , and Mofrad, M. R. K. , 2011, “ Vinculin Activation Is Necessary for Complete Talin Binding,” Biophys. J., 100(2), pp. 332–340. [CrossRef] [PubMed]
Lee, S. E. , Kamm, R. D. , and Mofrad, M. R. K. , 2007, “ Force-Induced Activation of Talin and Its Possible Role in Focal Adhesion Mechanotransduction,” J. Biomech., 40(9), pp. 2096–2106. [CrossRef] [PubMed]
Rothenberg, K. E. , Neibart, S. S. , LaCroix, A. S. , and Hoffman, B. D. , 2015, “ Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin,” Cell. Mol. Bioeng., 8(3), pp. 364–382. [CrossRef]
Tseng, Q. , Duchemin-Pelletier, E. , Deshiere, A. , Balland, M. , Guillou, H. , Filhol, O. , and Thery, M. , 2012, “ Spatial Organization of the Extracellular Matrix Regulates Cell-Cell Junction Positioning,” Proc. Natl. Acad. Sci., 109(5), pp. 1506–1511. [CrossRef]
Liu, Z. , Tan, J. L. , Cohen, D. M. , Yang, M. T. , Sniadecki, N. J. , Alom Ruiz, S. , Nelson, C. M. , and Chen, C. S. , 2010, “ Mechanical Tugging Force Regulates the Size of Cell-Cell Junctions,” Proc. Natl. Acad. Sci., 107(22), pp. 9944–9949. [CrossRef]
Gottardi, C. J. , and Gumbiner, B. M. , 2001, “ Adhesion Signaling: How Beta-Catenin Interacts With Its Partners,” Curr. Biol., 11(19), pp. 792–794. [CrossRef]
Kim, C. , Ye, F. , Hu, X. , and Ginsberg, M. H. , 2012, “ Talin Activates Integrins by Altering the Topology of the Beta Transmembrane Domain,” J. Cell Biol., 197(5), pp. 605–611. [CrossRef] [PubMed]
Kim, T. J. , Zheng, S. , Sun, J. , Muhamed, I. , Wu, J. , Lei, L. , Kong, X. , Leckband, D. E. , and Wang, Y. , 2015, “ Dynamic Visualization of α-Catenin Reveals Rapid, Reversible Conformation Switching Between Tension States,” Curr. Biol., 25(2), pp. 218–224. [CrossRef] [PubMed]
Kong, F. , García, A. J. , Mould, A. P. , Humphries, M. J. , and Zhu, C. , 2009, “ Demonstration of Catch Bonds Between an Integrin and Its Ligand,” J. Cell Biol., 185(7), pp. 1275–1284. [CrossRef] [PubMed]
Jiang, G. , Giannone, G. , Critchley, D. R. , Fukumoto, E. , and Sheetz, M. P. , 2003, “ Two-Piconewton Slip Bond Between Fibronectin and the Cytoskeleton Depends on Talin,” Nature, 424(6946), pp. 334–337. [CrossRef] [PubMed]
Wehrle-Haller, B. , 2012, “ Structure and Function of Focal Adhesions,” Curr. Opin. Cell Biol., 24(1), pp. 116–124. [CrossRef] [PubMed]
Yang, C. , Zhang, X. , Guo, Y. , Meng, F. , Sachs, F. , and Guo, J. , 2015, “ Mechanical Dynamics in Live Cells and Fluorescence-Based Force/Tension Sensors,” Biochim. Biophys. Acta, Mol. Cell Res., 1853(8), pp. 1889–1904. [CrossRef]
Shams, H. , Soheilypour, M. , Peyro, M. , Moussavi-Baygi, R. , and Mofrad, M. R. K. , 2017, “ Looking ‘Under the Hood’ of Cellular Mechanotransduction With Multiscale Computational Tools: A Systems Biomechanics Approach,” ACS Biomater. Sci. Eng., 3(11), pp. 2712–2726. [CrossRef]
Kolahi, K. S. , and Mofrad, M. R. K. , 2008, “ Molecular Mechanics of Filamin's Rod Domain,” Biophys. J., 94(3), pp. 1075–1083. [CrossRef] [PubMed]
Shams, H. , and Mofrad, M. R. K. , 2017, “ Interaction With α-Actinin Induces a Structural Kink in the Transmembrane Domain of β3-Integrin and Impairs Signal Transduction,” Biophys. J., 113(4), pp. 948–956. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Mechanosensitivity of FA proteins regulates the FA architecture. As mechanical stress impinges on a protein, the molecule responds by undergoing a conformational change. This may result in formation of new interactions or disruption of existing interactions, which modifies the local composition of the FA complex. Otherwise, the new conformation of protein regulates the strength of its existing interactions, e.g., catch bond formation.

Grahic Jump Location
Fig. 2

The architecture of FAs. FAs can be divided into three functional layers each having a distinct molecular composition. Integrin receptors reside in the lipid membrane and are activated via binding to the talin head within the integrin signaling layer. Other important signaling molecules such as FAK and paxillin also function in the integrin signaling layer. The force transduction layer is rich in vinculin and the rod domain of talin, which is oriented toward actin. Actin and α-actinin are localized within the actin regulatory layer. The distal end of FA connects with the lamellipodial dendritic actin.

Grahic Jump Location
Fig. 3

The retrograde flow of actin. Actin polymerizes at the cell edge, while actomyosin forces are applied to the rear end of actin fibers. The combination of these effects results in a rearward flow of actin relative to the cell edge. The actin retrograde flow is transmitted to the ECM in the form of traction forces via FAs, which act as a “molecular clutch.”

Grahic Jump Location
Fig. 4

The force and lifetime of FA and its components. The lifetime of proteins within the FA structure is in the order of seconds, while FA as a subcellular organism remains stable for several tens of minutes. Early adhesions only consist of a few proteins and last for tens of seconds. As they grow into focal complexes, their lifetime increases to a few minutes. The force that can trigger a mechanical response in a single protein is in the order of 1 to 10 pN, whereas forced exerted by FAs on the substrate is 2–3 orders of magnitude higher. The shade in shapes represents the area of the system, e.g., the FA area increases by force. The area of a single protein is roughly estimated to be in the order of 1 nm2. The bar on the left side of the plot shows the shade scale used for the area in μm2. The left shape representing the “protein” is illustrated as a droplet merging into the “focal adhesion” shown as a larger drop on the right.

Grahic Jump Location
Fig. 5

Modularity of molecular mechanosensitivity. There are similar mechanisms of vinculin recruitment to cell-cell and FA contacts. (a) The VBS of α-catenin is inhibited inside the MI domain. (b) The cytoskeletal forces along α-catenin stretches the molecule and unravels the inhibited VBS. (c) Talin has 11 VBSs along its rod domain, which are inhibited in the absence of mechanical stress. It should be noted that only three VBSs are shown for simplicity. (d) Tension along talin's rod domain increases its affinity for vinculin binding.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In