Expert View

Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research

[+] Author and Article Information
Ahmet Erdemir

Department of Biomedical Engineering and
Computational Biomodeling (CoBi) Core,
Lerner Research Institute,
Cleveland Clinic,
9500 Euclid Avenue (ND20),
Cleveland, OH 44195
e-mail: erdemira@ccf.org

Peter J. Hunter

Auckland Bioengineering Institute,
University of Auckland,
Auckland 1142, New Zealand

Gerhard A. Holzapfel

Institute of Biomechanics,
Graz University of Technology,
Graz 8010, Austria;
Faculty of Engineering Science and Technology,
Norwegian University of
Science and Technology,
Trondheim 7491, Norway

Leslie M. Loew

Center for Cell Analysis and Modeling,
University of Connecticut School of Medicine,
Farmington, CT 06032

John Middleton

Department of Orthodontics,
Biomaterials/Biomechanics Research Centre,
School of Dentistry,
Cardiff University, Heath Park,
Cardiff CF10 3AT, UK

Christopher R. Jacobs

Department of Biomedical Engineering,
Columbia University,
New York, NY 10027

Perumal Nithiarasu

Zienkiewicz Centre for
Computational Engineering,
Swansea University,
Swansea SA1 8EN, UK

Rainlad Löhner

Department of Physics and Astronomy,
Center for Computational Fluid Dynamics,
George Mason University,
Fairfax, VA 22030

Guowei Wei

Department of Mathematics,
Michigan State University,
East Lansing, MI 48824

Beth A. Winkelstein

Department of Bioengineering,
University of Pennsylvania,
Philadelphia, PA 19104

Victor H. Barocas

Department of Bioengineering,
University of Minnesota,
Minneapolis, MN 55455

Farshid Guilak

Department of Orthopaedic Surgery,
Shriners Hospitals for Children,
Washington University,
St. Louis, MO 63130

Joy P. Ku, Jennifer L. Hicks

Department of Bioengineering,
Stanford University,
Stanford, CA 94305

Scott L. Delp

Department of Bioengineering,
Stanford University,
Stanford, CA 94305;
Department of Mechanical Engineering,
Stanford University,
Stanford, CA 94305

Michael S. Sacks

Department of Biomedical Engineering,
University of Texas at Austin,
Austin, TX 78712

Jeffrey A. Weiss, Steve A. Maas

Department of Bioengineering,
University of Utah,
Salt Lake City, UT 84112

Gerard A. Ateshian

Department of Mechanical Engineering,
Columbia University,
New York, NY 10027

Andrew D. McCulloch

Department of Bioengineering,
University of California San Diego,
La Jolla, CA 92093

Grace C. Y. Peng

National Institute of Biomedical
Imaging and Bioengineering,
National Institutes of Health,
Bethesda, MD 20892

1Corresponding author.

Manuscript received November 19, 2017; final manuscript received December 5, 2017; published online January 23, 2018. Assoc. Editor: Kristen Billiar.

J Biomech Eng 140(2), 024701 (Jan 23, 2018) (11 pages) Paper No: BIO-17-1530; doi: 10.1115/1.4038768 History: Received November 19, 2017; Revised December 05, 2017

The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate model sharing, and there are corresponding initiatives by the scientific journals. Outside the publishing enterprise, infrastructure to facilitate model sharing in biomechanics exists, and simulation software developers are interested in accommodating the community's needs for sharing of modeling resources. Encouragement for the use of standardized markups, concerns related to quality assurance, acknowledgement of increased burden, and importance of stewardship of resources are noted. In the short-term, it is advisable that the community builds upon recent strategies and experiments with new pathways for continued demonstration of model sharing, its promotion, and its utility. Nonetheless, the need for a long-term strategy to unify approaches in sharing computational models and related resources is acknowledged. Development of a sustainable platform supported by a culture of open model sharing will likely evolve through continued and inclusive discussions bringing all stakeholders at the table, e.g., by possibly establishing a consortium.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Goriely, A. , Geers, M. G. D. , Holzapfel, G. A. , Jayamohan, J. , Jérusalem, A. , Sivaloganathan, S. , Squier, W. , van Dommelen, J. A. W. , Waters, S. , and Kuhl, E. , 2015, “ Mechanics of the Brain: Perspectives, Challenges, and Opportunities,” Biomech. Model. Mechanobiol., 14(5), pp. 931–965. [CrossRef] [PubMed]
Steinman, D. A. , Vorp, D. A. , and Ethier, C. R. , 2003, “ Computational Modeling of Arterial Biomechanics: Insights Into Pathogenesis and Treatment of Vascular Disease,” J. Vasc. Surg., 37(5), pp. 1118–1128. [CrossRef] [PubMed]
Burrowes, K. S. , Swan, A. J. , Warren, N. J. , and Tawhai, M. H. , 2008, “ Towards a Virtual Lung: Multi-Scale, Multi-Physics Modelling of the Pulmonary System,” Philos. Trans. A: Math. Phys. Eng. Sci., 366(1879), pp. 3247–3263. [CrossRef] [PubMed]
Erdemir, A. , McLean, S. , Herzog, W. , and van den Bogert, A. J. , 2007, “ Model-Based Estimation of Muscle Forces Exerted During Movements,” Clin. Biomech. (Bristol Avon), 22(2), pp. 131–154. [CrossRef]
Henak, C. R. , Anderson, A. E. , and Weiss, J. A. , 2013, “ Subject-Specific Analysis of Joint Contact Mechanics: Application to the Study of Osteoarthritis and Surgical Planning,” ASME J. Biomech. Eng., 135(2), p. 021003. [CrossRef]
Pahr, D. H. , and Zysset, P. K. , 2016, “ Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images,” Curr. Osteoporosis Rep., 14(6), pp. 374–385. [CrossRef]
Humphrey, J. D. , and Holzapfel, G. A. , 2012, “ Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms,” J. Biomech., 45(5), pp. 805–814. [CrossRef] [PubMed]
Sforza, D. M. , Putman, C. M. , and Cebral, J. R. , 2012, “ Computational Fluid Dynamics in Brain Aneurysms,” Int. J. Numer. Methods Biomed. Eng., 28(6–7), pp. 801–808. [CrossRef]
Yang, K. H. , Hu, J. , White, N. A. , King, A. I. , Chou, C. C. , and Prasad, P. , 2006, “ Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference,” Stapp Car Crash J., 50, pp. 429–490. https://www.ncbi.nlm.nih.gov/pubmed/17311173 [PubMed]
Knarr, B. A. , Kesar, T. M. , Reisman, D. S. , Binder-Macleod, S. A. , and Higginson, J. S. , 2013, “ Changes in the Activation and Function of the Ankle Plantar Flexor Muscles Due to Gait Retraining in Chronic Stroke Survivors,” J. Neuroeng. Rehabil., 10, p. 12. [CrossRef] [PubMed]
Bressloff, N. W. , Ragkousis, G. , and Curzen, N. , 2016, “ Design Optimisation of Coronary Artery Stent Systems,” Ann. Biomed. Eng., 44(2), pp. 357–367. [CrossRef] [PubMed]
Taylor, M. , and Prendergast, P. J. , 2015, “ Four Decades of Finite Element Analysis of Orthopaedic Devices: Where Are We Now and What Are the Opportunities?,” J. Biomech., 48(5), pp. 767–778. [CrossRef] [PubMed]
Douglas, P. S. , De Bruyne, B. , Pontone, G. , Patel, M. R. , Norgaard, B. L. , Byrne, R. A. , Curzen, N. , Purcell, I. , Gutberlet, M. , Rioufol, G. , Hink, U. , Schuchlenz, H. W. , Feuchtner, G. , Gilard, M. , Andreini, D. , Jensen, J. M. , Hadamitzky, M. , Chiswell, K. , Cyr, D. , Wilk, A. , Wang, F. , Rogers, C. , and Hlatky, M. A. , and PLATFORM Investigators, 2016, “ 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: The PLATFORM Study,” J. Am. Coll. Cardiol., 68(5), pp. pp. 435–445. https://www.ncbi.nlm.nih.gov/pubmed/27470449
Erdemir, A. , Mulugeta, L. , and Lytton, W. W. , 2015, “ Ten ‘Not So Simple’ Rules for Credible Practice of Modeling and Simulation in Healthcare: A Multidisciplinary Committee Perspective,” Biomedical Engineering Society/Food and Drug Administration Frontiers in Medical Devices Conference: Innovations in Modeling and Simulation (BMES/FDA), Washington, DC, May 18–20. http://neurosimlab.org/pdfs/fmd_2015.pdf
Erdemir, A. , Guess, T. M. , Halloran, J. , Tadepalli, S. C. , and Morrison, T. M. , 2012, “ Considerations for Reporting Finite Element Analysis Studies in Biomechanics,” J. Biomech., 45(4), pp. 625–633. [CrossRef] [PubMed]
Weinberg, E. J. , Shahmirzadi, D. , and Mofrad, M. R. K. , 2010, “ On the Multiscale Modeling of Heart Valve Biomechanics in Health and Disease,” Biomech. Model. Mechanobiol., 9(4), pp. 373–387. [CrossRef] [PubMed]
Walpole, J. , Papin, J. A. , and Peirce, S. M. , 2013, “ Multiscale Computational Models of Complex Biological Systems,” Annu. Rev. Biomed. Eng., 15, pp. 137–154. [CrossRef] [PubMed]
Peng, G. C. Y. , 2016, “ Moving Toward Model Reproducibility and Reusability,” IEEE Trans. Biomed. Eng., 63(10), pp. 1997–1998. [CrossRef] [PubMed]
NIH, 2017, “PAR-15-085: Predictive Multiscale Models for Biomedical, Biological, Behavioral, Environmental and Clinical Research (U01),” National Institutes of Health, Bethesda, MD, accessed Nov. 17, 2017, https://grants.nih.gov/grants/guide/pa-files/PAR-15-085.html
Dargar, S. , Kennedy, R. , Lai, W. , Arikatla, V. , and De, S. , 2015, “ Towards Immersive Virtual Reality (IVR): a Route to Surgical Expertise,” J. Comput. Surg., epub.
Updegrove, A. , Wilson, N. M. , Merkow, J. , Lan, H. , Marsden, A. L. , and Shadden, S. C. , 2017, “ SimVascular: An Open Source Pipeline for Cardiovascular Simulation,” Ann. Biomed. Eng., 45(3), pp. 525–541. [CrossRef] [PubMed]
Maas, S. A. , Ellis, B. J. , Ateshian, G. A. , and Weiss, J. A. , 2012, “ FEBio: Finite Elements for Biomechanics,” ASME J. Biomech. Eng., 134(1), p. 011005. [CrossRef]
Delp, S. L. , Anderson, F. C. , Arnold, A. S. , Loan, P. , Habib, A. , John, C. T. , Guendelman, E. , and Thelen, D. G. , 2007, “ OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Delp, S. L. , Ku, J. P. , Pande, V. S. , Sherman, M. A. , and Altman, R. B. , 2012, “ Simbios: An NIH National Center for Physics-Based Simulation of Biological Structures,” J. Am. Med. Inform. Assoc. JAMIA, 19(2), pp. 186–189. [CrossRef]
Erdemir, A. , 2016, “ Open Knee: Open Source Modeling and Simulation in Knee Biomechanics,” J. Knee Surg., 29(2), pp. 107–116. https://www.ncbi.nlm.nih.gov/pubmed/26444849 [PubMed]
SED-ML, 2017, “SED-ML: The Simulation Experiment Description Markup Language,” SED-ML, accessed Nov. 17, 2017, https://sed-ml.github.io/
CellML, 2017, “The CellML Project—CellML,” CellML, accessed Nov. 17, 2017, https://www.cellml.org/
SBML, 2017, “The Systems Biology Markup Language,” SBML, accessed Nov. 17, 2017, http://sbml.org/
NeuroML, 2016, “NeuroML—A Model Description Language for Computational Neuroscience,” NeuroML, accessed Nov. 17, 2017, https://neuroml.org/
Physiome Project, 2017, “Physiome Project: FieldML,” Physiome Project, accessed Nov. 17, 2017, http://physiomeproject.org/software/fieldml
CellML, 2017, “CellML Model Repository—Physiome Model Repository,” CellML, accessed Nov. 17, 2017, http://models.cellml.org/cellml
OpenCOR, 2017, “OpenCOR,” OpenCOR, accessed Nov. 17, 2017, http://www.opencor.ws/
CellML, 2017, “Fibre Dispersion Law (Version A)—Physiome Model Repository,” CellML, accessed Nov. 17, 2017, http://models.cellml.org/exposure/d5d6bff87af2bc1e94b6e8706227ba1a/gasser_ogden_holzapfel_2006_a.cellml/view
Gasser, T. C. , Ogden, R. W. , and Holzapfel, G. A. , 2006, “ Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc. Interface, 3(6), pp. 15–35. [CrossRef] [PubMed]
Loew, L. , Beckett, D. , Egelman, E. H. , and Scarlata, S. , 2015, “ Reproducibility of Research in Biophysics,” Biophys. J., 108(7), p. E1. [CrossRef] [PubMed]
Elsevier, 2017, “Biophysical Journal—Guidelines for the Reproducibility of Biophysics Research,” Elsevier, Amsterdam, The Netherlands, accessed Nov. 17, 2017, http://www.cell.com/pb/assets/raw/journals/society/biophysj/PDFs/reproducibility-guidelines.pdf
Hucka, M. , Finney, A. , Sauro, H. M. , Bolouri, H. , Doyle, J. C. , Kitano, H. , Arkin, A. P. , Bornstein, B. J. , Bray, D. , Cornish-Bowden, A. , Cuellar, A. A. , Dronov, S. , Gilles, E. D. , Ginkel, M. , Gor, V. , Goryanin, I. I. , Hedley, W. J. , Hodgman, T. C. , Hofmeyr, J.-H. , Hunter, P. J. , Juty, N. S. , Kasberger, J. L. , Kremling, A. , Kummer, U. , Le Novère, N. , Loew, L. M. , Lucio, D. , Mendes, P. , Minch, E. , Mjolsness, E. D. , Nakayama, Y. , Nelson, M. R. , Nielsen, P. F. , Sakurada, T. , Schaff, J. C. , Shapiro, B. E. , Shimizu, T. S. , Spence, H. D. , Stelling, J. , Takahashi, K. , Tomita, M. , Wagner, J. , Wang, J. , and SBML Forum, 2003, “ The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models,” Bioinf. Oxford Engl., 19(4), pp. 524–531.
Boileau, E. , Nithiarasu, P. , Blanco, P. J. , Müller, L. O. , Fossan, F. E. , Hellevik, L. R. , Donders, W. P. , Huberts, W. , Willemet, M. , and Alastruey, J. , 2015, “ A Benchmark Study of Numerical Schemes for One-Dimensional Arterial Blood Flow Modelling,” Int. J. Numer. Methods Biomed. Eng., 31(10), p. e02732. [CrossRef]
NIH, 2015, “Principles and Guidelines for Reporting Preclinical Research,” National Institutes of Health, Bethesda, MD, accessed Nov. 17, 2017, https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
Guilak, F. , 2017, “ New Tools for Content Innovation and Data Sharing: Enhancing Reproducibility and Rigor in Biomechanics Research,” J. Biomech., 54, pp. 1–3. [CrossRef] [PubMed]
Guilak, F. , Sato, M. , Stanford, C. M. , and Brand, R. A. , 2000, “ Cell Mechanics,” J. Biomech., 33(1), pp. 1–2. https://www.ncbi.nlm.nih.gov/pubmed/10609512 [PubMed]
SimTK, 2017, “SimTK: Grand Challenge Competition to Predict In Vivo Knee Loads: Project Home,” SimTK, accessed Nov. 17, 2017, https://simtk.org/projects/kneeloads
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads,” J. Orthop. Res. Off. Publ. Orthop. Res. Soc., 30(4), pp. 503–513. [CrossRef]
Navacchia, A. , Myers, C. A. , Rullkoetter, P. J. , and Shelburne, K. B. , 2016, “ Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis,” ASME J. Biomech. Eng., 138(3), p. 031002. [CrossRef]
Knarr, B. A. , Higginson, J. S. , and Zeni, J. A. , 2016, “ Change in Knee Contact Force With Simulated Change in Body Weight,” Comput. Methods Biomech. Biomed. Eng., 19(3), pp. 320–323. [CrossRef]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. F. J. M. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Piwowar, H. A. , and Vision, T. J. , 2013, “ Data Reuse and the Open Data Citation Advantage,” PeerJ, 1, p. e175. [CrossRef] [PubMed]
Kim, Y. , and Stanton, J. M. , 2013, “ Institutional and Individual Influences on Scientists' Data Sharing Behaviors: A Multilevel Analysis,” Proc. Am. Soc. Inf. Sci. Technol., 50(1), pp. 1–14.
Campbell, E. G. , Clarridge, B. R. , Gokhale, M. , Birenbaum, L. , Hilgartner, S. , Holtzman, N. A. , and Blumenthal, D. , 2002, “ Data Withholding in Academic Genetics: Evidence From a National Survey,” JAMA, 287(4), pp. 473–480. [CrossRef] [PubMed]
Rajagopal, A. , Dembia, C. L. , DeMers, M. S. , Delp, D. D. , Hicks, J. L. , and Delp, S. L. , 2016, “ Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait,” IEEE Trans. Biomed. Eng., 63(10), pp. 2068–2079. [CrossRef] [PubMed]
Maas, S. A. , Ateshian, G. A. , and Weiss, J. A. , 2017, “ FEBio: History and Advances,” Annu. Rev. Biomed. Eng., 19, pp. 279–299. [CrossRef] [PubMed]
Jurrus, E. , Engel, D. , Star, K. , Monson, K. , Brandi, J. , Felberg, L. E. , Brookes, D. H. , Wilson, L. , Chen, J. , Liles, K. , Chun, M. , Li, P. , Gohara, D. W. , Dolinsky, T. , Konecny, R. , Koes, D. R. , Nielsen, J. E. , Head-Gordon, T. , Geng, W. , Krasny, R. , Wei, G.-W. , Holst, M. J. , McCammon, J. A. , and Baker, N. A. , 2018, “ Improvements to the APBS Biomolecular Solvation Software Suite,” Protein Sci. Publ. Protein Soc., in press. https://www.ncbi.nlm.nih.gov/pubmed/28836357
Huber, G. A. , and McCammon, J. A. , 2010, “ Browndye: A Software Package for Brownian Dynamics,” Comput. Phys. Commun., 181(11), pp. 1896–1905. [CrossRef] [PubMed]
Johnson, G. T. , Autin, L. , Al-Alusi, M. , Goodsell, D. S. , Sanner, M. F. , and Olson, A. J. , 2015, “ CellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology,” Nat. Methods, 12(1), pp. 85–91. [CrossRef] [PubMed]
Vincent, K. P. , Gonzales, M. J. , Gillette, A. K. , Villongco, C. T. , Pezzuto, S. , Omens, J. H. , Holst, M. J. , and McCulloch, A. D. , 2015, “ High-Order Finite Element Methods for Cardiac Monodomain Simulations,” Front. Physiol., 6, p. 217. https://www.ncbi.nlm.nih.gov/pubmed/26300783 [PubMed]
Boras, B. W. , Hirakis, S. P. , Votapka, L. W. , Malmstrom, R. D. , Amaro, R. E. , and McCulloch, A. D. , 2015, “ Bridging Scales Through Multiscale Modeling: A Case Study on Protein Kinase A,” Front. Physiol., 6, p. 250. https://www.ncbi.nlm.nih.gov/pubmed/26441670 [PubMed]
Sibole, S. C. , and Erdemir, A. , 2012, “ Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations,” PloS One, 7(5), p. e37538. [CrossRef] [PubMed]
van den Bogert, A. J. , Geijtenbeek, T. , Even-Zohar, O. , Steenbrink, F. , and Hardin, E. C. , 2013, “ A Real-Time System for Biomechanical Analysis of Human Movement and Muscle Function,” Med. Biol. Eng. Comput., 51(10), pp. 1069–1077. [CrossRef] [PubMed]
SimTK, 2017, “ SimVascular: Examples and Clinical Cases,” SimTK, accessed Nov. 17, 2017, https://simtk.org/projects/sv_tests
SimTK, 2017, “Open Knee(s): Virtual Biomechanical Representations of the Knee Joint,” SimTK, accessed Nov. 17, 2017, https://simtk.org/projects/openknee
SimTK, 2017, “SimTK: Full Body Model for Use in Dynamic Simulations of Human Gait,” SimTK, accessed Nov. 17, 2017, https://simtk.org/projects/full_body
University of Denver, 2017, “Natural Knee,” University of Denver, Denver, CO, accessed Nov. 17, 2017, https://digitalcommons.du.edu/natural_knee_data/
Figshare, 2017, “Figshare—Credit for All Your Research,” Figshare, London, accessed Nov. 17, 2017, https://figshare.com/
Dryad, 2017, “Dryad Digital Repository—Dryad,” Dryad, Durham, NC, accessed Nov. 17, 2017, http://datadryad.org/
Rodriguez-Vila, B. , Sánchez-González, P. , Oropesa, I. , Gomez, E. J. , and Pierce, D. M. , 2017, “ Automated Hexahedral Meshing of Knee Cartilage Structures—Application to Data From the Osteoarthritis Initiative,” Comput. Methods Biomech. Biomed. Eng., 20(14), pp. 1543–1553. https://www.ncbi.nlm.nih.gov/pubmed/29017357
The Mingboggle Team, “Mindboggle,” Mingboggle, accessed Nov. 17, 2017, http://www.mindboggle.info/
UCSD, 2006, “Continuity—Cardiac Mechanics Research Group,” University of California, San Diego, La Jolla, CA, accessed Nov. 17, 2017, http://www.continuity.ucsd.edu/
Re3data, 2017, “Home—Re3data.Org,” Re3data, accessed Nov. 17, 2017, https://www.re3data.org/
Raymond, E. S. , 1999, The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, O'Reilly Media, Newton, MA.
Aberdour, M. , 2007, “ Achieving Quality in Open-Source Software,” IEEE Software, 24(1), pp. 58–64. [CrossRef]
U.S. Food and Drug Administration, 2017, “Qualification of Medical Device Development Tools—Guidance for Industry, Tool Developers, and Food and Drug Administration Staff,” U.S. Food and Drug Administration, Silver Spring, MD, accessed Nov. 17, 2017, https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM374432.pdf
IMAG, 2017, “Interagency Modeling and Analysis Group,” Interagency Modeling and Analysis Group, Bethesda, MD, accessed Nov. 17, 2017, https://www.imagwiki.nibib.nih.gov/
SimTK, 2017, “SimTK: Credible Practice of Modeling and Simulation in Healthcare: Project Home,” SimTK, accessed Nov. 17, 2017, https://simtk.org/projects/cpms
Erdemir, A. , Guess, T. M. , Halloran, J. P. , Modenese, L. , Reinbolt, J. A. , Thelen, D. G. , and Umberger, B. R. , 2016, “ Commentary on the Integration of Model Sharing and Reproducibility Analysis to Scholarly Publishing Workflow in Computational Biomechanics,” IEEE Trans. Biomed. Eng., 63(10), pp. 2080–2085. [CrossRef] [PubMed]
Open Source Initiative, 2017, “The MIT License—Open Source Initiative,” Open Source Initiative, Palo Alto, CA, accessed Nov. 17, 2017, https://opensource.org/licenses/MIT
Dassault Systémes, 2017, “The Living Heart Project,” Dassault Systémes, Vélizy-Villacoublay, France, accessed Nov. 17, 2017, https://www.3ds.com/products-services/simulia/solutions/life-sciences/the-living-heart-project/





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In