0
Research Papers

Validation of the Strain Assessment of a Phantom of Abdominal Aortic Aneurysm: Comparison of Results Obtained From Magnetic Resonance Imaging and Stereovision Measurements

[+] Author and Article Information
Yufei Wang

Laboratoire D'électronique,
Informatique et Image,
FRE CNRS 2005 UBFC CNRS
Art et Métiers Paristech,
Université de Bourgogne-France-Comté,
Site d'Auxerre, Route des Plaines de l'Yonne,
Auxerre 89 000, France
e-mail: jinlibua@hotmai.com

David Joannic

IUT Dijon-Auxerre, Laboratoire D'électronique,
Informatique et Image,
FRE CNRS 2005 UBFC CNRS
Art et Métiers Paristech,
Université de Bourgogne-France-Comté,
site d'Auxerre, route des plaines de l'Yonne,
Auxerre 89 000, France
e-mail: david.joannic@iut-dijon.u-bourgogne.fr

Patrick Juillion

Laboratoire D'électronique,
Informatique et Image,
FRE CNRS 2005 UBFC CNRS
Art et Métiers Paristech,
Université de Bourgogne-France-Comté,
Site d'Auxerre, Route des Plaines de l'Yonne,
Auxerre 89 000, France
e-mail: patrick.juillion@u-bourgogne.fr

Aurélien Monnet

Siemens Healthcare France,
40 Avenue des FRUITIERS,
Saint-Denis 93527, France
e-mail: a.monnet@siemens.fr

Patrick Delassus

GMedTech,
Galway-Mayo Institute of Technology,
Galway H91 T8NW, Ireland
e-mail: patrick.delassus@gmit.ie

Alain Lalande

Laboratoire D'électronique,
Informatique et Image,
FRE CNRS 2005, UBFC CNRS
Art et Métiers Paristech,
Faculté de Médecine,
Université de Bourgogne-Franche-Comté,
7 bd Jeanne d'Arc,
Dijon 21 079, Cedex, France
e-mail: alain.lalande@u-bourgogne.fr

Jean-François Fontaine

IUT Dijon-Auxerre, Laboratoire D'électronique,
Informatique et Image,
FRE CNRS 2005 UBFC CNRS
Art et Métiers Paristech,
Université de Bourgogne-France-Comté,
Site D'auxerre, Route des Plaines de l'Yonne,
Auxerre 89 000, France
e-mail: jffont@iut-dijon.u-bourgogne.fr

1Corresponding author.

Manuscript received January 11, 2017; final manuscript received December 9, 2017; published online January 17, 2018. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 140(3), 031001 (Jan 17, 2018) (9 pages) Paper No: BIO-17-1016; doi: 10.1115/1.4038743 History: Received January 11, 2017; Revised December 09, 2017

Predicting aortic aneurysm ruptures is a complex problem that has been investigated by many research teams over several decades. Work on this issue is notably complex and involves both the mechanical behavior of the artery and the blood flow. Magnetic resonance imaging (MRI) can provide measurements concerning the shape of an organ and the blood that flows through it. Measuring local distortion of the artery wall is the first essential factor to evaluate in a ruptured artery. This paper aims to demonstrate the feasibility of this measure using MRI on a phantom of an abdominal aortic aneurysm (AAA) with realistic shape. The aortic geometry is obtained from a series of cine-MR images and reconstructed using Mimics software. From 4D flow and MRI measurements, the field of velocity is determined and introduced into a computational fluid dynamic (CFD) model to determine the mechanical boundaries applied on the wall artery (pressure and ultimately wall shear stress (WSS)). These factors are then converted into a solid model that enables wall deformations to be calculated. This approach was applied to a silicone phantom model of an AAA reconstructed from a patient's computed tomography-scan examination. The calculated deformations were then compared to those obtained in identical conditions by stereovision. The results of both methods were found to be close. Deformations of the studied AAA phantom with complex shape were obtained within a gap of 12% by modeling from MR data.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nicholls, S. C. , Gardner, J. B. , Meissner, M. H. , and Johansen, K. H. , 1998, “Rupture in Small Abdominal Aortic Aneurysms,” J. Vasc. Surg, 28, pp. 884–888. [CrossRef] [PubMed]
Baxter, B. T. , Terrin, M. C. , and Dalman, R. L. , 2008, “Medical Management of Small Abdominal Aortic Aneurysms,” Circulation. 117(14), pp. 1883–88. [CrossRef] [PubMed]
Raghavan, M. L. , and Vorp, D. A. , 2000, “Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Biomech., 33(4), pp. 475–482. [CrossRef] [PubMed]
Rodriguez, J. F. , Ruiz, C. , Doblaré, M. , and Holzapfel, G. A. , 2008, “Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry and Material Anisotropy,” ASME J. Biomech. Eng., 130(2), p. 021023.
Achille, P. , Celi, S. , Di Puccio, F. , and Forte, P. , 2011, “Anisotropic AAA: Computational Comparison Between Four and Two Fibers Family Material Models,” J. Biomech., 44(13), pp. 2418–2426. [CrossRef] [PubMed]
Reeps, C. , Gee, M. , Maier, A. , Gurdan, M. , Eckstein, H. H. , and Wall, W. A. , 2010, “The Impact of Model Assumptions on Results of Computational Mechanics in Abdominal Aortic Aneurysm,” J. Vasc. Surg., 51(3), pp. 679–688. [CrossRef] [PubMed]
Fillinger, M. F. , Marra, S. P. , Raghavan, M. L. , and Kennedy, F. E. , 2003, “Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress versus Diameter,” J. Vasc. Surg., 37(4), pp. 724–732. [CrossRef] [PubMed]
Choudhury, N. , Bouchot, O. , Rouleau, R. , Tremblay, D. , Cartier, R. , Butany, J. , Mongrain, R. , and Leaska, R. L. , 2009, “Local Mechanical and Structural Properties of Healthy and Diseased Human Ascending Aorta Tissue,” Cardiovasc. Pathol., 18(2), pp. 83–91. [CrossRef] [PubMed]
Iliopoulos, D. C. , Deveja, R. P. , Kritharis, E. P. , Perrea, D. , Sionis, G. D. , Toutouzas, K. , Stefanadis, C. , and Sokolis, D. P. , 2009, “Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms,” Med. Eng. Phys., 31(1), pp. 1–9. [CrossRef] [PubMed]
Duprey, A. , Khanafer, K. , Schlicht, M. , Avril, S. , Williams, D. , and Berguer, R. , 2010, “In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing,” Eur. J. Vasc. Endovasc. Surg., 39(6), pp. 700–707. [CrossRef] [PubMed]
Karimi, A. , Navidbakhsh, M. , Shojaei, A. , and Faghihi, S. , 2013, “Measurement of the Uniaxial Mechanical Properties of Healthy and Atherosclerotic Human Coronary Arteries,” Mater. Sci. Eng. C, Mater. Biol. Appl., 33(5), pp. 2550–2554. [CrossRef]
Tong, J. , Cohnert, T. , Regitnig, P. , and Holzapfel, G. A. , 2011, “Effects of Age on the Elastic Properties of the Intraluminal Thrombus and the Thrombus-Covered Wall in Abdominal Aortic Aneurysms: Biaxial Extension Behavior and Material Modeling,” Eur. J. Vasc. Endovasc. Surg., 42(2), pp. 207–219. [CrossRef] [PubMed]
Avril, S. , Badel, P. , and Duprey, A. , 2010, “Anisotropic and Hyperelastic Identification of In Vitro Human Arteries From Full Field Optical Measurements,” J. Biomech., 43(15), pp. 2978–2985. [CrossRef] [PubMed]
Toungara, M. , Chagnon, G. , and Geindreau, C. , 2012, “Numerical Analysis of the Wall Stress in Abdominal Aortic Aneurysm: Influence of the Material Model Near-Incompressibility,” J. Mech. Med. Bio, 12(1), p. 1250005.
Scotti, C. M. , and Finol, E. A. , 2007, “Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid–Structure Interaction Study,” Comput. Struct., 85(11–14), pp. 1097–1113. [CrossRef]
Wang, D. H. J. , Makaroun, M. S. , Webster, M. W. , and Vorp, D. A. , 2002, “Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 36(3), pp. 598–604. [CrossRef] [PubMed]
Pham, T. , Martin, C. , Elefteriades, J. , and Sun, W. , 2013, “Biomechanical Characterization of Ascending Aortic Aneurysm With Concomitant Bicuspid Aortic Valve and Bovine Aortic Arch,” Acta Biomater., 9(8), pp. 7927–7936. [CrossRef] [PubMed]
Salsac, A. V. , Sparks, S. R. , Chomaz, J. M. , and Lasheras, J. C. , 2006, “Evolution of the Wall Shear Stresses During the Progressive Enlargement of Symmetric Abdominal Aortic Aneurysms,” J. Fluid Mech., 550, pp. 19–51. [CrossRef]
Deplano, V. , Meyer, C. , Guivier-Curien, C. , and Bertrand, E. , 2013, “New Insights Into the Understanding of Flow Dynamics in an In-Vitro Model for Abdominal Aortic Aneurysms,” Med. Eng. Phys., 35(6), pp. 800–809. [CrossRef] [PubMed]
Tezduyar, T. E. , Sathe, S. , Schwaab, M. , and Conklin, B. S. , 2008, “Arterial Fluid Mechanics Modeling With the Stabilized Space–Time fluid–Structure Interaction Technique,” Int. J. Num. Methods Fluids, 57(5), pp. 601–629. [CrossRef]
Ene, F. , Gachon, C. , Delassus, P. , Carroll, R. , Stefanov, F. , O'Flynn, P. , and Morris, L. , 2011, “In Vitro Evaluation of the Effects of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Dynamics,” Med. Eng. Phys., 33(8), pp. 957–966. [CrossRef] [PubMed]
Morris, L. , O'Donnell, P. , Delassus, P. , and McGloughlin, T. , 2004, “Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method,” Strain, 40(4), pp. 165–172. [CrossRef]
Bihari, P. , Shelke, A. , New, T. H. , Mularczyk, M. , Nelson, K. , Schmandra, T. , Knez, P. , and Schmitz-Rixen, T. , 2013, “Strain Measurement of Abdominal Aortic Aneurysm With Real-Time 3D Ultrasound Speckle Tracking,” Eur. J. Vasc. Endovasc. Surg., 45(4), pp. 315–323. [CrossRef] [PubMed]
Rigdway, J. P. , 2016, “Cardiovascular Magnetic Resonance Physics for Clinicians— Part I,” J. Cardiovasc. Magn. Reson., 12(1), pp. 71–80.
Markl, M. , Schnell, S. , Wu, C. , Bollache, E. , Jarvis, K. , Barker, A. J. , Robinson, J. D. , and Rigsby, C. K. , 2016, “Advanced Flow MRI: Emerging Techniques and Applications,” Clin. Radiol., 71(8), pp. 779–795. [CrossRef] [PubMed]
Doyle, B. J. , Killion, J. , and Callanan, A. , 2012, “Use of the Photoelastic Method and Finite Element Analysis in the Assessment of Wall Strain in Abdominal Aortic Aneurysm Models,” J. Biomech., 45(10), pp. 1759–1768. [CrossRef] [PubMed]
Khodarahmi, I. , Shakeri, M. , Kotys-Traughber, M. , Fischer, S. , Sharp, M. K. , and Amini, A. A. , 2014, “In Vitro Validation of Flow Measurement With Phase Contrast MRI at 3 Tesla Using Stereoscopic Particle Image Velocimetry and Stereoscopic Particle Image Velocimetry-Based Computational Fluid Dynamics,” J. Magn. Res. Imaging, 39(6), pp. 1477–1485. [CrossRef]
Van Ooij, P. , Guédon, A. , Poelma, C. , Schneiders, J. , Rutten, M. C. M. , Marquer, H. A. , Majoie, C. B. , van Bavel, E. , and Nederveen, A. J. , 2012, “Complex Flow Patterns in a Real‐Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics,” NMR Biomed., 25(1), pp. 14–26. [CrossRef] [PubMed]
Wang, Y. , Joannic, D. , Delassus, P. , Lalande, A. , Juillion, P. , and Fontaine, J. F. , 2015, “Comparison of the Strain Field of Abdominal Aortic Aneurysm Measured by MRI and Stereovision: A Feasibility Study for Prediction of the Risk of Rupture of AAA,” J. Biomech., 48(6), pp. 1158–1164. [CrossRef] [PubMed]
Satriano, A. , Rivolo, S. , Martufin, G. , Finol, E. A. , and Di Martino, E. S. , 2015, “In Vivo Strain Assessment of the Abdominal Aortic Aneurysm,” J. Biomech., 48(2), pp. 354–360. [CrossRef] [PubMed]
Gatehouse, P. D. , Keegan, J. , Crowe, L. A. , Masood, S. , Mohiaddin, R. H. , Kreitner, K.-F. , and Firmin, D. N. , 2005, “Applications of Phase-Contrast Flow and Velocity Imaging in Cardiovascular MRI,” Eur. Radiol., 15(10), pp. 2172–2184. [CrossRef] [PubMed]
Markle, M. , Frydrychowicz, A. , Kozerke, S. , Hope, M. , and Wieben, O. , 2012, “4D Flow MRI,” J. Magn. Reson. Imaging, 36(5), pp. 1015–1036. [CrossRef] [PubMed]
Martins, P. A. , Natal Jorge, R. M. , and Ferreira, J. M. , 2006, “A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues,” Strain, 42(3), pp. 135–147. [CrossRef]
Stankovic, Z. , Allen, B. D. , Garcia, J. , Jarvis, K. B. , and Markl, M. , 2014, “4D Flow Imaging With MRI,” Cardiovasc. Diagn. Ther., 4(2), pp. 173–192. [PubMed]
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity, 61(1–3), pp. 1–48. [CrossRef]
Johnson, M. , and Tarbell, J. M. , 2001, “A Biphasic, Anisotropic Model of the Aortic Wall,” ASME J. Biomech. Eng., 123(1), pp. 52–71. [CrossRef]
Masson, I. , Boutouyrie, P. , Laurent, S. , Humphrey, J. D. , and Zidi, M. , 2008, “Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data,” J. Biomech, 41(12), pp. 2618–2627. [CrossRef] [PubMed]
Boyd, A. J. , Kuhn, D. C. , Lozowy, R. J. , and Kulbisky, G. P. , 2016, “Low Wall Shear Stress Predominates at Sites of Abdominal Aortic Aneurysm Rupture,” J. Vasc. Surg, 63(6), pp. 1613–1619. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 5

Comparison of changes in the average velocity (Vm) versus time (T) as determined by MRI and simulation for five sections of the phantom

Grahic Jump Location
Fig. 4

(a) Velocity fields determined by CFD for a phantom with realistic shape (top) and (b) computed spatial pressure distribution (t = 0.34 s) (bottom)

Grahic Jump Location
Fig. 3

(a) Mesh for the phantom with definition of the inlet and outlet (top) and (b) velocity and pressure time history applied to the boundary conditions over a cycle (bottom)

Grahic Jump Location
Fig. 2

Evolution of velocity fields of the phantom with realistic shape determined by the 4D-flow MRI

Grahic Jump Location
Fig. 1

Global diagram of the deformation determination from MRI measurements of a silicon AAA phantom with realistic shape. (See text for detailed description.)

Grahic Jump Location
Fig. 6

Variation of the phantom thickness

Grahic Jump Location
Fig. 7

Tensile sample with spray for identification of silicon behavior by stereovision

Grahic Jump Location
Fig. 8

Maximal in-plane-principal GL strain cartography obtained by modeling with abaqus outside the phantom and plotted on initial geometry

Grahic Jump Location
Fig. 9

Stereovision measurement: maximum principal GL strain distribution for three areas of the AAA

Grahic Jump Location
Fig. 10

Definition of the areas for comparison between simulation and stereovision results of maximum main GL-strain given in Table 2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In