0
Review Article

Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review

[+] Author and Article Information
Mickaël Begon

Département de Kinésiologie,
Université de Montréal,
1700 Jacques Tétreault,
Laval, QC H7N 0B6, Canada;
Centre de Recherche du Centre Hospitalier,
Universitaire Sainte-Justine,
3175 Chemin de la Côte-Sainte-Catherine,
Montréal, QC H3T 1C5, Canada
e-mail: mickael.begon@umontreal.ca

Michael Skipper Andersen

Department of Materials and Production,
Aalborg University,
Fibigerstrade 16,
Aalborg East DK-9220, Denmark
e-mail: msa@mp.aau.dk

Raphaël Dumas

Univ Lyon,
Université Claude Bernard Lyon 1, IFSTTAR,
LBMC UMR_T9406,
Lyon F69622, France
e-mail: Raphael.dumas@ifsttar.fr

Manuscript received December 15, 2016; final manuscript received November 12, 2017; published online January 18, 2018. Assoc. Editor: Kenneth Fischer.

J Biomech Eng 140(3), 030801 (Jan 18, 2018) (11 pages) Paper No: BIO-16-1520; doi: 10.1115/1.4038741 History: Received December 15, 2016; Revised November 12, 2017

Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schmitz, A. , Ye, M. , Shapiro, R. , Yang, R. G. , and Noehren, B. , 2014, “ Accuracy and Repeatability of Joint Angles Measured Using a Single Camera Markerless Motion Capture System,” J. Biomech., 47(2), pp. 587–591. [CrossRef] [PubMed]
Duprey, S. , Naaim, A. , Moissenet, F. , Begon, M. , and Cheze, L. , 2017, “ Kinematic Models of the Upper Limb Joints for Multibody Kinematics Optimisation: An Overview,” J. Biomech., 62, pp. 87–94. [CrossRef] [PubMed]
Leardini, A. , Belvedere, C. , Nardini, F. , Sancisi, N. , Conconi, M. , and Parenti-Castelli, V. , 2017, “ Kinematic Models of Lower Limb Joints for Musculo-Skeletal Modelling and Optimization in Gait Analysis,” J. Biomech., 62, pp. 77–86. [CrossRef] [PubMed]
Soderkvist, I. , and Wedin, P. A. , 1993, “ Determining the Movements of the Skeleton Using Well-Configured Markers,” J. Biomech., 26(12), pp. 1473–1477. [CrossRef] [PubMed]
Cheze, L. , Fregly, B. J. , and Dimnet, J. , 1995, “ A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data,” J. Biomech., 28(7), pp. 879–884. [CrossRef] [PubMed]
Andriacchi, T. P. , Alexander, E. J. , Toney, M. K. , Dyrby, C. , and Sum, J. , 1998, “ A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics,” ASME J. Biomech. Eng., 120(6), pp. 743–749. [CrossRef]
Taylor, W. R. , Ehrig, R. M. , Duda, G. N. , Schell, H. , Seebeck, P. , and Heller, M. O. , 2005, “ On the Influence of Soft Tissue Coverage in the Determination of Bone Kinematics Using Skin Markers,” J. Orthop. Res., 23(4), pp. 726–734. [CrossRef] [PubMed]
Kainz, H. , Carty, C. P. , Modenese, L. , Boyd, R. N. , and Lloyd, D. G. , 2015, “ Estimation of the Hip Joint centre in Human Motion Analysis: A Systematic Review,” Clin. Biomech., 30(4), pp. 319–329. [CrossRef]
Lempereur, M. , Brochard, S. , Leboeuf, F. , and Rémy-Néris, O. , 2014, “ Validity and Reliability of 3D Marker Based Scapular Motion Analysis: A Systematic Review,” J. Biomech., 47(10), pp. 2219–2230. [CrossRef] [PubMed]
Peters, A. , Galna, B. , Sangeux, M. , Morris, M. , and Baker, R. , 2010, “ Quantification of Soft Tissue Artifact in Lower Limb Human Motion Analysis: A Systematic Review,” Gait Posture, 31(1), pp. 1–8. [CrossRef] [PubMed]
Bolsterlee, B. , Veeger, H. E. J. , and van der Helm, F. C. T. , 2014, “ Modelling Clavicular and Scapular Kinematics: From Measurement to Simulation,” Med. Biol. Eng. Comput., 52(3), pp. 283–291. [CrossRef] [PubMed]
Laitenberger, M. , Raison, M. , Périé, D. , and Begon, M. , 2015, “ Refinement of the Upper Limb Joint Kinematics and Dynamics Using a Subject-Specific Closed-Loop Forearm Model,” Multibody Syst. Dyn., 33(4), pp. 413–438. [CrossRef]
Ayusawa, K. , Ikegami, Y. , and Nakamura, Y. , 2014, “ Simultaneous Global Inverse Kinematics and Geometric Parameter Identification of Human Skeletal Model From Motion Capture Data,” Mech. Mach. Theory, 74, pp. 274–284. [CrossRef]
Begon, M. , Wieber, P.-B. , and Yeadon, M. R. , 2008, “ Kinematics Estimation of Straddled Movements on High bar From a Limited Number of Skin Markers Using a Chain Model,” J. Biomech., 41(3), pp. 581–586. [CrossRef] [PubMed]
Charlton, I. W. , Tate, P. , Smyth, P. , and Roren, L. , 2004, “ Repeatability of an Optimised Lower Body Model,” Gait Posture, 20(2), pp. 213–221. [CrossRef] [PubMed]
Fohanno, V. , Lacouture, P. , and Colloud, F. , 2013, “ Improvement of Upper Extremity Kinematics Estimation Using a Subject-Specific Forearm Model Implemented in a Kinematic Chain,” J. Biomech., 46(6), pp. 1053–1059. [CrossRef] [PubMed]
Jackson, M. , Michaud, B. , Tétreault, P. , and Begon, M. , 2012, “ Improvements in Measuring Shoulder Joint Kinematics,” J. Biomech., 45(12), pp. 2180–2183. [CrossRef] [PubMed]
Pontonnier, C. , and Dumont, G. , 2009, “ Inverse Dynamics Method Using Optimization Techniques for the Estimation of Muscles Forces Involved in the Elbow Motion,” Int. J. Interact. Des. Manuf. (IJIDeM), 3(4), pp. 227–236. [CrossRef]
Prinold, J. A. I. , and Bull, A. M. J. , 2014, “ Scaling and Kinematics Optimisation of the Scapula and Thorax in Upper Limb Musculoskeletal Models,” J. Biomech., 47(11), pp. 2813–2819. [CrossRef] [PubMed]
Prokopenko, R. A. , Frolov, A. A. , Biryukova, E. V. , and Roby-Brami, A. , 2001, “ Assessment of the Accuracy of a Human Arm Model With Seven Degrees of Freedom,” J. Biomech., 34(2), pp. 177–185. [CrossRef] [PubMed]
Reinbolt, J. A. , Schutte, J. F. , Fregly, B. J. , Koh, B. I. , Haftka, R. T. , George, A. D. , and Mitchell, K. H. , 2005, “ Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization,” J. Biomech., 38(3), pp. 621–626. [CrossRef] [PubMed]
Robinson, M. A. , Donnelly, C. J. , Tsao, J. , and Vanrenterghem, J. , 2014, “ Impact of Knee Modeling Approach on Indicators and Classification of Anterior Cruciate Ligament Injury Risk,” Med. Sci. Sports Exercise, 46(7), pp. 1269–1276. [CrossRef]
Thouzé, A. , Monnet, T. , Bélaise, C. , Lacouture, P. , and Begon, M. , 2016, “ A Chain Kinematic Model to Assess the Movement of Lower-Limb Including Wobbling Masses,” Comput. Methods Biomech. Biomed. Eng., 19(7), pp. 707–716. [CrossRef]
van den Bogert, A. J. , Geijtenbeek, T. , Even-Zohar, O. , Steenbrink, F. , and Hardin, E. C. , 2013, “ A Real-Time System for Biomechanical Analysis of Human Movement and Muscle Function,” Med. Biol. Eng. Comput., 51(10), pp. 1069–1077. [CrossRef] [PubMed]
Tsai, M.-J. , and Lung, H.-Y. , 2014, “ Two-Phase Optimized Inverse Kinematics for Motion Replication of Real Human Models,” J. Chin. Inst. Eng., 37(7), pp. 899–914. [CrossRef]
Begon, M. , Bélaise, C. , Naaim, A. , Lundberg, A. , and Chèze, L. , 2017, “ Multibody Kinematic Optimization With Marker Projection Improves the Accuracy of the Humerus Rotational Kinematics,” J. Biomech., 62, pp. 117–123. [CrossRef] [PubMed]
Lamberto, G. , Martelli, S. , Cappozzo, A. , and Mazzà, C. , 2017, “ To What Extent Is Joint and Muscle Mechanics Predicted by Musculoskeletal Models Sensitive to Soft Tissue Artefacts?,” J. Biomech., 62, pp. 68–76.
Mantovani, G. , and Lamontagne, M. , 2017, “ How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework,” ASME J. Biomech. Eng., 139(4), p. 044503.
Pizzolato, C. , Reggiani, M. , Modenese, L. , and Lloyd, D. G. , 2017, “ Real-Time Inverse Kinematics and Inverse Dynamics for Lower Limb Applications Using OpenSim,” Comput. Methods Biomech. Biomed. Eng., 20(4), pp. 436–445. [CrossRef]
Lathrop, R. L. , Chaudhari, A. M. W. , and Siston, R. A. , 2011, “ Comparative Assessment of Bone Pose Estimation Using Point Cluster Technique and OpenSim,” ASME J. Biomech. Eng., 133(11), p. 114503. [CrossRef]
Andersen, M. S. , Damsgaard, M. , and Rasmussen, J. , 2009, “ Kinematic Analysis of Over-Determinate Biomechanical Systems,” Comput. Methods Biomech. Biomed. Eng., 12(4), pp. 371–384. [CrossRef]
Fohanno, V. , Begon, M. , Lacouture, P. , and Colloud, F. , 2014, “ Estimating Joint Kinematics of a Whole Body Chain Model With Closed-Loop Constraints,” Multibody Syst. Dyn., 31(4), pp. 433–449. [CrossRef]
Cerveri, P. , Rabuffetti, M. , Pedotti, A. , and Ferrigno, G. , 2003, “ Real-Time Human Motion Estimation Using Biomechanical Models and Non-Linear State-Space Filters,” Medical Biol. Eng. Comput., 41(2), pp. 109–123. [CrossRef]
Cerveri, P. , Pedotti, A. , and Ferrigno, G. , 2005, “ Kinematical Models to Reduce the Effect of Skin Artifacts on Marker-Based Human Motion Estimation,” J. Biomech., 38(11), pp. 2228–2236. [CrossRef] [PubMed]
Cerveri, P. , Pedotti, A. , and Ferrigno, G. , 2003, “ Robust Recovery of Human Motion From Video Using Kalman Filters and Virtual Humans,” Hum. Mov. Sci., 22(3), pp. 377–404. [CrossRef] [PubMed]
El-Gohary, M. , and McNames, J. , 2012, “ Shoulder and Elbow Joint Angle Tracking With Inertial Sensors,” IEEE Trans. Biomed. Eng., 59(9), pp. 2635–2641. [CrossRef] [PubMed]
Miezal, M. , Taetz, B. , and Bleser, G. , 2016, “ On Inertial Body Tracking in the Presence of Model Calibration Errors,” Sensors, 16(7), p. 1132.
Zhang, Z. Q. , Wong, W. C. , and Wu, J. K. , 2011, “ Ubiquitous Human Upper-Limb Motion Estimation Using Wearable Sensors,” IEEE Trans. Inf. Technol. Biomed., 15(4), pp. 513–521. [CrossRef] [PubMed]
Seth, A. , Matias, R. , Veloso, A. P. , and Delp, S. L. , 2016, “ A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics During Shoulder Movements,” PLoS One, 11(1), p. e0141028. [CrossRef] [PubMed]
De Groote, F. , De Laet, T. , Jonkers, I. , and De Schutter, J. , 2008, “ Kalman Smoothing Improves the Estimation of Joint Kinematics and Kinetics in Marker-Based Human Gait Analysis,” J. Biomech., 41(16), pp. 3390–3398. [CrossRef] [PubMed]
Aguiar, L. , Andrade, C. , Branco, M. , Santos-Rocha, R. , Vieira, F. , and Veloso, A. , 2016, “ Global Optimization Method Applied to the Kinematics of Gait in Pregnant Women,” J. Mech. Med. Biol., 16(6), p. 1650084. [CrossRef]
Aguiar, L. , Santos-Rocha, R. , Branco, M. , Vieira, F. , and Veloso, A. , 2014, “ Biomechanical Model for Kinetic and Kinematic Description of Gait During Second Trimester of Pregnancy to Study the Effects of Biomechanical Load on the Musculoskeletal System,” J. Mech. Med. Biol., 14(1), p. 1450004. [CrossRef]
Charbonnier, C. , Chagué, S. , Kolo, F. C. , Chow, J. C. K. , and Lädermann, A. , 2014, “ A Patient-Specific Measurement Technique to Model Shoulder Joint Kinematics,” Orthop. Traumatol.: Surg. Res., 100(7), pp. 715–719. [CrossRef] [PubMed]
Klous, M. , and Klous, S. , 2010, “ Marker-Based Reconstruction of the Kinematics of a Chain of Segments: A New Method That Incorporates Joint Kinematic Constraints,” ASME J. Biomech. Eng., 132(7), p. 074501. [CrossRef]
Lu, T. W. , and O'Connor, J. J. , 1999, “ Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints,” J. Biomech., 32(2), pp. 129–134. [CrossRef] [PubMed]
Moniz-Pereira, V. , Cabral, S. , Carnide, F. , and Veloso, A. P. , 2014, “ Sensitivity of Joint Kinematics and Kinetics to Different Pose Estimation Algorithms and Joint Constraints in the Elderly,” J. Appl. Biomech., 30(3), pp. 446–460. [CrossRef] [PubMed]
Ojeda, J. , Martínez-Reina, J. , and Mayo, J. , 2014, “ A Method to Evaluate Human Skeletal Models Using Marker Residuals and Global Optimization,” Mech. Mach. Theory, 73, pp. 259–272. [CrossRef]
Roux, E. , Bouilland, S. , Godillon-Maquinghen, A. P. , and Bouttens, D. , 2002, “ Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis,” J. Biomech., 35(9), pp. 1279–1283. [CrossRef] [PubMed]
Stagni, R. , Fantozzi, S. , and Cappello, A. , 2009, “ Double Calibration Vs. global Optimisation: Performance and Effectiveness for Clinical Application,” Gait Posture, 29(1), pp. 119–122. [CrossRef] [PubMed]
Ausejo, S. , Suescun, Á. , and Celigüeta, J. , 2011, “ An Optimization Method for Overdetermined Kinematic Problems Formulated With Natural Coordinates,” Multibody Syst. Dyn., 26(4), pp. 397–410. [CrossRef]
Clément, J. , Dumas, R. , Hagemeister, N. , and de Guise, J. A. , 2015, “ Soft Tissue Artifact Compensation in Knee Kinematics by Multi-Body Optimization: Performance of Subject-Specific Knee Joint Models,” J. Biomech., 48(14), pp. 3796–3802. [CrossRef] [PubMed]
Duprey, S. , Cheze, L. , and Dumas, R. , 2010, “ Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization,” J. Biomech., 43(14), pp. 2858–2862. [CrossRef] [PubMed]
El Habachi, A. , Duprey, S. , Cheze, L. , and Dumas, R. , 2015, “ A Parallel Mechanism of the Shoulder—Application to Multi-Body Optimisation,” Multibody Syst. Dyn., 33(4), pp. 439–451. [CrossRef]
Gasparutto, X. , Sancisi, N. , Jacquelin, E. , Parenti-Castelli, V. , and Dumas, R. , 2015, “ Validation of a Multi-Body Optimization With Knee Kinematic Models Including Ligament Constraints,” J. Biomech., 48(6), pp. 1141–1146. [CrossRef] [PubMed]
Clément, J. , Dumas, R. , Hagemeister, N. , and de Guise, J. A. , 2017, “ Can Generic Knee Joint Models Improve the Measurement of Osteoarthritic Knee Kinematics During Squatting Activity?,” Comput. Methods Biomech. Biomed. Eng., 20(1), pp. 94–103. [CrossRef]
Sancisi, N. , Gasparutto, X. , Parenti-Castelli, V. , and Dumas, R. , 2017, “ A Multi-Body Optimization Framework With a Knee Kinematic Model Including Articular Contacts and Ligaments,” Meccanica, 52(3), pp. 695–711. [CrossRef]
Richard, V. , Lamberto, G. , Lu, T.-W. , Cappozzo, A. , and Dumas, R. , 2016, “ Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study,” PLoS One, 11(6), p. e0157010. [CrossRef] [PubMed]
Groen, B. E. , Geurts, M. , Nienhuis, B. , and Duysens, J. , 2012, “ Sensitivity of the OLGA and VCM Models to Erroneous Marker Placement: Effects on 3D-Gait Kinematics,” Gait Posture, 35(3), pp. 517–521. [CrossRef] [PubMed]
Lee, J. , Flashner, H. , and McNitt-Gray, J. L. , 2010, “ Estimation of Multibody Kinematics Using Position Measurements,” ASME J. Comput. Nonlinear Dyn., 6(3), p. 031001. [CrossRef]
Koning, B. H. W. , van der Krogt, M. M. , Baten, C. T. M. , and Koopman, B. F. J. M. , 2015, “ Driving a Musculoskeletal Model With Inertial and Magnetic Measurement Units,” Comput. Methods Biomech. Biomed. Eng., 18(9), pp. 1003–1013. [CrossRef]
Lund, M. E. , Andersen, M. S. , de Zee, M. , and Rasmussen, J. , 2015, “ Scaling of Musculoskeletal Models From Static and Dynamic Trials,” Int. Biomech., 2(1), pp. 1–11. [CrossRef]
Ojeda, J. , Martínez-Reina, J. , and Mayo, J. , 2016, “ The Effect of Kinematic Constraints in the Inverse Dynamics Problem in Biomechanics,” Multibody Syst. Dyn., 37(3), pp. 291–309. [CrossRef]
Andersen, M. S. , Damsgaard, M. , MacWilliams, B. , and Rasmussen, J. , 2010, “ A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems,” Comput. Methods Biomech. Biomed. Eng., 13(2), pp. 171–183. [CrossRef]
Debril, J.-F. , Pudlo, P. , Simoneau, E. , Gorce, P. , and Lepoutre, F. X. , 2011, “ A Method for Calculating the Joint Coordinates of Paraplegic Subjects During the Transfer Movement Despite the Loss of Reflective Markers,” Int. J. Ind. Ergonom., 41(2), pp. 153–166. [CrossRef]
Sholukha, V. , Bonnechere, B. , Salvia, P. , Moiseev, F. , Rooze, M. , and Van Sint Jan, S. , 2013, “ Model-Based Approach for Human Kinematics Reconstruction From Markerless and Marker-Based Motion Analysis Systems,” J. Biomech., 46(14), pp. 2363–2371. [CrossRef] [PubMed]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. F. J. M. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Martelli, S. , Kersh, M. E. , and Pandy, M. G. , 2015, “ Sensitivity of Femoral Strain Calculations to Anatomical Scaling Errors in Musculoskeletal Models of Movement,” J. Biomech., 48(13), pp. 3615–3624. [CrossRef]
Martelli, S. , Valente, G. , Viceconti, M. , and Taddei, F. , 2015, “ Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location,” Comput. Methods Biomech. Biomed. Eng., 18(14), pp. 1555–1563. [CrossRef]
Reinbolt, J. A. , Haftka, R. T. , Chmielewski, T. L. , and Fregly, B. J. , 2007, “ Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?,” IEEE Trans. Biomed. Eng., 54(5), pp. 782–793. [CrossRef] [PubMed]
Valente, G. , Pitto, L. , Stagni, R. , and Taddei, F. , 2015, “ Effect of Lower-Limb Joint Models on Subject-Specific Musculoskeletal Models and Simulations of Daily Motor Activities,” J. Biomech., 48(16), pp. 4198–4205. [CrossRef] [PubMed]
El Habachi, A. , Moissenet, F. , Duprey, S. , Cheze, L. , and Dumas, R. , 2015, “ Global Sensitivity Analysis of the Joint Kinematics During Gait to the Parameters of a Lower Limb Multi-Body Model,” Med. Biol. Eng. Comput., 53(7), pp. 655–667. [CrossRef] [PubMed]
Pontonnier, C. , and Dumont, G. , 2010, “ From Motion Capture to Muscle Forces in the Human Elbow Aimed at Improving the Ergonomics of Workstations,” Virtual Phys. Prototyping, 5(3), pp. 113–122. [CrossRef]
Bonnechère, B. , Sholukha, V. , Salvia, P. , Rooze, M. , and Van Sint Jan, S. , 2015, “ Physiologically Corrected Coupled Motion During Gait Analysis Using a Model-Based Approach,” Gait Posture, 41(1), pp. 319–322. [CrossRef] [PubMed]
Kainz, H. , Modenese, L. , Lloyd, D. G. , Maine, S. , Walsh, H. P. J. , and Carty, C. P. , 2016, “ Joint Kinematic Calculation Based on Clinical Direct Kinematic versus Inverse Kinematic Gait Models,” J. Biomech., 49(9), pp. 1658–1669. [CrossRef] [PubMed]
Li, K. , Zheng, L. , Tashman, S. , and Zhang, X. , 2012, “ The Inaccuracy of Surface-Measured Model-Derived Tibiofemoral Kinematics,” J. Biomech., 45(15), pp. 2719–2723. [CrossRef] [PubMed]
Myers, C. A. , Laz, P. J. , Shelburne, K. B. , and Davidson, B. S. , 2015, “ A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations,” Ann. Biomed. Eng., 43(5), pp. 1098–1111. [CrossRef] [PubMed]
Scheys, L. , Desloovere, K. , Spaepen, A. , Suetens, P. , and Jonkers, I. , 2011, “ Calculating Gait Kinematics Using MR-Based Kinematic Models,” Gait Posture, 33(2), pp. 158–164. [CrossRef] [PubMed]
Sholukha, V. , Leardini, A. , Salvia, P. , Rooze, M. , and Van Sint Jan, S. , 2006, “ Double-Step Registration of In Vivo Stereophotogrammetry With Both In Vitro 6-DOFs Electrogoniometry and CT Medical Imaging,” J. Biomech., 39(11), pp. 2087–2095. [CrossRef] [PubMed]
Zheng, L. , Li, K. , Shetye, S. , and Zhang, X. , 2014, “ Integrating Dynamic Stereo-Radiography and Surface-Based Motion Data for Subject-Specific Musculoskeletal Dynamic Modeling,” J. Biomech., 47(12), pp. 3217–3221. [CrossRef] [PubMed]
Andersen, M. S. , Benoit, D. L. , Damsgaard, M. , Ramsey, D. K. , and Rasmussen, J. , 2010, “ Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? an In Vivo Study of Knee Kinematics,” J. Biomech., 43(2), pp. 268–273. [CrossRef] [PubMed]
Ehrig, R. M. , Taylor, W. R. , Duda, G. N. , and Heller, M. O. , 2006, “ A Survey of Formal Methods for Determining the centre of Rotation of Ball Joints,” J. Biomech., 39(15), pp. 2798–2809. [CrossRef] [PubMed]
Ehrig, R. M. , Taylor, W. R. , Duda, G. N. , and Heller, M. O. , 2007, “ A Survey of Formal Methods for Determining Functional Joint Axes,” J. Biomech., 40(10), pp. 2150–2157. [CrossRef] [PubMed]
Mokhtarzadeh, H. , Perraton, L. , Fok, L. , Muñoz, M. A. , Clark, R. , Pivonka, P. , and Bryant, A. L. , 2014, “ A Comparison of Optimisation Methods and Knee Joint Degrees of Freedom on Muscle Force Predictions During Single-Leg Hop Landings,” J. Biomech., 47(12), pp. 2863–2868. [CrossRef] [PubMed]
Valente, G. , Pitto, L. , Testi, D. , Seth, A. , Delp, S. L. , Stagni, R. , Viceconti, M. , and Taddei, F. , 2014, “ Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?,” PLoS One, 9(11), p. e112625. [CrossRef] [PubMed]
Kalman, R. E. , 1960, “ A New Approach to Linear Filtering and Prediction Problems,” ASME J. Basic Eng., 82(1), pp. 35–45. [CrossRef]
Haykin, S. , ed., 2001, Kalman Filtering and Neural Networks, Wiley, New York. [CrossRef]
Lisco, G. , Pastorelli, S. , and Gastaldi, L. , 2016, “ Application of a Functional Method for Subject and Motion Specific Joints Kinematics During Walking,” Int. J. Appl. Eng. Res., 11(11), pp. 7588–7591. https://www.ripublication.com/ijaer16/ijaerv11n11_65.pdf
Kun, L. , Inoue, Y. , Shibata, K. , and Enguo, C. , 2011, “ Ambulatory Estimation of Knee-Joint Kinematics in Anatomical Coordinate System Using Accelerometers and Magnetometers,” IEEE Trans. Biomed. Eng., 58(2), pp. 435–442. [CrossRef] [PubMed]
Bélaise, C. , Blache, Y. , Thouzé, A. , Monnet, T. , and Begon, M. , 2016, “ Effect of Wobbling Mass Modeling on Joint Dynamics During Human Movements With Impacts,” Multibody Syst. Dyn., 38(4), pp. 345–366. [CrossRef]
Pain, M. T. , and Challis, J. H. , 2006, “ The Influence of Soft Tissue Movement on Ground Reaction Forces, Joint Torques and Joint Reaction Forces in Drop Landings,” J. Biomech., 39(1), pp. 119–124. [CrossRef] [PubMed]
Halvorsen, K. , Söderström, T. , Stokes, V. , and Lanshammar, H. , 2004, “ Using an Extended Kalman Filter for Rigid Body Pose Estimation,” ASME J. Biomech. Eng., 127(3), pp. 475–483. [CrossRef]
Tondu, B. , 2007, “ Estimating Shoulder-Complex Mobility,” Appl. Bionics Biomech., 4(1), pp. 104–112. [CrossRef]
Yang, J. , Feng, X. , Kim, J. H. , and Rajulu, S. , 2010, “ Review of Biomechanical Models for Human Shoulder Complex,” Int. J. Hum. Factors Modell. Simul., 1(3), pp. 271–293. [CrossRef]
Benoit, D. L. , Damsgaard, M. , and Andersen, M. S. , 2015, “ Surface Marker Cluster Translation, Rotation, Scaling and Deformation: Their Contribution to Soft Tissue Artefact and Impact on Knee Joint Kinematics,” J. Biomech., 48(10), pp. 2124–2129. [CrossRef] [PubMed]
Dumas, R. , Camomilla, V. , Bonci, T. , Chèze, L. , and Cappozzo, A. , 2015, “ What Portion of the Soft Tissue Artefact Requires Compensation When Estimating Joint Kinematics?,” ASME J. Biomech. Eng., 137(6), p. 064502. [CrossRef]
Bonci, T. , Camomilla, V. , Dumas, R. , Chèze, L. , and Cappozzo, A. , 2014, “ A Soft Tissue Artefact Model Driven by Proximal and Distal Joint Kinematics,” J. Biomech., 47(10), pp. 2354–2361. [CrossRef] [PubMed]
Camomilla, V. , Bonci, T. , Dumas, R. , Chèze, L. , and Cappozzo, A. , 2015, “ A Model of the Soft Tissue Artefact Rigid Component,” J. Biomech., 48(10), pp. 1752–1759. [CrossRef] [PubMed]
Michaud, B. , Jackson, M. , Arndt, A. , Lundberg, A. , and Begon, M. , 2016, “ Determining In Vivo Sternoclavicular, Acromioclavicular and Glenohumeral Joint centre Locations From Skin Markers, CT-Scans and Intracortical Pins: A Comparison Study,” Med. Eng. Phys., 38(3), pp. 290–296. [CrossRef] [PubMed]
Pataky, T. C. , 2012, “ One-Dimensional Statistical Parametric Mapping in Python,” Comput. Methods Biomech. Biomed. Eng., 15(3), pp. 295–301. [CrossRef]
Cereatti, A. , Bonci, T. , Akbarshahi, M. , Aminian, K. , Barre, A. , Begon, M. , Benoit, D. L. , Charbonnier, C. , Dal Maso, F. , Fantozzi, S. , Lin, C. C. , Lu, T. W. , Pandy, M. G. , Stagni, R. , van den Bogert, A. J. , and Camomilla, V. , 2017, “ Standardization Proposal of Soft Tissue Artefact Description for Data Sharing in Human Motion Measurements,” J. Biomech., 62, pp. 5–13. [CrossRef] [PubMed]
Bland, J. , and Altman, D. G. , 1986, “ Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement,” Lancet, 327(8476), pp. 307–310. [CrossRef]
Cleather, D. J. , and Bull, A. M. J. , 2011, “ Knee and Hip Joint Forces – Sensitivity to the Degrees of Freedom Classification at the Knee,” Proc. Inst. Mech. Eng. Part H, 225(6), pp. 621–626. [CrossRef]
Dumas, R. , Moissenet, F. , Gasparutto, X. , and Cheze, L. , 2012, “ Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait,” Proc. Inst. Mech. Eng. Part H, 226(2), pp. 146–160. [CrossRef]
Glitsch, U. , and Baumann, W. , 1997, “ The Three-Dimensional Determination of Internal Loads in the Lower Extremity,” J. Biomech., 30(11), pp. 1123–1131. [CrossRef] [PubMed]
Hicks, J. L. , Uchida, T. K. , Seth, A. , Rajagopal, A. , and Delp, S. L. , 2015, “ Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement,” ASME J. Biomech. Eng., 137(2), p. 020905. [CrossRef]
Lund, M. E. , de Zee, M. , Andersen, M. S. , and Rasmussen, J. , 2012, “ On Validation of Multibody Musculoskeletal Models,” Proc. Inst. Mech. Eng. Part H, 226(2), pp. 82–94. [CrossRef]

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In