0
Review Article

Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions

[+] Author and Article Information
Elizabeth Fievisohn

Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
440 Kelly Hall, 325 Stanger Street,
Blacksburg, VA 24061
e-mail: lizf87@vt.edu

Zachary Bailey

Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
440 Kelly Hall, 325 Stanger Street,
Blacksburg, VA 24061
e-mail: zbailey2@vt.edu

Allison Guettler

Department of Mechanical Engineering,
Virginia Tech,
440 Kelly Hall, 325 Stanger Street,
Blacksburg, VA 24061
e-mail: aguett@vt.edu

Pamela VandeVord

Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
317 Kelly Hall, 325 Stanger Street,
Blacksburg, VA 24061;
Salem Veterans Affairs Medical Center,
Salam, VA 24153
e-mail: pvord@vt.edu

1Corresponding author.

Manuscript received July 8, 2017; final manuscript received November 17, 2017; published online January 12, 2018. Assoc. Editor: Beth A. Winkelstein.

J Biomech Eng 140(2), 020806 (Jan 12, 2018) (12 pages) Paper No: BIO-17-1299; doi: 10.1115/1.4038710 History: Received July 08, 2017; Revised November 17, 2017

Mild blast traumatic brain injury (bTBI) accounts for the majority of brain injury in United States service members and other military personnel worldwide. The mechanisms of primary blast brain injury continue to be disputed with little evidence to support one or a combination of theories. The main hypotheses addressed in this review are blast wave transmission through the skull orifices, direct cranial transmission, skull flexure dynamics, thoracic surge, acceleration, and cavitation. Each possible mechanism is discussed using available literature with the goal of focusing research efforts to address the limitations and challenges that exist in blast injury research. Multiple mechanisms may contribute to the pathology of bTBI and could be dependent on magnitudes and orientation to blast exposure. Further focused biomechanical investigation with cadaver, in vivo, and finite element models would advance our knowledge of bTBI mechanisms. In addition, this understanding could guide future research and contribute to the greater goal of developing relevant injury criteria and mandates to protect our soldiers on the battlefield.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Owens, B. D. , Kragh , J. F., Jr ., Wenke, J. C. , Macaitis, J. , Wade, C. E. , and Holcomb, J. B. , 2008, “ Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom,” J. Trauma Acute Care Surg., 64(2), pp. 295–299. [CrossRef]
Jones, E. , Fear, N. T. , and Wessely, S. , 2007, “ Shell Shock and Mild Traumatic Brain Injury: A Historical Review,” Am. J. Psychiatry, 164(11), pp. 1641–1645. [CrossRef] [PubMed]
Belmont , P. J., Jr. , Goodman, G. P. , Zacchilli, M. , Posner, M. , Evans, C. , and Owens, B. D. , 2010, “ Incidence and Epidemiology of Combat Injuries Sustained During ‘the Surge’ Portion of Operation Iraqi Freedom by a U.S. Army Brigade Combat Team,” J. Trauma Acute Care Surg., 68(1), pp. 204–210. [CrossRef]
Warden, D. , 2006, “ Military TBI During the Iraq and Afghanistan Wars,” J. Head Trauma Rehabil., 21(5), pp. 398–402. [CrossRef] [PubMed]
DVBIC, 2016, “Department of Defense Numbers for Traumatic Brain Injury Worldwide Totals: 2000-2016,” Defense and Veterans Brain Injury Center, Silver Spring, MD, accessed Dec. 21, 2017, https://www.biami.org/wp-content/uploads/2017/09/DoD-TBI-Worldwide-Totals_2000-2016_Feb-17-2017_v1.0_2017-04-06.pdf
Wilk, J. E. , Thomas, J. L. , McGurk, D. M. , Riviere, L. A. , Castro, C. A. , and Hoge, C. W. , 2010, “ Mild Traumatic Brain Injury (Concussion) During Combat: Lack of Association of Blast Mechanism With Persistent Postconcussive Symptoms,” J. Head Trauma Rehabil., 25(1), pp. 9–14. [CrossRef] [PubMed]
Hoge, C. W. , McGurk, D. , Thomas, J. L. , Cox, A. L. , Engel, C. C. , and Castro, C. A. , 2008, “ Mild Traumatic Brain Injury in U.S. Soldiers Returning From Iraq,” N. Engl. J. Med., 358(5), pp. 453–463. [CrossRef] [PubMed]
Elder, G. A. , Mitsis, E. M. , Ahlers, S. T. , and Cristian, A. , 2010, “ Blast-Induced Mild Traumatic Brain Injury,” Psychiatr. Clin. North Am., 33(4), pp. 757–781. [CrossRef] [PubMed]
Hoffman, S. W. , and Harrison, C. , 2009, “ The Interaction Between Psychological Health and Traumatic Brain Injury: A Neuroscience Perspective,” Clin. Neuropsychol., 23(8), pp. 1400–1415. [CrossRef] [PubMed]
Morey, R. A. , Haswell, C. C. , Selgrade, E. S. , Massoglia, D. , Liu, C. , Weiner, J. , Marx, C. E. , Cernak, I. , and McCarthy, G. , 2013, “ Effects of Chronic Mild Traumatic Brain Injury on White Matter Integrity in Iraq and Afghanistan War Veterans,” Hum. Brain Mapp., 34(11), pp. 2986–2999. [CrossRef] [PubMed]
Cernak, I. , and Noble-Haeusslein, L. J. , 2010, “ Traumatic Brain Injury: An Overview of Pathobiology With Emphasis on Military Populations,” J. Cereb. Blood Flow Metab., 30(2), pp. 255–266. [CrossRef] [PubMed]
Belanger, H. G. , Kretzmer, T. , Yoash-Gantz, R. , Pickett, T. , and Tupler, L. A. , 2009, “ Cognitive Sequelae of Blast-Related Versus Other Mechanisms of Brain Trauma,” J. Int. Neuropsychol. Soc., 15(1), pp. 1–8. [CrossRef] [PubMed]
MacGregor, A. J. , Dougherty, A. L. , and Galarneau, M. R. , 2011, “ Injury-Specific Correlates of Combat-Related Traumatic Brain Injury in Operation Iraqi Freedom,” J. Head Trauma Rehabil., 26(4), pp. 312–318. [CrossRef] [PubMed]
Bilmes, L. , and Stiglitz, J. , 2006, “The Economic Costs of the Iraq War: An Appraisal Three Years After the Beginning of the Conflict,” National Bureau of Economic Research, Cambridge, MA, Paper No. 12054. http://www.nber.org/papers/w12054
Wolf, S. J. , Bebarta, V. S. , Bonnett, C. J. , Pons, P. T. , and Cantrill, S. V. , 2009, “ Blast Injuries,” Lancet, 374(9687), pp. 405–415. [CrossRef] [PubMed]
Hadden, W. , Rutherford, W. H. , and Merrett, J. , 1978, “ The Injuries of Terrorist Bombing: A Study of 1532 Consecutive Patients,” Br. J. Surg., 65(8), pp. 525–531. [CrossRef] [PubMed]
Brismar, B. , and Bergenwald, L. , 1982, “ The Terrorist Bomb Explosion in Bologna, Italy, 1980: An Analysis of the Effects and Injuries Sustained,” J. Trauma Acute Care Surg., 22(3), pp. 216–220. [CrossRef]
Cooper, G. J. , Maynard, R. L. , Cross, N. L. , and Hill, J. F. , 1983, “ Casualties From Terrorist Bombings,” J. Trauma Acute Care Surg., 23(11), pp. 955–967. [CrossRef]
Frykberg, E. R. , and Tepas 3rd, J. , 1988, “ Terrorist Bombings. Lessons Learned From Belfast to Beirut,” Ann. Surg., 208(5), pp. 569–576. [CrossRef] [PubMed]
Katz, E. , Ofek, B. , Adler, J. , Abramowitz, H. B. , and Krausz, M. M. , 1989, “ Primary Blast Injury After a Bomb Explosion in a Civilian Bus,” Ann. Surg., 209(4), pp. 484–488. [CrossRef] [PubMed]
Arun, P. , Abu-Taleb, R. , Oguntayo, S. , Tanaka, M. , Wang, Y. , Valiyaveettil, M. , Long, J. B. , Zhang, Y. , and Nambiar, M. P. , 2013, “ Distinct Patterns of Expression of Traumatic Brain Injury Biomarkers After Blast Exposure: Role of Compromised Cell Membrane Integrity,” Neurosci. Lett., 552, pp. 87–91. [CrossRef] [PubMed]
Bailey, Z. S. , Grinter, M. B. , and VandeVord, P. J. , 2016, “ Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation,” Front. Mol. Neurosci., 9, p. 64.
Kovesdi, E. , Kamnaksh, A. , Wingo, D. , Ahmed, F. , Grunberg, N. E. , Long, J. B. , Kasper, C. E. , and Agoston, D. V. , 2012, “ Acute Minocycline Treatment Mitigates the Symptoms of Mild Blast-Induced Traumatic Brain Injury,” Front. Neurol., 3, p. 11.
VandeVord, P. J. , Bolander, R. , Sajja, V. S. , Hay, K. , and Bir, C. A. , 2012, “ Mild Neurotrauma Indicates a Range-Specific Pressure Response to Low Level Shock Wave Exposure,” Ann. Biomed. Eng., 40(1), pp. 227–236. [CrossRef] [PubMed]
VandeVord, P. J. , Leung, L. Y. , Hardy, W. , Mason, M. , Yang, K. H. , and King, A. I. , 2008, “ Up-Regulation of Reactivity and Survival Genes in Astrocytes After Exposure to Short Duration Overpressure,” Neurosci. Lett., 434(3), pp. 247–252. [CrossRef] [PubMed]
Cho, H. J. , Sajja, V. S. , Vandevord, P. J. , and Lee, Y. W. , 2013, “ Blast Induces Oxidative Stress, Inflammation, Neuronal Loss and Subsequent Short-Term Memory Impairment in Rats,” J. Neurosci., 253, pp. 9–20. [CrossRef]
Sajja, V. S. , Galloway, M. , Ghoddoussi, F. , Kepsel, A. , and VandeVord, P. , 2013, “ Effects of Blast-Induced Neurotrauma on the Nucleus Accumbens,” J. Neurosci. Res., 91(4), pp. 593–601. [CrossRef] [PubMed]
Sajja, V. S. , Galloway, M. P. , Ghoddoussi, F. , Thiruthalinathan, D. , Kepsel, A. , Hay, K. , Bir, C. A. , and VandeVord, P. J. , 2012, “ Blast-Induced Neurotrauma Leads to Neurochemical Changes and Neuronal Degeneration in the Rat Hippocampus,” NMR in Biomed, 25(12), pp. 1331–1339. [CrossRef]
Saljo, A. , Bao, F. , Hamberger, A. , Haglid, K. G. , and Hansson, H. A. , 2001, “ Exposure to Short-Lasting Impulse Noise Causes Microglial and Astroglial Cell Activation in the Adult Rat Brain,” Pathophysiology, 8(2), pp. 105–111. [CrossRef] [PubMed]
Svetlov, S. I. , Prima, V. , Kirk, D. R. , Gutierrez, H. , Curley, K. C. , Hayes, R. L. , and Wang, K. K. , 2010, “ Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast Overpressure Exposure,” J. Trauma, 69(4), pp. 795–804. [CrossRef] [PubMed]
Kaur, C. , Singh, J. , Lim, M. K. , Ng, B. L. , and Ling, E. A. , 1997, “ Macrophages/Microglia as ‘Sensors’ of Injury in the Pineal Gland of Rats Following a Non-Penetrative Blast,” Neurosci. Res., 27(4), pp. 317–322. [CrossRef] [PubMed]
Agoston, D. V. , and Kamnaksh, A. , 2015, “ Modeling the Neurobehavioral Consequences of Blast-Induced Traumatic Brain Injury Spectrum Disorder and Identifying Related Biomarkers,” Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, F. H. Kobeissy, ed., CRC Press, Boca Raton, FL. [CrossRef]
Sajja, V. S. , Hubbard, W. B. , Hall, C. S. , Ghoddoussi, F. , Galloway, M. P. , and VandeVord, P. J. , 2015, “ Enduring Deficits in Memory and Neuronal Pathology After Blast-Induced Traumatic Brain Injury,” Sci. Rep., 5, p. 15075.
Saljo, A. , Svensson, B. , Mayorga, M. , Hamberger, A. , and Bolouri, H. , 2009, “ Low-Level Blasts Raise Intracranial Pressure and Impair Cognitive Function in Rats,” J. Neurotrauma, 26(8), pp. 1345–1352. [CrossRef] [PubMed]
Sajja, V. S. , Perrine, S. A. , Ghoddoussi, F. , Hall, C. S. , Galloway, M. P. , and VandeVord, P. J. , 2014, “ Blast Neurotrauma Impairs Working Memory and Disrupts Prefrontal Myo-Inositol Levels in Rats,” Mol. Cell Neurosci., 59, pp. 119–126. [CrossRef] [PubMed]
Gilbert, F. K. , and Kenneth, J. , 1985, Explosive Shocks in Air, 2nd Sub ed., Springer, New York.
Needham, C. E. , 2010, “ The Rankine–Hugoniot Relations,” Blast Waves, Springer, Berlin, pp. 9–15.
Leonardi, A. D. , Bir, C. A. , Ritzel, D. V. , and VandeVord, P. J. , 2011, “ Intracranial Pressure Increases During Exposure to a Shock Wave,” J. Neurotrauma, 28(1), pp. 85–94. [CrossRef] [PubMed]
Leonardi, A. D. C. , Keane, N. J. , Bir, C. A. , Ryan, A. G. , Xu, L. , and VandeVord, P. J. , 2012, “ Head Orientation Affects the Intracranial Pressure Response Resulting From Shock Wave Loading in the Rat,” J. Biomech., 45(15), pp. 2595–2602. [CrossRef] [PubMed]
Leonardi, A. D. C. , Keane, N. J. , Hay, K. , Ryan, A. G. , Bir, C. A. , and VandeVord, P. J. , 2013, “ Methodology and Evaluation of Intracranial Pressure Response in Rats Exposed to Complex Shock Waves,” Ann. Biomed. Eng., 41(12), pp. 2488–2500. [CrossRef] [PubMed]
Bauman, R. A. , Ling, G. , Tong, L. , Januszkiewicz, A. , Agoston, D. , Delanerolle, N. , Kim, Y. , Ritzel, D. , Bell, R. , Ecklund, J. , Armonda, R. , Bandak, F. , and Parks, S. , 2009, “ An Introductory Characterization of a Combat-Casualty-Care Relevant Swine Model of Closed Head Injury Resulting From Exposure to Explosive Blast,” J. Neurotrauma, 26(6), pp. 841–860. [CrossRef] [PubMed]
Bolander, R. , Mathie, B. , Bir, C. , Ritzel, D. , and VandeVord, P. , 2011, “ Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave,” Ann. Biomed. Eng., 39(10), p. 2550. [CrossRef] [PubMed]
Clemedson, C. J. , 1956, “ Blast Injury,” Physiol. Rev., 36(3), pp. 336–354. https://www.ncbi.nlm.nih.gov/pubmed/13359127/ [PubMed]
Choi, C.-H. , 2012, “ Mechanisms and Treatment of Blast Induced Hearing Loss,” Korean J. Audiol., 16(3), p. 103. [CrossRef] [PubMed]
Shupak, A. , Doweck, I. , Nachtigal, D. , Spitzer, O. , and Gordon, C. R. , 1993, “ Vestibular and Audiometric Consequences of Blast Injury to the Ear,” Arch. Otolaryngol. Head Neck Surg., 119(12), pp. 1362–1367. [CrossRef] [PubMed]
Ballivet de Regloix, S. , Crambert, A. , Maurin, O. , Lisan, Q. , Marty, S. , and Pons, Y. , 2017, “ Blast Injury of the Ear by Massive Explosion: A Review of 41 Cases,” J. R. Army Med. Corps, 163(5), pp. 333–338. [CrossRef] [PubMed]
Qureshi, T. A. , Awan, M. S. , Hassan, N. H. , Aftab, A. H. , and Ali, S. A. , 2017, “ Effects of Bomb Blast Injury on the Ears: The Aga Khan University Hospital Experience,” J. Pak. Med. Assoc., 67(9), pp. 1313–1317. https://www.ncbi.nlm.nih.gov/pubmed/28924266 [PubMed]
Mao, J. C. , Pace, E. , Pierozynski, P. , Kou, Z. , Shen, Y. , VandeVord, P. , Haacke, E. M. , Zhang, X. , and Zhang, J. , 2012, “ Blast-Induced Tinnitus and Hearing Loss in Rats: Behavioral and Imaging Assays,” J. Neurotrauma, 29(2), pp. 430–444. [CrossRef] [PubMed]
Perlman, H. B. , 1945, “ Reaction of the Human Conduction Mechanism to Blast,” Laryngoscope, 55(8), pp. 427–443. [CrossRef]
Akula, P. , Hua, Y. , and Gu, L. , 2015, “ Blast-Induced Mild Traumatic Brain Injury Through Ear Canal: A Finite Element Study,” Biomed. Eng. Lett., 5(4), pp. 281–288. [CrossRef]
Shuker, S. T. , 2010, “ Maxillofacial Air-Containing Cavities, Blast Implosion Injuries, and Management,” J. Oral Maxillofac. Surg., 68(1), pp. 93–100. [CrossRef] [PubMed]
Haxel, B. R. , Grant, L. , and Mackay-Sim, A. , 2008, “ Olfactory Dysfunction after Head Injury,” J. Head Trauma Rehabil., 23(6), pp. 407–413. [CrossRef] [PubMed]
Xydakis, M. S. , Mulligan, L. P. , Smith, A. B. , Olsen, C. H. , Lyon, D. M. , and Belluscio, L. , 2015, “ Olfactory Impairment and Traumatic Brain Injury in Blast-Injured Combat Troops a Cohort Study,” Neurology, 84(15), pp. 1559–1567. [CrossRef] [PubMed]
Akula, P. K. , Hua, Y. , and Gu, L. , 2013, “ Role of Frontal Sinus on Primary Blast-Induced Traumatic Brain Injury,” ASME J. Med. Device, 7(3), p. 030925. [CrossRef]
Morley, M. G. , Nguyen, J. K. , Heier, J. S. , Shingleton, B. J. , Pasternak, J. F. , and Bower, K. S. , 2010, “ Blast Eye Injuries: A Review for First Responders,” Disaster Med. Public Health Prep., 4(2), pp. 154–160. [CrossRef] [PubMed]
DeMar, J. , Sharrow, K. , Hill, M. , Berman, J. , Oliver, T. , and Long, J. , 2016, “ Effects of Primary Blast Overpressure on Retina and Optic Tract in Rats,” Front. Neurol., 7, p. 59. [CrossRef] [PubMed]
Petras, J. , Bauman, R. A. , and Elsayed, N. M. , 1997, “ Visual System Degeneration Induced by Blast Overpressure,” Toxicology, 121(1), pp. 41–49. [CrossRef] [PubMed]
Koliatsos, V. E. , Cernak, I. , Xu, L. , Song, Y. , Savonenko, A. , Crain, B. J. , Eberhart, C. G. , Frangakis, C. E. , Melnikova, T. , and Kim, H. , 2011, “ A Mouse Model of Blast Injury to Brain: Initial Pathological, Neuropathological, and Behavioral Characterization,” J. Neuropathol. Exp. Neurol., 70(5), pp. 399–416. [CrossRef] [PubMed]
Wang, H.-C. H. , Choi, J.-H. , Greene, W. A. , Plamper, M. L. , Cortez, H. E. , Chavko, M. , Li, Y. , Dalle Lucca, J. J. , and Johnson, A. J. , 2014, “ Pathophysiology of Blast-Induced Ocular Trauma With Apoptosis in the Retina and Optic Nerve,” Mil. Med., 179(8S), pp. 34–40. [CrossRef] [PubMed]
Choi, J. H. , Greene, W. A. , Johnson, A. J. , Chavko, M. , Cleland, J. M. , McCarron, R. M. , and Wang, H. C. , 2015, “ Pathophysiology of Blast‐Induced Ocular Trauma in Rats After Repeated Exposure to Low‐Level Blast Overpressure,” Clin. Exp. Ophthalmol., 43(3), pp. 239–246. [CrossRef] [PubMed]
Williams, S. T. , Harding, T. H. , Statz, J. K. , and Martin, J. S. , 2017, “ Blast Wave Dynamics at the Cornea as a Function of Eye Protection Form and Fit,” Mil. Med., 182(S1), pp. 226–229. [CrossRef] [PubMed]
Weichel, E. D. , Colyer, M. H. , Bautista, C. , Bower, K. S. , and French, L. M. , 2009, “ Traumatic Brain Injury Associated With Combat Ocular Trauma,” J. Head Trauma Rehabil., 24(1), pp. 41–50. [CrossRef] [PubMed]
Azhari, H. , 2010, “ Appendix A: Typical Acoustic Properties of Tissues,” Basics of Biomedical Ultrasound for Engineers, Wiley, Hoboken, NJ, pp. 313–314. [CrossRef]
Bushberg, J. T. , and Boone, J. M. , 2011, The Essential Physics of Medical Imaging, Lippincott Williams & Wilkins, Philadelphia, PA. [PubMed] [PubMed]
Pinton, G. , Aubry, J. F. , Bossy, E. , Muller, M. , Pernot, M. , and Tanter, M. , 2012, “ Attenuation, Scattering, and Absorption of Ultrasound in the Skull Bone,” Med. Phys., 39(1), pp. 299–307. [CrossRef] [PubMed]
Clemedson, C.-J. , and Pettersson, H. , 1956, “ Propagation of a High Explosive Air Shock Wave Through Different Parts of an Animal Body,” Am. J. Physiol., 184(1), pp. 119–126. https://www.ncbi.nlm.nih.gov/pubmed/13283101 [PubMed]
Saljo, A. , Arrhen, F. , Bolouri, H. , Mayorga, M. , and Hamberger, A. , 2008, “ Neuropathology and Pressure in the Pig Brain Resulting From Low-Impulse Noise Exposure,” J. Neurotrauma, 25(12), pp. 1397–1406. [CrossRef] [PubMed]
Chavko, M. , Watanabe, T. , Adeeb, S. , Lankasky, J. , Ahlers, S. T. , and McCarron, R. M. , 2011, “ Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain,” J. Neurosci. Methods, 195(1), pp. 61–66. [CrossRef] [PubMed]
Kuehn, R. , Simard, P. F. , Driscoll, I. , Keledjian, K. , Ivanova, S. , Tosun, C. , Williams, A. , Bochicchio, G. , Gerzanich, V. , and Simard, J. M. , 2011, “ Rodent Model of Direct Cranial Blast Injury,” J. Neurotrauma, 28(10), pp. 2155–2169. [CrossRef] [PubMed]
Nyein, M. K. , Jason, A. M. , Yu, L. , Pita, C. M. , Joannopoulos, J. D. , Moore, D. F. , and Radovitzky, R. A. , 2010, “ In Silico Investigation of Intracranial Blast Mitigation With Relevance to Military Traumatic Brain Injury,” Proc. Natl. Acad. Sci., 107(48), pp. 20703–20708. [CrossRef]
Selvan, V. , Ganpule, S. , Kleinschmit, N. , and Chandra, N. , 2013, “ Blast Wave Loading Pathways in Heterogeneous Material Systems-Experimental and Numerical Approaches,” ASME J. Biomech. Eng., 135(6), pp. 61002–61014. [CrossRef]
Zhu, F. , Wagner, C. , Dal Cengio Leonardi, A. , Jin, X. , VandeVord, P. , Chou, C. , Yang, K. H. , and King, A. I. , 2012, “ Using a Gel/Plastic Surrogate to Study the Biomechanical Response of the Head Under Air Shock Loading: A Combined Experimental and Numerical Investigation,” Biomech. Model. Mechanobiol., 11(3), pp. 341–353. [CrossRef] [PubMed]
Moss, W. C. , King, M. J. , and Blackman, E. G. , 2009, “ Skull Flexure From Blast Waves: A Mechanism for Brain Injury With Implications for Helmet Design,” Phys. Rev. Lett., 103(10), p. 108702. [CrossRef] [PubMed]
Sajja, V. S. , Ereifej, E. S. , and VandeVord, P. J. , 2014, “ Hippocampal Vulnerability and Subacute Response Following Varied Blast Magnitudes,” Neurosci. Lett., 570, pp. 33–37. [CrossRef] [PubMed]
Kamnaksh, A. , Kovesdi, E. , Kwon, S. K. , Wingo, D. , Ahmed, F. , Grunberg, N. E. , Long, J. , and Agoston, D. V. , 2011, “ Factors Affecting Blast Traumatic Brain Injury,” J. Neurotrauma, 28(10), pp. 2145–2153. [CrossRef] [PubMed]
Kamnaksh, A. , Budde, M. D. , Kovesdi, E. , Long, J. B. , Frank, J. A. , and Agoston, D. V. , 2014, “ Diffusion Tensor Imaging Reveals Acute Subcortical Changes After Mild Blast-Induced Traumatic Brain Injury,” Sci. Rep., 4, p. 4809. [CrossRef] [PubMed]
Davenport, N. D. , Lim, K. O. , Armstrong, M. T. , and Sponheim, S. R. , 2012, “ Diffuse and Spatially Variable White Matter Disruptions Are Associated With Blast-Related Mild Traumatic Brain Injury,” Neuroimage, 59(3), pp. 2017–2024. [CrossRef] [PubMed]
Petrie, E. C. , Cross, D. J. , Yarnykh, V. L. , Richards, T. , Martin, N. M. , Pagulayan, K. , Hoff, D. , Hart, K. , Mayer, C. , and Tarabochia, M. , 2014, “ Neuroimaging, Behavioral, and Psychological Sequelae of Repetitive Combined Blast/Impact Mild Traumatic Brain Injury in Iraq and Afghanistan War Veterans,” J. Neurotrauma, 31(5), pp. 425–436. [CrossRef] [PubMed]
Ware, J. B. , Biester, R. C. , Whipple, E. , Robinson, K. M. , Ross, R. J. , and Nucifora, P. G. , 2016, “ Combat-Related Mild Traumatic Brain Injury: Association Between Baseline Diffusion-Tensor Imaging Findings and Long-Term Outcomes,” Radiology, 280(1), pp. 212–219. [CrossRef] [PubMed]
Romba, J. , and Martin, P. , 1961, “The Propagation of Air Shock Waves on a Biophysical Model,” Aberdeen Proving Ground, Aberdeen, MA, Technical Memorandum No. 17-61. http://www.dtic.mil/dtic/tr/fulltext/u2/264932.pdf
Tan, L. B. , Tse, K. M. , Tan, Y. H. , Sapingi, M. A. B. , Tan, V. B. C. , and Lee, H. P. , 2017, “ Face Shield Design Against Blast‐Induced Head Injuries,” Int. J. Numer. Method Biomed. Eng., 33(12), pp. 1–17.
Alley, M. D. , Schimizze, B. R. , and Son, S. F. , 2011, “ Experimental Modeling of Explosive Blast-Related Traumatic Brain Injuries,” Neuroimage, 54(Suppl. 1), pp. S45–S54. [CrossRef] [PubMed]
Engin, A. E. , 1969, “ The Axisymmetric Response of a Fluid-Filled Spherical Shell to a Local Radial Impulse—A Model for Head Injury,” J. Biomech., 2(3), pp. 325–341. [CrossRef] [PubMed]
Kwon, Y. W. , and Fox, P. K. , 1993, “ Underwater Shock Response of a Cylinder Subjected to a Side-On Explosion,” Comput. Struct., 48(4), pp. 637–646. [CrossRef]
Wani, I. , Parray, F. Q. , Sheikh, T. , Wani, R. A. , Amin, A. , Gul, I. , and Nazir, M. , 2009, “ Spectrum of Abdominal Organ Injury in a Primary Blast Type,” World J. Emerg. Surg., 4, p. 46. [CrossRef] [PubMed]
Johnston, A. M. , and Ballard, M. , 2015, “ Primary Blast Lung Injury,” Am. J. Respir. Crit. Care Med., 191(12), pp. 1462–1463. [CrossRef] [PubMed]
Aschkenasy-Steuer, G. , Shamir, M. , Rivkind, A. , Mosheiff, R. , Shushan, Y. , Rosenthal, G. , Mintz, Y. , Weissman, C. , Sprung, C. L. , and Weiss, Y. G. , 2005, “ Clinical Review: The Israeli Experience: Conventional Terrorism and Critical Care,” Crit. Care, 9(5), pp. 490–499. [CrossRef] [PubMed]
Smith, J. E. , 2011, “ The Epidemiology of Blast Lung Injury During Recent Military Conflicts: A Retrospective Database Review of Cases Presenting to Deployed Military Hospitals, 2003–2009,” Philos. Trans. R. Soc. London B, 366(1562), pp. 291–294. [CrossRef]
Owers, C. , Morgan, J. L. , and Garner, J. P. , 2011, “ Abdominal Trauma in Primary Blast Injury,” B. J. Surg., 98(2), pp. 168–179. [CrossRef]
Goldberg, M. S. , 2010, “ Death and Injury Rates of U.S. Military Personnel in Iraq,” Mil. Med., 175(4), pp. 220–226. [CrossRef] [PubMed]
Breeze, A. , and Gibbons, A. J. , 2011, “ The Face of War: The Initial Management of Modern Battlefield Ballistic Facial Injuries,” J. Mil. Veterans Health, 19(2), pp. 15–18. http://jmvh.org/article/the-face-of-war-the-initial-management-of-modern-battlefield-ballistic-facial-injuries/
Borden Institute, Office of the Surgeon General, 2013, “ Abdominal Injuries,” Emergency War Surgery—4th United States Revision, M. A. Cubano and M. K. Lenhart , eds., Government Printing Office, Fort Sam Houston, San Antonio, TX, pp. 257–275.
Wood, G. W. , Panzer, M. B. , Shridharani, J. K. , Matthews, K. A. , Capehart, B. P. , Myers, B. S. , and Bass, C. R. , 2013, “ Attenuation of Blast Pressure Behind Ballistic Protective Vests,” Inj. Prev., 19(1), pp. 19–25. [CrossRef] [PubMed]
Hosseini, H. , Moosavi-Nejad, S. , Akiyama, H. , and Menezes, V. , 2014, “ Shock Wave Interaction With Interfaces Between Materials Having Different Acoustic Impedances,” Appl. Phys. Lett., 104(10), p. 103701. [CrossRef]
Vrselja, Z. , Brkic, H. , Mrdenovic, S. , Radic, R. , and Curic, G. , 2014, “ Function of Circle of Willis,” J. Cereb. Blood Flow Metab., 34(4), pp. 578–584. [CrossRef] [PubMed]
Adams, S. , Condrey, J. A. , Tsai, H.-W. , Svetlov, S. I. , and Davenport, P. W. , 2014, “ Respiratory Responses Following Blast-Induced Traumatic Brain Injury in Rats,” Respir. Physiol. Neurobiol., 1, pp. 112–119. [CrossRef]
Gama Sosa, M. A. , De Gasperi, R. , Janssen, P. L. , Yuk, F. J. , Anazodo, P. C. , Pricop, P. E. , Paulino, A. J. , Wicinski, B. , Shaughness, M. C. , Maudlin-Jeronimo, E. , Hall, A. A. , Dickstein, D. L. , McCarron, R. M. , Chavko, M. , Hof, P. R. , Ahlers, S. T. , and Elder, G. A. , 2014, “ Selective Vulnerability of the Cerebral Vasculature to Blast Injury in a Rat Model of Mild Traumatic Brain Injury,” Acta Neuropathol. Commun., 2, p. 67. [CrossRef] [PubMed]
Abdul-Muneer, P. M. , Schuetz, H. , Wang, F. , Skotak, M. , Jones, J. , Gorantla, S. , Zimmerman, M. C. , Chandra, N. , and Haorah, J. , 2013, “ Induction of Oxidative and Nitrosative Damage Leads to Cerebrovascular Inflammation in an Animal Model of Mild Traumatic Brain Injury Induced by Primary Blast,” Free Radic. Biol. Med., 60, pp. 282–291. [CrossRef] [PubMed]
Yeoh, S. , Bell, E. D. , and Monson, K. L. , 2013, “ Distribution of Blood-Brain Barrier Disruption in Primary Blast Injury,” Ann. Biomed. Eng., 41(10), pp. 2206–2214. [CrossRef] [PubMed]
Readnower, R. D. , Chavko, M. , Adeeb, S. , Conroy, M. D. , Pauly, J. R. , McCarron, R. M. , and Sullivan, P. G. , 2010, “ Increase in Blood-Brain Barrier Permeability, Oxidative Stress, and Activated Microglia in a Rat Model of Blast-Induced Traumatic Brain Injury,” J. Neurosci. Res., 88(16), pp. 3530–3539. [CrossRef] [PubMed]
Kamnaksh, A. , Kwon, S. K. , Kovesdi, E. , Ahmed, F. , Barry, E. S. , Grunberg, N. E. , Long, J. , and Agoston, D. , 2012, “ Neurobehavioral, Cellular, and Molecular Consequences of Single and Multiple Mild Blast Exposure,” Electrophoresis, 33(24), pp. 3680–3692. [CrossRef] [PubMed]
Elder, G. A. , Gama Sosa, M. A. , De Gasperi, R. , Stone, J. R. , Dickstein, D. L. , Haghighi, F. , Hof, P. R. , and Ahlers, S. T. , 2015, “ Vascular and Inflammatory Factors in the Pathophysiology of Blast-Induced Brain Injury,” Front. Neurol., 6, p. 48. [CrossRef] [PubMed]
Alford, P. W. , Dabiri, B. E. , Goss, J. A. , Hemphill, M. A. , Brigham, M. D. , and Parker, K. K. , 2011, “ Blast-Induced Phenotypic Switching in Cerebral Vasospasm,” Proc. Natl. Acad. Sci. U. S. A., 108(31), pp. 12705–12710. [CrossRef] [PubMed]
Toklu, H. Z. , Muller-Delp, J. , Yang, Z. , Oktay, S. , Sakarya, Y. , Strang, K. , Ghosh, P. , Delp, M. D. , Scarpace, P. J. , Wang, K. K. , and Tumer, N. , 2015, “ The Functional and Structural Changes in the Basilar Artery Due to Overpressure Blast Injury,” J. Cereb. Blood Flow Metab., 35(12), pp. 1950–1956. [CrossRef] [PubMed]
Bir, C. , Vandevord, P. , Shen, Y. , Raza, W. , and Haacke, E. M. , 2012, “ Effects of Variable Blast Pressures on Blood Flow and Oxygen Saturation in Rat Brain as Evidenced Using MRI,” Magn. Reson. Imaging, 30(4), pp. 527–534. [CrossRef] [PubMed]
Cernak, I. , Savic, J. , Malicevic, Z. , Zunic, G. , Radosevic, P. , and Ivanovic, I. , 1996, “ Leukotrienes in the Pathogenesis of Pulmonary Blast Injury,” J. Trauma, 40(Suppl. 3), pp. S148–S151. [CrossRef] [PubMed]
Cernak, I. , Wang, Z. , Jiang, J. , Bian, X. , and Savic, J. , 2001, “ Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma,” J. Trauma, 50(4), pp. 695–706. [CrossRef] [PubMed]
Long, J. B. , Bentley, T. L. , Wessner, K. A. , Cerone, C. , Sweeney, S. , and Bauman, R. A. , 2009, “ Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory,” J. Neurotrauma, 26(6), pp. 827–840. [CrossRef] [PubMed]
Simard, J. M. , Pampori, A. , Keledjian, K. , Tosun, C. , Schwartzbauer, G. , Ivanova, S. , and Gerzanich, V. , 2014, “ Exposure of the Thorax to a Sublethal Blast Wave Causes a Hydrodynamic Pulse That Leads to Perivenular Inflammation in the Brain,” J. Neurotrauma, 31(14), pp. 1292–1304. [CrossRef] [PubMed]
Goldstein, L. E. , Fisher, A. M. , Tagge, C. A. , Zhang, X. L. , Velisek, L. , Sullivan, J. A. , Upreti, C. , Kracht, J. M. , Ericsson, M. , Wojnarowicz, M. W. , Goletiani, C. J. , Maglakelidze, G. M. , Casey, N. , Moncaster, J. A. , Minaeva, O. , Moir, R. D. , Nowinski, C. J. , Stern, R. A. , Cantu, R. C. , Geiling, J. , Blusztajn, J. K. , Wolozin, B. L. , Ikezu, T. , Stein, T. D. , Budson, A. E. , Kowall, N. W. , Chargin, D. , Sharon, A. , Saman, S. , Hall, G. F. , Moss, W. C. , Cleveland, R. O. , Tanzi, R. E. , Stanton, P. K. , and McKee, A. C. , 2012, “ Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model,” Sci. Transl. Med., 4(134), p. 134ra160. [CrossRef]
Courtney, A. C. , and Courtney, M. W. , 2009, “ A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves,” Med. Hypotheses, 72(1), pp. 76–83. [CrossRef] [PubMed]
Courtney, M. W. , and Courtney, A. C. , 2011, “ Working Toward Exposure Thresholds for Blast-Induced Traumatic Brain Injury: Thoracic and Acceleration Mechanisms,” Neuroimage, 54(Suppl. 1), pp. S55–S61. [CrossRef] [PubMed]
Harvey, E. N. , and McMillen, J. H. , 1947, “ An Experimental Study of Shock Waves Resulting From the Impact of High Velocity Missiles on Animal Tissues,” J. Exp. Med., 85(3), pp. 321–328. [CrossRef] [PubMed]
Clemedson, C. J. , and Hultman, H. I. , 1954, “ Air Embolism and the Cause of Death in Blast Injury,” Mil. Surg., 114(6), pp. 424–437. https://www.ncbi.nlm.nih.gov/pubmed/13165075 [PubMed]
Dénes, Á. , Ferenczi, S. , and Kovács, K. J. , 2011, “ Systemic Inflammatory Challenges Compromise Survival After Experimental Stroke Via Augmenting Brain Inflammation, Blood- Brain Barrier Damage and Brain Oedema Independently of Infarct Size,” J. Neuroinflammation, 8(1), p. 164. [CrossRef] [PubMed]
Varatharaj, A. , and Galea, I. , 2017, “ The Blood-Brain Barrier in Systemic Inflammation,” Brain Behav. Immun., 60, pp. 1–12. [CrossRef] [PubMed]
Takeda, S. , Sato, N. , and Morishita, R. , 2014, “ Systemic Inflammation, Blood-Brain Barrier Vulnerability and Cognitive/Non-Cognitive Symptoms in Alzheimer Disease: Relevance to Pathogenesis and Therapy,” Front. Aging Neurosci., 6, p. 171.
Sankowski, R. , Mader, S. , and Valdés-Ferrer, S. I. , 2015, “ Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration,” Front. Cell. Neurosci., 9, p. 28. [CrossRef] [PubMed]
Perry, V. H. , 2004, “ The Influence of Systemic Inflammation on Inflammation in the Brain: Implications for Chronic Neurodegenerative Disease,” Brain Behav. Immun., 18(5), pp. 407–413. [CrossRef] [PubMed]
Wahl, M. , and Schilling, L. , 1993, “ Regulation of Cerebral Blood Flow—A Brief Review,” Monitoring of Cerebral Blood Flow and Metabolism in Intensive Care, Springer, Vienna, Austria, pp. 3–10. [CrossRef]
Assari, S. , Laksari, K. , Barbe, M. , and Darvish, K. , 2013, “Cerebral Blood Pressure Rise During Blast Exposure in a Rat Model of Blast-Induced Traumatic Brain Injury,” ASME Paper No. IMECE2013-64992.
Cohuet, G. , Challande, P. , Osborne-Pellegrin, M. , Arribas, S. M. , Dominiczak, A. , Louis, H. , Laurent, S. , and Lacolley, P. , 2001, “ Mechanical Strength of the Isolated Carotid Artery in SHR,” Hypertension, 38(5), pp. 1167–1171. [CrossRef] [PubMed]
Bailey, Z. S. , Hubbard, W. B. , and VandeVord, P. J. , 2016, “ Cellular Mechanisms and Behavioral Outcomes in Blast-Induced Neurotrauma: Comparing Experimental Set-Ups,” Injury Models of the Central Nervous System. Methods in Molecular Biology, Vol. 1462, F. Kobeissy, C. Dixon, R. Hayes, and S. Mondello, eds., Humana Press, New York. [CrossRef]
Cernak, I. , Merkle, A. C. , Koliatsos, V. E. , Bilik, J. M. , Luong, Q. T. , Mahota, T. M. , Xu, L. , Slack, N. , Windle, D. , and Ahmed, F. A. , 2011, “ The Pathobiology of Blast Injuries and Blast-Induced Neurotrauma as Identified Using a New Experimental Model of Injury in Mice,” Neurobiol. Dis., 41(2), pp. 538–551. [CrossRef] [PubMed]
Svetlov, S. I. , Prima, V. , Glushakova, O. , Svetlov, A. , Kirk, D. R. , Gutierrez, H. , Serebruany, V. L. , Curley, K. C. , Wang, K. K. , and Hayes, R. L. , 2012, “ Neuro-Glial and Systemic Mechanisms of Pathological Responses in Rat Models of Primary Blast Overpressure Compared to ‘Composite’ Blast,” Front. Neurol., 3, p. 15. https://www.ncbi.nlm.nih.gov/pubmed/22403567
Chen, Y. , Huang, W. , and Constantini, S. , 2013, “ The Differences Between Blast-Induced and Sports-Related Brain Injuries,” Front. Neurol., p. 119.
Stemper, B. D. , Shah, A. S. , Budde, M. D. , Olsen, C. M. , Glavaski-Joksimovic, A. , Kurpad, S. N. , McCrea, M. , and Pintar, F. A. , 2016, “ Behavioral Outcomes Differ Between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury,” Front. Neurol., 7, p. 31.
Garman, R. H. , Jenkins, L. W. , Switzer , R. C., III , Bauman, R. A. , Tong, L. C. , Swauger, P. V. , Parks, S. A. , Ritzel, D. V. , Dixon, C. E. , and Clark, R. S. , 2011, “ Blast Exposure in Rats With Body Shielding Is Characterized Primarily by Diffuse Axonal Injury,” J. Neurotrauma, 28(6), pp. 947–959. [CrossRef] [PubMed]
Rafaels, K. A. , Cameron, R. , Panzer, M. B. , Salzar, R. S. , Woods, W. A. , Feldman, S. H. , Walilko, T. , Kent, R. W. , Capehart, B. P. , and Foster, J. B. , 2012, “ Brain Injury Risk From Primary Blast,” J. Trauma Acute Care Surg., 73(4), pp. 895–901. [CrossRef] [PubMed]
Shridharani, J. , Wood, G. W. , Panzer, M. B. , Capehart, B. P. , Nyein, M. , Radovitzky, R. A. , and Bass, C. R. D. , 2012, “ Porcine Head Response to Blast,” Front. Neurol., 3, p. 70. [CrossRef] [PubMed]
Gullotti, D. M. , Beamer, M. , Panzer, M. B. , Chen, Y. C. , Patel, T. P. , Yu, A. , Jaumard, N. , Winkelstein, B. , Bass, C. R. , Morrison, B. , and Meaney, D. F. , 2014, “ Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury,” ASME J. Biomech. Eng., 136(9), p. 091004. [CrossRef]
Elder , F., Jr ., and De Haas, N. , 1952, “ Experimental Study of the Formation of a Vortex Ring at the Open End of a Cylindrical Shock Tube,” J. Appl. Phys., 23(10), pp. 1065–1069. [CrossRef]
VandeVord, P. J. , Leonardi, A. D. , and Ritzel, D. , 2016, “ Bridging the Gap of Standardized Animals Models for Blast Neurotrauma: Methodology for Appropriate Experimental Testing,” Injury Models of the Central Nervous System. Methods in Molecular Biology, Vol. 1462, F. Kobeissy, C. Dixon, R. Hayes, and S. Mondello, eds., Humana Press, New York, pp. 101–118. [CrossRef]
Goeller, J. , Wardlaw, A. , Treichler, D. , O'Bruba, J. , and Weiss, G. , 2012, “ Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury,” J. Neurotrauma, 29(10), pp. 1970–1981. [CrossRef] [PubMed]
Salzar, R. S. , Treichler, D. , Wardlaw, A. , Weiss, G. , and Goeller, J. , 2017, “ Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads,” J. Neurotrauma, 34(8), pp. 1589–1602. [CrossRef] [PubMed]
Wardlaw, A. , and Goeller, J. , 2010, “ Cavitation as a Possible Traumatic Brain Injury (TBI) Damage Mechanism,” 26th Southern Biomedical Engineering Conference (SBEC). College Park, MA, Apr. 30–May 2, pp. 34–37.
Panzer, M. B. , Myers, B. S. , Capehart, B. P. , and Bass, C. R. , 2012, “ Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation,” Ann. Biomed. Eng., 40(7), pp. 1530–1544. [CrossRef] [PubMed]
Hong, Y. , Sarntinoranont, M. , Subhash, G. , Canchi, S. , and King, M. , 2016, “ Localized Tissue Surrogate Deformation Due to Controlled Single Bubble Cavitation,” Exp. Mech., 56(1), pp. 97–109. [CrossRef]
Stålhammar, D. , 1975, “ Experimental Brain Damage From Fluid Pressures Due to Impact Acceleration—1: Design of Experimental Procedure,” Acta Neurol. Scand., 52(1), pp. 7–26. [CrossRef] [PubMed]
Stålhammar, D. , 1975, “ Experimental Brain Damage From Fluid Pressures Due to Impact Acceleration—2: Pathophysiological Observations,” Acta Neurol. Scand., 52(1), pp. 27–37. [CrossRef] [PubMed]
Stålhammar, D. , and Olsson, Y. , 1975, “ Experimental Brain Damage From Fluid Pressures Due to Impact Acceleration—3: Morphological Observations,” Acta Neurol. Scand., 52(1), pp. 38–55. [CrossRef] [PubMed]
Nusholtz, G. S. , Lux, P. , Kaiker, P. , and Janicki, M. A. , 1984, “Head Impact Response—Skull Deformation and Angular Accelerations,” SAE Paper No. 841657.
Nusholtz, G. , Kaiker, P. , and Gould, W. , 1987, “ Two Factors Critical in the Pressure Response of the Impacted Head,” Aviat. Space Environ. Med., 58(12), pp. 1157–1164. https://www.ncbi.nlm.nih.gov/pubmed/3426489 [PubMed]
Maxwell, A. D. , Cain, C. A. , Hall, T. L. , Fowlkes, J. B. , and Xu, Z. , 2013, “ Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials,” Ultrasound Med. Biol., 39(3), pp. 449–465. [CrossRef] [PubMed]
Zhong, P. , Zhou, Y. , and Zhu, S. , 2001, “ Dynamics of Bubble Oscillation in Constrained Media and Mechanisms of Vessel Rupture in SWL,” Ultrasound Med. Biol., 27(1), pp. 119–134. [CrossRef] [PubMed]
Delius, M. , Denk, R. , Berding, C. , Liebich, H.-G. , Jordan, M. , and Brendel, W. , 1990, “ Biological Effects of Shock Waves: Cavitation by Shock Waves in Piglet Liver,” Ultrasound Med. Biol., 16(5), pp. 467–472. [CrossRef] [PubMed]
Rafaels, K. , “Dale” Bass, C. R. , Salzar, R. S. , Panzer, M. B. , Woods, W. , Feldman, S. , Cummings, T. , and Capehart, B. , 2011, “ Survival Risk Assessment for Primary Blast Exposures to the Head,” J. Neurotrauma, 28(11), pp. 2319–2328. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Pressure profiles from a Pitot tube sensor in an advanced blast simulator. The stagnation, or total, pressure is measured at the tip of the sensor, and initially measures reflected pressure as the shock front reflects off it. The pressure then quickly drops to the stagnation pressure. A side-on pressure transducer is 127 mm behind the tip of the tube measuring overpressure.

Grahic Jump Location
Fig. 2

Friedlander waveform with key elements labeled. The area under the curve during the positive and negative phases of the wave is shaded to show the positive and negative impulses. It is important to note that everything is with respect to atmospheric pressure and not P = 0.

Grahic Jump Location
Fig. 3

Representation of the interface between the air and the head as a shock wave is encountered. The dashed gray and solid white lines are proportional to the amount of the wave that would either be transmitted or reflected, respectively. Here, the impedance value of skin is used for the scalp and that of water for the cerebrospinal fluid (CSF). Note that only 0.005% of the blast wave would be transmitted to the brain.

Grahic Jump Location
Fig. 4

Skull flexure theory contributes injury to a multimodal biomechanical response initiated by the incident blast wave reflected off the skull, which results in a series of compression and tension oscillations

Grahic Jump Location
Fig. 5

Schematic representation of the effects of bifurcations and vessel size on blood flow. Areas of blue indicate areas that may be subject to large stress resulting from kinetic energy associated with a volumetric surge of blood. Following bifurcations, vessel diameter decreases, causing increased resistance to flow.

Grahic Jump Location
Fig. 6

Diagram of a pressure wave exiting a shock tube. Note the dark orange areas of high pressure at the blast front, but also at the vortex rings just outside the shock tube. Over time, these vortex rings will propagate outward.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In