Review Article

Biomechanics and Mechanobiology of Saphenous Vein Grafts

[+] Author and Article Information
Keith J. Gooch

Department of Biomedical Engineering,
The Ohio State University,
290 Bevis Hall 1080 Carmack Drive,
Columbus, OH 43210;
Davis Heart Lung Research Institute,
The Ohio State University,
Columbus, OH 43210
e-mail: gooch.20@osu.edu

Michael S. Firstenberg

Surgery and Integrative Medicine,
Northeast Ohio Medical Universities,
Akron, OH 44309

Brittany S. Shrefler

Department of Internal Medicine,
The Ohio State University,
Columbus, OH 43210

Benjamin W. Scandling

Department of Biomedical Engineering,
The Ohio State University,
Columbus, OH 43210

1Corresponding author.

Manuscript received July 1, 2017; final manuscript received November 10, 2017; published online January 12, 2018. Editor: Victor H. Barocas.

J Biomech Eng 140(2), 020804 (Jan 12, 2018) (16 pages) Paper No: BIO-17-1288; doi: 10.1115/1.4038705 History: Received July 01, 2017; Revised November 10, 2017

Within several weeks of use as coronary artery bypass grafts (CABG), saphenous veins (SV) exhibit significant intimal hyperplasia (IH). IH predisposes vessels to thrombosis and atherosclerosis, the two major modes of vein graft failure. The fact that SV do not develop significant IH in their native venous environment coupled with the rapidity with which they develop IH following grafting into the arterial circulation suggests that factors associated with the isolation and preparation of SV and/or differences between the venous and arterial environments contribute to disease progression. There is strong evidence suggesting that mechanical trauma associated with traditional techniques of SV preparation can significantly damage the vessel and might potentially reduce graft patency though modern surgical techniques reduces these injuries. In contrast, it seems possible that modern surgical technique, specifically endoscopic vein harvest, might introduce other mechanical trauma that could subtly injure the vein and perhaps contribute to the reduced patency observed in veins harvested using endoscopic techniques. Aspects of the arterial mechanical environment influence remodeling of SV grafted into the arterial circulation. Increased pressure likely leads to thickening of the medial wall but its role in IH is less clear. Changes in fluid flow, including increased average wall shear stress, may reduce IH while disturbed flow likely increase IH. Nonmechanical stimuli, such as exposure to arterial levels of oxygen, may also have a significant but not widely recognized role in IH. Several potentially promising approaches to alter the mechanical environment to improve graft patency are including extravascular supports or altered graft geometries are covered.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Langille, B. , 1993, “ Remodeling of Developing and Mature Arteries: Endothelium, Smooth Muscle, and Matrix,” J. Cardiovasc. Pharmacol., 21(Suppl. 1), pp. S11–S17. [CrossRef] [PubMed]
Langille, B. , 1996, “ Arterial Remodeling: Relation to Hemodynamics,” Can. J. Physiol. Pharmacol., 74(7), pp. 834–841. [CrossRef] [PubMed]
Humphrey, J. D. , Eberth, J. F. , Dye, W. W. , and Gleason, R. L. , 2009, “ Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries,” J. Biomech., 42(1), pp. 1–8. [CrossRef] [PubMed]
Pries, A. R. , and Secomb, T. W. , 2005, “ Control of Blood Vessel Structure: Insights From Theoretical Models,” Am. J. Physiol.: Heart Circ. Physiol., 288(3), pp. H1010–H1015. [CrossRef] [PubMed]
Baeyens, N. , Bandyopadhyay, C. , Coon, B. G. , Yun, S. , and Schwartz, M. A. , 2016, “ Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease,” J. Clin. Invest., 126(3), pp. 821–828. [CrossRef] [PubMed]
John, L. C. , 2009, “ Biomechanics of Coronary Artery and Bypass Graft Disease: Potential New Approaches,” Ann. Thorac. Surg., 87(1), pp. 331–338. [CrossRef] [PubMed]
Ghista, D. N. , and Kabinejadian, F. , 2013, “ Coronary Artery Bypass Grafting Hemodynamics and Anastomosis Design: A Biomedical Engineering Review,” Biomed. Eng. Online, 12, p. 129. [CrossRef] [PubMed]
Greenwald, S. E. , and Berry, C. L. , 2000, “ Improving Vascular Grafts: The Importance of Mechanical and Haemodynamic Properties,” J. Pathol., 190(3), pp. 292–299. [CrossRef] [PubMed]
Sabiston, D. C., Jr. , 1963, “ Direct Surgical Management of Congenital and Acquired Lesions of the Coronary Circulation,” Prog. Cardiovasc. Dis., 6(3), pp. 299–316. [CrossRef] [PubMed]
Kolessov, V. I. , 1967, “ Mammary Artery-Coronary Artery Anastomosis as Method of Treatment for Angina Pectoris,” J. Thorac. Cardiovasc. Surg., 54(4), pp. 535–544. https://www.ncbi.nlm.nih.gov/pubmed/6051440 [PubMed]
Acar, C. , Ramsheyi, A. , Pagny, J. Y. , Jebara, V. , Barrier, P. , Fabiani, J. N. , Deloche, A. , Guermonprez, J. L. , and Carpentier, A. , 1998, “ The Radial Artery for Coronary Artery Bypass Grafting: Clinical and Angiographic Results at Five Years,” J. Thorac. Cardiovasc. Surg., 116(6), pp. 981–989. [CrossRef] [PubMed]
Tixier, D. B. , Acar, C. , and Carpentier, A. F. , 1995, “ Coronary-Coronary Bypass Using the Radial Artery,” Ann. Thorac. Surg., 60(3), pp. 693–694. [CrossRef] [PubMed]
Attum, A. A. , 1987, “ The Use of the Gastroepiploic Artery for Coronary Artery Bypass Graft: Another Alternative,” Tex. Heart Inst. J., 14(3), pp. 289–292. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324739/ [PubMed]
Suma, H. , Fukumoto, H. , and Takeuchi, A. , 1987, “ Coronary Artery Bypass Grafting by Utilizing In Situ Right Gastroepiploic Artery: Basic Study and Clinical Application,” Ann. Thorac. Surg., 44(4), pp. 394–397. [CrossRef] [PubMed]
Lopes, R. D. , Hafley, G. E. , Allen, K. B. , Ferguson, T. B. , Peterson, E. D. , Harrington, R. A. , Mehta, R. H. , Gibson, C. M. , Mack, M. J. , Kouchoukos, N. T. , Califf, R. M. , and Alexander, J. H. , 2009, “ Endoscopic Versus Open Vein-Graft Harvesting in Coronary-Artery Bypass Surgery,” N. Engl. J. Med., 361(3), pp. 235–244. [CrossRef] [PubMed]
STS, “ Adult Cardiac Surgery Database: Period Ending 6/30/2015: Executive Summary Contents,” The Society of Thoracic Surgeons, accessed Dec. 21, 2017, http://sts.org/sites/default/files/documents/ACSD2017Harvest3_ExecutiveSummary.pdf
Harskamp, R. E. , Lopes, R. D. , Baisden, C. E. , de Winter, R. J. , and Alexander, J. H. , 2013, “ Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Pathophysiology, Management, and Future Directions,” Ann. Surg., 257(5), pp. 824–833. [CrossRef] [PubMed]
Lytle, B. W. , Loop, F. D. , Cosgrove, D. M. , Ratliff, N. B. , Easley, K. , and Taylor, P. C. , 1985, “ Long-Term (5 to 12 Years) Serial Studies of Internal Mammary Artery and Saphenous Vein Coronary Bypass Grafts,” J. Thorac. Cardiovasc. Surg., 89(2), pp. 248–258. https://www.ncbi.nlm.nih.gov/pubmed/2857209 [PubMed]
Goldman, S. , Zadina, K. , Moritz, T. , Ovitt, T. , Sethi, G. , Copeland, J. G. , Thottapurathu, L. , Krasnicka, B. , Ellis, N. , Anderson, R. J. , Henderson, W. , and Group, V. A. C. S. , 2004, “ Long-Term Patency of Saphenous Vein and Left Internal Mammary Artery Grafts After Coronary Artery Bypass Surgery: Results From a Department of Veterans Affairs Cooperative Study,” J. Am. Coll. Cardiol., 44(11), pp. 2149–2156. [CrossRef] [PubMed]
Lytle, B. W. , Loop, F. D. , Taylor, P. C. , Simpfendorfer, C. , Kramer, J. R. , Ratliff, N. B. , Goormastic, M. , and Cosgrove, D. M. , 1992, “ Vein Graft Disease: The Clinical Impact of Stenoses in Saphenous Vein Bypass Grafts to Coronary Arteries,” J. Thorac. Cardiovasc. Surg., 103(5), pp. 831–840. https://www.ncbi.nlm.nih.gov/pubmed/1569763 [PubMed]
Lau, G. T. , Lowe, H. C. , and Kritharides, L. , 2004, “ Cardiac Saphenous Vein Bypass Graft Disease,” Semin. Vasc. Med., 4(2), pp. 153–159. [CrossRef] [PubMed]
Hassantash, S. A. , Bikdeli, B. , Kalantarian, S. , Sadeghian, M. , and Afshar, H. , 2008, “ Pathophysiology of Aortocoronary Saphenous Vein Bypass Graft Disease,” Asian Cardiovasc. Thorac. Ann., 16(4), pp. 331–336. [CrossRef] [PubMed]
Motwani, J. G. , and Topol, E. J. , 1998, “ Aortocoronary Saphenous Vein Graft Disease: Pathogenesis, Predisposition, and Prevention,” Circulation, 97(9), pp. 916–931. [CrossRef] [PubMed]
Mehta, D. , Izzat, M. B. , Bryan, A. J. , and Angelini, G. D. , 1997, “ Towards the Prevention of Vein Graft Failure,” Int. J. Cardiol., 62(Suppl. 1), pp. S55–S63. [CrossRef] [PubMed]
Parang, P. , and Arora, R. , 2009, “ Coronary Vein Graft Disease: Pathogenesis and Prevention,” Can. J. Cardiol., 25(2), pp. e57–e62. [CrossRef] [PubMed]
Atkinson, J. B. , Forman, M. B. , Vaughn, W. K. , Robinowitz, M. , McAllister, H. A. , and Virmani, R. , 1985, “ Morphologic Changes in Long-Term Saphenous Vein Bypass Grafts,” Chest, 88(3), pp. 341–348. [CrossRef] [PubMed]
Cox, J. L. , Chiasson, D. A. , and Gotlieb, A. I. , 1991, “ Stranger in a Strange Land: The Pathogenesis of Saphenous Vein Graft Stenosis With Emphasis on Structural and Functional Differences Between Veins and Arteries,” Prog. Cardiovasc. Dis., 34(1), pp. 45–68. [CrossRef] [PubMed]
Spray, T. L. , and Roberts, W. C. , 1977, “ Changes in Saphenous Veins Used as Aortocoronary Bypass Grafts,” Am. Heart J., 94(4), pp. 500–516. [CrossRef] [PubMed]
Davies, M. G. , and Hagen, P. O. , 1995, “ Pathophysiology of Vein Graft Failure: A Review,” Eur. J. Vasc. Endovasc. Surg., 9(1), pp. 7–18. [CrossRef] [PubMed]
Milroy, C. M. , Scott, D. J. , Beard, J. D. , Horrocks, M. , and Bradfield, J. W. , 1989, “ Histological Appearances of the Long Saphenous Vein,” J. Pathol., 159(4), pp. 311–316. [CrossRef] [PubMed]
Thiene, G. , Miazzi, P. , Valsecchi, M. , Valente, M. , Bortolotti, U. , Casarotto, D. , and Gallucci, V. , 1980, “ Histological Survey of the Saphenous Vein Before Its Use as Autologous Aortocoronary Bypass Graft,” Thorax, 35(7), pp. 519–522. [CrossRef] [PubMed]
Human, P. , Franz, T. , Scherman, J. , Moodley, L. , and Zilla, P. , 2009, “ Dimensional Analysis of Human Saphenous Vein Grafts: Implications for External Mesh Support,” J. Thorac. Cardiovasc. Surg., 137(5), pp. 1101–1108. [CrossRef] [PubMed]
Waller, B. F. , and Roberts, W. C. , 1985, “ Remnant Saphenous Veins After Aortocoronary Bypass Grafting: Analysis of 3,394 Centimeters of Unused Vein From 402 Patients,” Am. J. Cardiol., 55(1), pp. 65–71. [CrossRef] [PubMed]
Yamada, T. , Itoh, T. , Nakano, S. , and Tokunaga, O. , 1995, “ Time-Dependent Thickening of the Intima in Aortocoronary Saphenous Vein Grafts: Clinicopathological Analysis of 24 Patients,” Heart Vessels, 10(1), pp. 41–45. [CrossRef] [PubMed]
Lie, J. T. , Lawrie, G. M. , and Morris, G. C., Jr. , 1977, “ Aortocoronary Bypass Saphenous Vein Graft Atherosclerosis. Anatomic Study of 99 Vein Grafts From Normal and Hyperlipoproteinemic Patients Up to 75 Months Postoperatively,” Am. J. Cardiol., 40(6), pp. 906–914. [CrossRef] [PubMed]
Lawrie, G. M. , Lie, J. T. , Morris , G. C., Jr. , and Beazley, H. L. , 1976, “ Vein Graft Patency and Intimal Proliferation After Aortocoronary Bypass: Early and Long-Term Angiopathologic Correlations,” Am. J. Cardiol., 38(7), pp. 856–862. [CrossRef] [PubMed]
Kern, W. H. , Dermer, G. B. , and Lindesmith, G. G. , 1972, “ The Intimal Proliferation in Aortic-Coronary Saphenous Vein Grafts. Light and Electron Microscopic Studies,” Am. Heart J., 84(6), pp. 771–777. [CrossRef] [PubMed]
Zou, Y. , Dietrich, H. , Hu, Y. , Metzler, B. , Wick, G. , and Xu, Q. , 1998, “ Mouse Model of Venous Bypass Graft Arteriosclerosis,” Am. J. Pathol., 153(4), pp. 1301–1310. [CrossRef] [PubMed]
Lescalie, F. , Germouty, I. , Chevalier, J. M. , Enon, B. , Moreau, P. , and Pillet, J. , 1986, “ Extrinsic Arterial Supply of the Great Saphenous Vein: An Anatomic Study,” Ann. Vasc. Surg., 1(2), pp. 273–277. [CrossRef] [PubMed]
Dashwood, M. R. , Anand, R. , Loesch, A. , and Souza, D. S. , 2004, “ Hypothesis: A Potential Role for the Vasa Vasorum in the Maintenance of Vein Graft Patency,” Angiology, 55(4), pp. 385–395. [CrossRef] [PubMed]
Zhao, J. , Andreasen, J. J. , Yang, J. , Rasmussen, B. S. , Liao, D. , and Gregersen, H. , 2007, “ Manual Pressure Distension of the Human Saphenous Vein Changes Its Biomechanical Properties-Implication for Coronary Artery Bypass Grafting,” J. Biomech., 40(10), pp. 2268–2276. [CrossRef] [PubMed]
Gusic, R. J. , Petko, M. , Myung, R. , Gaynor, J. W. , and Gooch, K. J. , 2005, “ Mechanical Properties of Native and Ex Vivo Remodeled Porcine Saphenous Veins,” J. Biomech., 38(9), pp. 1770–1779. [CrossRef] [PubMed]
Stick, C. , Hiedl, U. , and Witzleb, E. , 1993, “ Venous Pressure in the Saphenous Vein Near the Ankle During Changes in Posture and Exercise at Different Ambient Temperatures,” Eur. J. Appl. Physiol. Occup. Physiol., 66(5), pp. 434–438. [CrossRef] [PubMed]
Tai, N. R. , Salacinski, H. J. , Edwards, A. , Hamilton, G. , and Seifalian, A. M. , 2000, “ Compliance Properties of Conduits Used in Vascular Reconstruction,” Br. J. Surg., 87(11), pp. 1516–1524. [CrossRef] [PubMed]
Parvizi, R. , Safaii, N. , Neghargar, S. , and Rasouli, S. , 2008, “ Comparison of Arterial and Venous Blood Gas Values in Cardiac Surgery,” Rawal Med. J., 33(1), p. 4. https://www.ejmanager.com/mnstemps/27/27-1303662471.pdf
O'Connor, T. M. , Barry, P. J. , Jahangir, A. , Finn, C. , Buckley, B. M. , and El-Gammal, A. , 2011, “ Comparison of Arterial and Venous Blood Gases and the Effects of Analysis Delay and Air Contamination on Arterial Samples in Patients With Chronic Obstructive Pulmonary Disease and Healthy Controls,” Respiration, 81(1), pp. 18–25. [CrossRef] [PubMed]
Souza, D. S. , Johansson, B. , Bojo, L. , Karlsson, R. , Geijer, H. , Filbey, D. , Bodin, L. , Arbeus, M. , and Dashwood, M. R. , 2006, “ Harvesting the Saphenous Vein With Surrounding Tissue for CABG Provides Long-Term Graft Patency Comparable to the Left Internal Thoracic Artery: Results of a Randomized Longitudinal Trial,” J. Thorac. Cardiovasc. Surg., 132(2), pp. 373–378. [CrossRef] [PubMed]
Souza, D. , 1996, “ A New No-Touch Preparation Technique. Technical Notes,” Scand. J. Thorac. Cardiovasc. Surg., 30(1), pp. 41–44. [CrossRef] [PubMed]
LoGerfo, F. W. , Haudenschild, C. C. , and Quist, W. C. , 1984, “ A Clinical Technique for Prevention of Spasm and Preservation of Endothelium in Saphenous Vein Grafts,” Arch. Surg., 119(10), pp. 1212–1214. [CrossRef] [PubMed]
Rodbard, S. , 1975, “ Vascular Caliber,” Cardiology, 60(1), pp. 4–49. [CrossRef] [PubMed]
Isobe, N. , Kaneko, T. , Taniguchi, K. , and Oshima, S. , 2005, “ Comparison of the Rheologic Parameters in Left Internal Thoracic Artery Grafts With Those in Saphenous Vein Grafts,” Circ. J., 69(6), pp. 700–706. [CrossRef] [PubMed]
Sankaranarayanan, M. , Chua, L. P. , Ghista, D. N. , and Tan, Y. S. , 2006, “ Flow Studies in Three-Dimensional Aorto-Right Coronary Bypass Graft System,” J. Med. Eng. Technol., 30(5), pp. 269–282. [CrossRef] [PubMed]
Papadaki, M. , Tilton, R. G. , Eskin, S. G. , and McIntire, L. V. , 1998, “ Nitric Oxide Production by Cultured Human Aortic Smooth Muscle Cells: Stimulation by Fluid Flow,” Am. J. Physiol., 274(2 Pt. 2), pp. H616–H626. https://www.ncbi.nlm.nih.gov/pubmed/9486266 [PubMed]
Tada, S. , and Tarbell, J. M. , 2000, “ Interstitial Flow Through the Internal Elastic Lamina Affects Shear Stress on Arterial Smooth Muscle Cells,” Am. J. Physiol.: Heart Circ. Physiol., 278(5), pp. H1589–H1597. https://www.ncbi.nlm.nih.gov/pubmed/10775138 [PubMed]
Tada, S. , and Tarbell, J. M. , 2001, “ Fenestral Pore Size in the Internal Elastic Lamina Affects Transmural Flow Distribution in the Artery Wall,” Ann. Biomed. Eng., 29(6), pp. 456–466. [CrossRef] [PubMed]
Tada, S. , and Tarbell, J. M. , 2002, “ Flow Through Internal Elastic Lamina Affects Shear Stress on Smooth Muscle Cells (3D Simulations),” Am. J. Physiol.: Heart Circ. Physiol., 282(2), pp. H576–H584. [CrossRef] [PubMed]
Baldwin, A. L. , Wilson, L. M. , Gradus-Pizlo, I. , Wilensky, R. , and March, K. , 1997, “ Effect of Atherosclerosis on Transmural Convection an Arterial Ultrastructure. Implications for Local Intravascular Drug Delivery,” Arterioscler., Thromb., Vasc. Biol., 17(12), pp. 3365–3375. [CrossRef]
Shou, Y. , Jan, K. M. , and Rumschitzki, D. S. , 2006, “ Transport in Rat Vessel Walls—I: Hydraulic Conductivities of the Aorta, Pulmonary Artery, and Inferior Vena Cava With Intact and Denuded Endothelia,” Am. J. Physiol.: Heart Circ. Physiol., 291(6), pp. H2758–H2771. [CrossRef] [PubMed]
Ochsner , A., Jr. , Colp , R., Jr. , and Burch, G. E. , 1951, “ Normal Blood Pressure in the Superficial Venous System of Man at Rest in the Supine Position,” Circulation, 3(5), pp. 674–680. [CrossRef] [PubMed]
Gusic, R. J. , Myung, R. , Petko, M. , Gaynor, J. W. , and Gooch, K. J. , 2005, “ Shear Stress and Pressure Modulate Saphenous Vein Remodeling Ex Vivo,” J. Biomech., 38(9), pp. 1760–1769. [CrossRef] [PubMed]
Vorp, D. A. , Peters, D. G. , and Webster, M. W. , 1999, “ Gene Expression is Altered in Perfused Arterial Segments Exposed to Cyclic Flexure Ex Vivo,” Ann. Biomed. Eng., 27(3), pp. 366–371. https://www.ncbi.nlm.nih.gov/pubmed/10374728
Hamza, L. H. , Dang, Q. , Lu, X. , Mian, A. , Molloi, S. , and Kassab, G. S. , 2003, “ Effect of Passive Myocardium on the Compliance of Porcine Coronary Arteries,” Am. J. Physiol.: Heart Circ. Physiol., 285(2), pp. H653–H660. [CrossRef] [PubMed]
Learoyd, B. M. , and Taylor, M. G. , 1966, “ Alterations With Age in the Viscoelastic Properties of Human Arterial Walls,” Circ. Res., 18(3), pp. 278–292. [CrossRef] [PubMed]
Han, H. C. , and Fung, Y. C. , 1995, “ Longitudinal Strain of Canine and Porcine Aortas,” J. Biomech., 28(5), pp. 637–641. [CrossRef] [PubMed]
Dougherty, G. , and Varro, J. , 2000, “ A Quantitative Index for the Measurement of the Tortuosity of Blood Vessels,” Med. Eng. Phys., 22(8), pp. 567–574. [CrossRef] [PubMed]
Schulze-Bauer, C. A. , Morth, C. , and Holzapfel, G. A. , 2003, “ Passive Biaxial Mechanical Response of Aged Human Iliac Arteries,” ASME J. Biomech. Eng., 125(3), pp. 395–406. [CrossRef]
Hutchins, G. M. , Miner, M. M. , and Bulkley, B. H. , 1978, “ Tortuosity as an Index of the Age and Diameter Increase of Coronary Collateral Vessels in Patients After Acute Myocardial Infarction,” Am. J. Cardiol., 41(2), pp. 210–215. [CrossRef] [PubMed]
Durrani, A. , Sim, E. K. , and Grignani, R. T. , 1998, “ Accurate Length Adjustment of Aortocoronary Saphenous Vein Bypass Grafts,” Ann. Thorac. Surg., 66(3), pp. 966–967. [CrossRef] [PubMed]
Walden, R. , L'Italien, G. J. , Megerman, J. , and Abbott, W. M. , 1980, “ Matched Elastic Properties and Successful Arterial Grafting,” Arch. Surg., 115(10), pp. 1166–1169. [CrossRef] [PubMed]
Ballyk, P. D. , Walsh, C. , Butany, J. , and Ojha, M. , 1998, “ Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses,” J. Biomech., 31(3), pp. 229–237. [CrossRef] [PubMed]
Steinman, D. A. , Vinh, B. , Ethier, C. R. , Ojha, M. , Cobbold, R. S. , and Johnston, K. W. , 1993, “ A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model,” ASME J. Biomech. Eng., 115(1), pp. 112–118. [CrossRef]
Davies, A. H. , Magee, T. R. , Baird, R. N. , Sheffield, E. , and Horrocks, M. , 1992, “ Vein Compliance: A Preoperative Indicator of Vein Morphology and of Veins at Risk of Vascular Graft Stenosis,” Br. J. Surg., 79(10), pp. 1019–1021. [CrossRef] [PubMed]
Athanasiou, T. , Aziz, O. , Al-Ruzzeh, S. , Philippidis, P. , Jones, C. , Purkayastha, S. , Casula, R. , and Glenville, B. , 2004, “ Are Wound Healing Disturbances and Length of Hospital Stay Reduced With Minimally Invasive Vein Harvest? A Meta-Analysis,” Eur. J. Cardiothorac. Surg., 26(5), pp. 1015–1026. [CrossRef] [PubMed]
Patel, N. N. , and Angelini, G. D. , 2009, “ Surgery: Open or Endoscopic Vein Graft Harvesting—This Is the Question!,” Nat. Rev. Cardiol., 6(12), pp. 738–740. [CrossRef] [PubMed]
Shah, P. J. , Gordon, I. , Fuller, J. , Seevanayagam, S. , Rosalion, A. , Tatoulis, J. , Raman, J. S. , and Buxton, B. F. , 2003, “ Factors Affecting Saphenous Vein Graft Patency: Clinical and Angiographic Study in 1402 Symptomatic Patients Operated on Between 1977 and 1999,” J. Thorac. Cardiovasc. Surg., 126(6), pp. 1972–1977. [CrossRef] [PubMed]
Johansson, B. L. , Souza, D. S. , Bodin, L. , Filbey, D. , Loesch, A. , Geijer, H. , and Bojo, L. , 2010, “ Slower Progression of Atherosclerosis in Vein Grafts Harvested With ‘No Touch’ Technique Compared With Conventional Harvesting Technique in Coronary Artery Bypass Grafting: An Angiographic and Intravascular Ultrasound Study,” Eur. J. Cardiothorac. Surg., 38(4), pp. 414–419. [CrossRef] [PubMed]
Sepehripour, A. H. , Jarral, O. A. , Shipolini, A. R. , and McCormack, D. J. , 2011, “ Does a ‘No-Touch' Technique Result in Better Vein Patency?,” Interact. Cardiovasc. Thorac. Surg., 13(6), pp. 626–630. [CrossRef] [PubMed]
Barker, S. G. , Talbert, A. , Cottam, S. , Baskerville, P. A. , and Martin, J. F. , 1993, “ Arterial Intimal Hyperplasia After Occlusion of the Adventitial Vasa Vasorum in the Pig,” Arterioscler., Thromb., 13(1), pp. 70–77. [CrossRef]
Martin, J. F. , Booth, R. F. , and Moncada, S. , 1991, “ Arterial Wall Hypoxia Following Thrombosis of the Vasa Vasorum Is an Initial Lesion in Atherosclerosis,” Eur. J. Clin. Invest., 21(3), pp. 355–359. [CrossRef] [PubMed]
Nugent, H. M. , Rogers, C. , and Edelman, E. R. , 1999, “ Endothelial Implants Inhibit Intimal Hyperplasia After Porcine Angioplasty,” Circ. Res., 84(4), pp. 384–391. [CrossRef] [PubMed]
Angelini, G. D. , Lloyd, C. , Bush, R. , Johnson, J. , and Newby, A. C. , 2002, “ An External, Oversized, Porous Polyester Stent Reduces Vein Graft Neointima Formation, Cholesterol Concentration, and Vascular Cell Adhesion Molecule 1 Expression in Cholesterol-Fed Pigs,” J. Thorac. Cardiovasc. Surg., 124(5), pp. 950–956. [CrossRef] [PubMed]
Jeremy, J. Y. , Gadsdon, P. , Shukla, N. , Vijayan, V. , Wyatt, M. , Newby, A. C. , and Angelini, G. D. , 2007, “ On the Biology of Saphenous Vein Grafts Fitted With External Synthetic Sheaths and Stents,” Biomaterials, 28(6), pp. 895–908. [CrossRef] [PubMed]
Loesch, A. , and Dashwood, M. R. , 2009, “ On the Sympathetic Innervation of the Human Greater Saphenous Vein: Relevance to Clinical Practice,” Curr. Vasc. Pharmacol., 7(1), pp. 58–67. [CrossRef] [PubMed]
Angelini, G. D. , Soyombo, A. A. , and Newby, A. C. , 1991, “ Winner of the ESVS Prize 1990. Smooth Muscle Cell Proliferation in Response to Injury in an Organ Culture of Human Saphenous Vein,” Eur. J. Vasc. Surg., 5(1), pp. 5–12. [CrossRef] [PubMed]
Viaro, F. , Capellini, V. K. , Celotto, A. C. , Carlotti , C. G., Jr. , Rodrigues, A. J. , Reis, G. S. , Augusto Vdos, S. , and Evora, P. R. , 2010, “ Immunohistochemical Evaluation of Three Nitric Oxide Synthase Isoforms in Human Saphenous Vein Exposed to Different Degrees of Distension Pressures,” Cardiovasc. Pathol., 19(6), pp. e211–e220. [CrossRef] [PubMed]
Chester, A. H. , Buttery, L. D. , Borland, J. A. , Springall, D. R. , Rothery, S. , Severs, N. J. , Polak, J. M. , and Yacoub, M. H. , 1998, “ Structural, Biochemical and Functional Effects of Distending Pressure in the Human Saphenous Vein: Implications for Bypass Grafting,” Coron. Artery Dis., 9(2–3), pp. 143–151. [PubMed]
Thatte, H. S. , and Khuri, S. F. , 2001, “ The Coronary Artery Bypass Conduit—I: Intraoperative Endothelial Injury and Its Implication on Graft Patency,” Ann. Thorac. Surg., 72(6), pp. S2245–S2252. [CrossRef] [PubMed]
Holt, C. M. , Francis, S. E. , Newby, A. C. , Rogers, S. , Gadsdon, P. A. , Taylor, T. , and Angelini, G. D. , 1993, “ Comparison of Response to Injury in Organ Culture of Human Saphenous Vein and Internal Mammary Artery,” Ann. Thorac. Surg., 55(6), pp. 1522–1528. [CrossRef] [PubMed]
Angelini, G. D. , Breckenridge, I. M. , Williams, H. M. , and Newby, A. C. , 1987, “ A Surgical Preparative Technique for Coronary Bypass Grafts of Human Saphenous Vein Which Preserves Medial and Endothelial Functional Integrity,” J. Thorac. Cardiovasc. Surg., 94(3), pp. 393–398. https://www.ncbi.nlm.nih.gov/pubmed/3306164 [PubMed]
Angelini, G. D. , Breckenridge, I. M. , Butchart, E. G. , Armistead, S. H. , Middleton, K. M. , Henderson, A. H. , and Newby, A. C. , 1985, “ Metabolic Damage to Human Saphenous Vein During Preparation for Coronary Artery Bypass Grafting,” Cardiovasc. Res., 19(6), pp. 326–334. [CrossRef] [PubMed]
Okon, E. B. , Millar, M. J. , Crowley, C. M. , Bashir, J. G. , Cook, R. C. , Hsiang, Y. N. , McManus, B. , and van Breemen, C. , 2004, “ Effect of Moderate Pressure Distention on the Human Saphenous Vein Vasomotor Function,” Ann. Thorac. Surg., 77(1), pp. 108–114. [CrossRef] [PubMed]
Chello, M. , Mastroroberto, P. , Frati, G. , Patti, G. , D'Ambrosio, A. , Di Sciascio, G. , and Covino, E. , 2003, “ Pressure Distension Stimulates the Expression of Endothelial Adhesion Molecules in the Human Saphenous Vein Graft,” Ann. Thorac. Surg., 76(2), pp. 453–458. [CrossRef] [PubMed]
Khaleel, M. S. , Dorheim, T. A. , Duryee, M. J. , Durbin , H. E., Jr. , Bussey, W. D. , Garvin, R. P. , Klassen, L. W. , Thiele, G. M. , and Anderson, D. R. , 2012, “ High-Pressure Distention of the Saphenous Vein During Preparation Results in Increased Markers of Inflammation: A Potential Mechanism for Graft Failure,” Ann. Thorac. Surg., 93(2), pp. 552–558. [CrossRef] [PubMed]
Angelini, G. D. , Bryan, A. J. , Williams, H. M. , Morgan, R. , and Newby, A. C. , 1990, “ Distention Promotes Platelet and Leukocyte Adhesion and Reduces Short-Term Patency in Pig Arteriovenous Bypass Grafts,” J. Thorac. Cardiovasc. Surg., 99(3), pp. 433–439. https://www.ncbi.nlm.nih.gov/pubmed/2308361 [PubMed]
Thoma, R. , 1893, Untersuchungen uber die Histogenese und Histomechanik des Gefassystems, Enke, Stuttgart, Germany.
Jackson, Z. S. , Gotlieb, A. I. , and Langille, B. L. , 2002, “ Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries,” Circ. Res., 90(8), pp. 918–925. [CrossRef] [PubMed]
Langille, B. L. , Bendeck, M. P. , and Keeley, F. W. , 1989, “ Adaptations of Carotid Arteries of Young and Mature Rabbits to Reduced Carotid Blood Flow,” Am. J. Physiol., 256(4 Pt. 2), pp. H931–H939. https://www.ncbi.nlm.nih.gov/pubmed/2705563 [PubMed]
Cho, A. , Mitchell, L. , Koopmans, D. , and Langille, B. L. , 1997, “ Effects of Changes in Blood Flow Rate on Cell Death and Cell Proliferation in Carotid Arteries of Immature Rabbits,” Circ. Res., 81(3), pp. 328–337. [CrossRef] [PubMed]
Cho, A. , Courtman, D. W. , and Langille, B. L. , 1995, “ Apoptosis (Programmed Cell Death) in Arteries of the Neonatal Lamb,” Circ. Res., 76(2), pp. 168–175. [CrossRef] [PubMed]
Fung, Y. , 1996, Biomechanics: Circulation, Springer, New York.
Fung, Y. C. , and Liu, S. Q. , 1991, “ Changes of Zero-Stress State of Rat Pulmonary Arteries in Hypoxic Hypertension,” J. Appl. Physiol., 70(6), pp. 2455–2470. https://www.ncbi.nlm.nih.gov/pubmed/1885439 [PubMed]
Prior, B. M. , Lloyd, P. G. , Yang, H. T. , and Terjung, R. L. , 2003, “ Exercise-Induced Vascular Remodeling,” Exercise Sport Sci. Rev., 31(1), pp. 26–33. [CrossRef]
Glagov, S. , Weisenberg, E. , Zarins, C. K. , Stankunavicius, R. , and Kolettis, G. J. , 1987, “ Compensatory Enlargement of Human Atherosclerotic Coronary Arteries,” N. Engl. J. Med., 316(22), pp. 1371–1375. [CrossRef] [PubMed]
Jeffery, T. K. , and Morrell, N. W. , 2002, “ Molecular and Cellular Basis of Pulmonary Vascular Remodeling in Pulmonary Hypertension,” Prog. Cardiovasc. Dis., 45(3), pp. 173–202. [CrossRef] [PubMed]
Fillinger, M. , Cronenwett, J. , Besso, S. , Walsh, D. , and Zwolak, R. , 1994, “ Vein Adaptation to the Hemodynamic Environment of Infrainguinal Grafts,” J. Vasc. Surg., 19(6), pp. 970–978. [CrossRef] [PubMed]
Bryan, A. J. , and Angelini, G. D. , 1994, “ The Biology of Saphenous Vein Graft Occlusion: Etiology and Strategies for Prevention,” Curr. Opin. Cardiol., 9(6), pp. 641–649. [CrossRef] [PubMed]
Zarins, C. K. , Giddens, D. P. , Bharadvaj, B. K. , Sottiurai, V. S. , Mabon, R. F. , and Glagov, S. , 1983, “ Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress,” Circ. Res., 53(4), pp. 502–514. [CrossRef] [PubMed]
Joshi, A. K. , Leask, R. L. , Myers, J. G. , Ojha, M. , Butany, J. , and Ethier, C. R. , 2004, “ Intimal Thickness Is Not Associated With Wall Shear Stress Patterns in the Human Right Coronary Artery,” Arterioscler., Thromb., Vasc. Biol., 24(12), pp. 2408–2413. [CrossRef]
Steinman, D. A. , and Ethier, C. R. , 1994, “ The Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis,” ASME J. Biomech. Eng., 116(3), pp. 294–301. [CrossRef]
Ku, D. N. , Giddens, D. P. , Zarins, C. K. , and Glagov, S. , 1985, “ Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress,” Arteriosclerosis, 5(3), pp. 293–302. [CrossRef] [PubMed]
Amaya, R. , Cancel, L. M. , and Tarbell, J. M. , 2016, “ Interaction Between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression,” PLoS One, 11(11), p. e0166569. [CrossRef] [PubMed]
Kawamura, M. , Nakajima, H. , Kobayashi, J. , Funatsu, T. , Otsuka, Y. , Yagihara, T. , and Kitamura, S. , 2008, “ Patency Rate of the Internal Thoracic Artery to the Left Anterior Descending Artery Bypass Is Reduced by Competitive Flow From the Concomitant Saphenous Vein Graft in the Left Coronary Artery,” Eur. J. Cardiothorac. Surg., 34(4), pp. 833–838. [CrossRef] [PubMed]
Glineur, D. , D'Hoore, W. , El Khoury, G. , Sondji, S. , Kalscheuer, G. , Funken, J. C. , Rubay, J. , Poncelet, A. , Astarci, P. , Verhelst, R. , Noirhomme, P. , and Hanet, C. , 2008, “ Angiographic Predictors of 6-Month Patency of Bypass Grafts Implanted to the Right Coronary Artery a Prospective Randomized Comparison of Gastroepiploic Artery and Saphenous Vein Grafts,” J. Am. Coll. Cardiol., 51(2), pp. 120–125. [CrossRef] [PubMed]
Dobrin, P. B. , 1995, “ Mechanical Factors Associated With the Development of Intimal and Medial Thickening in Vein Grafts Subjected to Arterial Pressure. A Model of Arteries Exposed to Hypertension,” Hypertension, 26(1), pp. 38–43. [CrossRef] [PubMed]
Meyerson, S. L. , Skelly, C. L. , Curi, M. A. , Shakur, U. M. , Vosicky, J. E. , Glagov, S. , Schwartz, L. B. , Christen, T. , and Gabbiani, G. , 2001, “ The Effects of Extremely Low Shear Stress on Cellular Proliferation and Neointimal Thickening in the Failing Bypass Graft,” J. Vasc. Surg., 34(1), pp. 90–97. [CrossRef] [PubMed]
Fernandez, C. M. , Goldman, D. R. , Jiang, Z. , Ozaki, C. K. , Tran-Son-Tay, R. , and Berceli, S. A. , 2004, “ Impact of Shear Stress on Early Vein Graft Remodeling: A Biomechanical Analysis,” Ann. Biomed. Eng., 32(11), pp. 1484–1493. [CrossRef] [PubMed]
Sunamura, M. , Ishibashi, H. , and Karino, T. , 2007, “ Flow Patterns and Preferred Sites of Intimal Thickening in Diameter-Mismatched Vein Graft Interpositions,” Surgery, 141(6), pp. 764–776. [CrossRef] [PubMed]
Sunamura, M. , Ishibashi, H. , and Karino, T. , 2012, “ Flow Patterns and Preferred Sites of Intimal Thickening in Bypass-Grafted Arteries,” Int. Angiol., 31(2), pp. 187–197. https://www.ncbi.nlm.nih.gov/pubmed/22466986 [PubMed]
Clerin, V. , Gusic, R. J. , O'Brien, J. , Kirshbom, P. M. , Myung, R. J. , Gaynor, J. W. , and Gooch, K. J. , 2002, “ Mechanical Environment, Donor Age, and Presence of Endothelium Interact to Modulate Porcine Artery Viability Ex Vivo,” Ann. Biomed. Eng., 30(9), pp. 1117–1127. [CrossRef] [PubMed]
Porter, K. E. , Nydahl, S. , Dunlop, P. , Varty, K. , Thrush, A. J. , and London, N. J. , 1996, “ The Development of an In Vitro Flow Model of Human Saphenous Vein Graft Intimal Hyperplasia,” Cardiovasc. Res., 31(4), pp. 607–614. [CrossRef] [PubMed]
Gosling, M. , Golledge, J. , Turner, R. J. , and Powell, J. T. , 1999, “ Arterial Flow Conditions Downregulate Thrombomodulin on Saphenous Vein Endothelium,” Circulation, 99(8), pp. 1047–1053.
Berard, X. , Deglise, S. , Alonso, F. , Saucy, F. , Meda, P. , Bordenave, L. , Corpataux, J. M. , and Haefliger, J. A. , 2013, “ Role of Hemodynamic Forces in the Ex Vivo Arterialization of Human Saphenous Veins,” J. Vasc. Surg., 57(5), pp. 1371–1382. [CrossRef] [PubMed]
Davies, P. F. , 1995, “ Flow-Mediated Endothelial Mechanotransduction,” Physiol. Rev., 75(3), pp. 519–560. https://www.ncbi.nlm.nih.gov/pubmed/7624393 [PubMed]
Abe, J. , and Berk, B. C. , 2014, “ Novel Mechanisms of Endothelial Mechanotransduction,” Arterioscler., Thromb., Vasc. Biol., 34(11), pp. 2378–2386. [CrossRef]
Noris, M. , Morigi, M. , Donadelli, R. , Aiello, S. , Foppolo, M. , Todeschini, M. , Orisio, S. , Remuzzi, G. , and Remuzzi, A. , 1995, “ Nitric Oxide Synthesis by Cultured Endothelial Cells Is Modulated by Flow Conditions,” Circ. Res., 76(4), pp. 536–543. [CrossRef] [PubMed]
Frangos, J. A. , Eskin, S. G. , McIntire, L. V. , and Ives, C. L. , 1985, “ Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells,” Science, 227(4693), pp. 1477–1479. [CrossRef] [PubMed]
Kuchan, M. J. , and Frangos, J. A. , 1993, “ Shear Stress Regulates Endothelin-1 Release Via Protein Kinase C and cGMP in Cultured Endothelial Cells,” Am. J. Physiol., 264(1 Pt. 2), pp. H150–H156. https://www.ncbi.nlm.nih.gov/pubmed/8381608 [PubMed]
Honda, H. M. , Hsiai, T. , Wortham, C. M. , Chen, M. , Lin, H. , Navab, M. , and Demer, L. L. , 2001, “ A Complex Flow Pattern of Low Shear Stress and Flow Reversal Promotes Monocyte Binding to Endothelial Cells,” Atherosclerosis, 158(2), pp. 385–390. [CrossRef] [PubMed]
da Silva, R. F. , Chambaz, C. , Stergiopulos, N. , Hayoz, D. , and Silacci, P. , 2007, “ Transcriptional and Post-Transcriptional Regulation of Preproendothelin-1 by Plaque-Prone Hemodynamics,” Atherosclerosis, 194(2), pp. 383–390. [CrossRef] [PubMed]
Papadaki, M. , McIntire, L. V. , and Eskin, S. G. , 1996, “ Effects of Shear Stress on the Growth Kinetics of Human Aortic Smooth Muscle Cells In Vitro,” Biotechnol. Bioeng., 50(5), pp. 555–561. [CrossRef] [PubMed]
Shi, Z. D. , and Tarbell, J. M. , 2011, “ Fluid Flow Mechanotransduction in Vascular Smooth Muscle Cells and Fibroblasts,” Ann. Biomed. Eng., 39(6), pp. 1608–1619. [CrossRef] [PubMed]
Milesi, V. , Rebolledo, A. , Ayala Paredes, F. , Sanz, N. , Tommasi, J. , Rinaldi, G. J. , and Grassi, A. O. , 1998, “ Mechanical Properties of Human Saphenous Veins From Normotensive and Hypertensive Patients,” Ann. Thorac. Surg., 66(2), pp. 455–461. [CrossRef] [PubMed]
Tineli, R. A. , Viaro, F. , Dalio, M. B. , Reis, G. S. , Basseto, S. , Vicente, W. V. , Rodrigues, A. J. , and Evora, P. R. , 2007, “ Mechanical Forces and Human Saphenous Veins: Coronary Artery Bypass Graft Implications,” Rev. Bras. Cir. Cardiovasc., 22(1), pp. 87–95. [CrossRef] [PubMed]
Schwartz, E. A. , Bizios, R. , and Gerritsen, M. E. , 1999, “ Effects of Hydrostatic Pressure on Endothelial Cells,” Endothelium and Mechanical Forces, P. Lelkes , ed., Harwood Academic Publishers, London, pp. 275–290.
Shin, H. Y. , Gerritsen, M. E. , and Bizios, R. , 2002, “ Regulation of Endothelial Cell Proliferation and Apoptosis by Cyclic Pressure,” Ann. Biomed. Eng., 30(3), pp. 297–304. [CrossRef] [PubMed]
Stover, J. , and Nagatomi, J. , 2007, “ Cyclic Pressure Stimulates DNA Synthesis Through the PI3K/Akt Signaling Pathway in Rat Bladder Smooth Muscle Cells,” Ann. Biomed. Eng., 35(9), pp. 1585–1594. [CrossRef] [PubMed]
Powell, J. T. , and Gosling, M. , 1998, “ Molecular and Cellular Changes in Vein Grafts: Influence of Pulsatile Stretch,” Curr. Opin. Cardiol., 13(6), pp. 453–458. [CrossRef] [PubMed]
Cornelissen, J. , Armstrong, J. , and Holt, C. M. , 2004, “ Mechanical Stretch Induces Phosphorylation of p38-MAPK and Apoptosis in Human Saphenous Vein,” Arterioscler., Thromb., Vasc. Biol., 24(3), pp. 451–456. [CrossRef]
Ross, R. , Glomset, J. , and Harker, L. , 1977, “ Response to Injury and Atherogenesis,” Am. J. Pathol., 86(3), pp. 675–684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2032127/ [PubMed]
Predel, H. G. , Yang, Z. , von Segesser, L. , Turina, M. , Buhler, F. R. , and Luscher, T. F. , 1992, “ Implications of Pulsatile Stretch on Growth of Saphenous Vein and Mammary Artery Smooth Muscle,” Lancet, 340(8824), pp. 878–879. [CrossRef] [PubMed]
Stark, G. B. , 1986, “ Rapid Elongation of Arteries and Veins in Rats With a Tissue Expander,” Plast. Reconstr. Surg., 30(4), pp. 570–578. https://www.ncbi.nlm.nih.gov/pubmed/3659168
Jackson, Z. S. , Dajnowiec, D. , Gotlieb, A. I. , and Langille, B. L. , 2005, “ Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity,” Arterioscler. Thromb. Vasc. Biol., 25(5), pp. 957–962. [CrossRef] [PubMed]
Clerin, V. , Nichol, J. W. , Petko, M. , Myung, R. J. , Gaynor, J. W. , and Gooch, K. J. , 2003, “ Tissue Engineering of Arteries by Directed Remodeling of Intact Arterial Segments,” Tissue Eng., 9(3), pp. 461–472. [CrossRef] [PubMed]
Han, H. C. , Ku, D. N. , and Vito, R. P. , 2003, “ Arterial Wall Adaptation Under Elevated Longitudinal Stretch in Organ Culture,” Ann. Biomed. Eng., 31(4), pp. 403–411. [CrossRef] [PubMed]
Nichol, J. W. , Petko, M. , Myung, R. J. , Gaynor, J. W. , and Gooch, K. J. , 2005, “ Hemodynamic Conditions Alter Axial and Circumferential Remodeling of Arteries Engineered Ex Vivo,” Ann. Biomed. Eng., 33(6), pp. 721–732. [CrossRef] [PubMed]
Guo, H. , Humphrey, J. D. , and Davis, M. J. , 2007, “ Effects of Biaxial Stretch on Arteriolar Function In Vitro,” Am. J. Physiol. Heart Circ. Physiol., 292(5), pp. H2378–H2386.
Davis, N. P. , Han, H. C. , Wayman, B. , and Vito, R. , 2005, “ Sustained Axial Loading Lengthens Arteries in Organ Culture,” Ann. Biomed. Eng., 33(7), pp. 867–877. [CrossRef] [PubMed]
Gleason, R. L. , Wilson, E. , and Humphrey, J. D. , 2007, “ Biaxial Biomechanical Adaptations of Mouse Carotid Arteries Cultured at Altered Axial Extension,” J. Biomech., 40(4), pp. 766–776. [CrossRef] [PubMed]
Nichol, J. W. , Khan, A. R. , Birbach, M. , Gaynor, J. W. , and Gooch, K. J. , 2008, “ Hemodynamics and Axial Strain Additively Increase Matrix Remodeling and MMP-9, But Not MMP-2, Expression in Arteries Engineered by Directed Remodeling,” Tissue Eng. Part A, 15(6), pp. 1281–1290.
Lawrence, A. R. , and Gooch, K. J. , 2009, “ Transmural Pressure and Axial Loading Interactively Regulate Arterial Remodeling Ex Vivo,” Am. J. Physiol. Heart Circ. Physiol., 297(1), pp. H475–H484. [CrossRef] [PubMed]
Frobert, O. , Mikkelsen, E. O. , Gregersen, H. , Nyborg, N. C. , and Bagger, J. P. , 1996, “ Porcine Coronary Artery Pharmacodynamics In Vitro Evaluated by a New Intravascular Technique: Relation to Axial Stretch,” J. Pharmacol. Toxicol. Methods, 36(1), pp. 13–19. [CrossRef] [PubMed]
Frobert, O. , Mikkelsen, E. O. , and Bagger, J. P. , 1999, “ The Influence of Transmural Pressure and Longitudinal Stretch on K+- and Ca2+-Induced Coronary Artery Constriction,” Acta Physiol. Scand., 165(4), pp. 379–385. [CrossRef] [PubMed]
Zulliger, M. A. , Kwak, N. T. , Tsapikouni, T. , and Stergiopulos, N. , 2002, “ Effects of Longitudinal Stretch on VSM Tone and Distensibility of Muscular Conduit Arteries,” Am. J. Physiol.: Heart Circ. Physiol., 283(6), pp. H2599–H2605. [CrossRef] [PubMed]
Abbott, W. M. , Megerman, J. , Hasson, J. E. , L'Italien, G. , and Warnock, D. F. , 1987, “ Effect of Compliance Mismatch on Vascular Graft Patency,” J. Vasc. Surg., 5(2), pp. 376–382. [CrossRef] [PubMed]
Wu, M. H. , Shi, Q. , Sauvage, L. R. , Kaplan, S. , Hayashida, N. , Patel, M. D. , Wechezak, A. R. , and Walker, M. W. , 1993, “ The Direct Effect of Graft Compliance Mismatch Per Se on Development of Host Arterial Intimal Hyperplasia at the Anastomotic Interface,” Ann. Vasc. Surg., 7(2), pp. 156–168. [CrossRef] [PubMed]
Sieminski, A. L. , Hebbel, R. P. , and Gooch, K. J. , 2004, “ The Relative Magnitudes of Endothelial Force Generation and Matrix Stiffness Modulate Capillary Morphogenesis In Vitro,” Exp. Cell Res., 297(2), pp. 574–584. [CrossRef] [PubMed]
Reinhart-King, C. A. , Dembo, M. , and Hammer, D. A. , 2005, “ The Dynamics and Mechanics of Endothelial Cell Spreading,” Biophys. J., 89(1), pp. 676–689. [CrossRef] [PubMed]
Byfield, F. J. , Reen, R. K. , Shentu, T. P. , Levitan, I. , and Gooch, K. J. , 2009, “ Endothelial Actin and Cell Stiffness Is Modulated by Substrate Stiffness in 2D and 3D,” J. Biomech., 42(8), pp. 1114–1119. [CrossRef] [PubMed]
Herrick, W. G. , Rattan, S. , Nguyen, T. V. , Grunwald, M. S. , Barney, C. W. , Crosby, A. J. , and Peyton, S. R. , 2015, “ Smooth Muscle Stiffness Sensitivity Is Driven by Soluble and Insoluble ECM Chemistry,” Cell. Mol. Bioeng., 8(3), pp. 333–348. [CrossRef] [PubMed]
Peyton, S. R. , Kim, P. D. , Ghajar, C. M. , Seliktar, D. , and Putnam, A. J. , 2008, “ The Effects of Matrix Stiffness and RhoA on the Phenotypic Plasticity of Smooth Muscle Cells in a 3-D Biosynthetic Hydrogel System,” Biomaterials, 29(17), pp. 2597–2607. [CrossRef] [PubMed]
Joddar, B. , Shaffer, R. J. , Reen, R. K. , and Gooch, K. J. , 2011, “ Arterial pO2 Stimulates Intimal Hyperplasia and Serum Stimulates Inward Eutrophic Remodeling in Porcine Saphenous Veins Cultured Ex Vivo,” Biomech. Model. Mechanobiol., 10(2), pp. 161–175. [CrossRef] [PubMed]
Joddar, B. , Firstenberg, M. S. , Reen, R. K. , Varadharaj, S. , Khan, M. , Childers, R. C. , Zweier, J. L. , and Gooch, K. J. , 2015, “ Arterial Levels of Oxygen Stimulate Intimal Hyperplasia in Human Saphenous Veins Via a ROS-Dependent Mechanism,” PLoS One, 10(3), p. e0120301. [CrossRef] [PubMed]
Joddar, B. , Reen, R. K. , Firstenberg, M. S. , Varadharaj, S. , McCord, J. M. , Zweier, J. L. , and Gooch, K. J. , 2011, “ Protandim Attenuates Intimal Hyperplasia in Human Saphenous Veins Cultured Ex Vivo Via a Catalase-Dependent Pathway,” Free Radical Biol. Med., 50(6), pp. 700–709. [CrossRef]
Stooker, W. , Niessen, H. W. , Baidoshvili, A. , Wildevuur, W. R. , Van Hinsbergh, V. W. , Fritz, J. , Wildevuur, C. R. , and Eijsman, L. , 2001, “ Perivenous Support Reduces Early Changes in Human Vein Grafts: Studies in Whole Blood Perfused Human Vein Segments,” J. Thorac. Cardiovasc. Surg., 121(2), pp. 290–297. [CrossRef] [PubMed]
El-Kurdi, M. S. , Hong, Y. , Stankus, J. J. , Soletti, L. , Wagner, W. R. , and Vorp, D. A. , 2008, “ Transient Elastic Support for Vein Grafts Using a Constricting Microfibrillar Polymer Wrap,” Biomaterials, 29(22), pp. 3213–3220. [CrossRef] [PubMed]
Murphy, G. J. , Newby, A. C. , Jeremy, J. Y. , Baumbach, A. , and Angelini, G. D. , 2007, “ A Randomized Trial of an External Dacron Sheath for the Prevention of Vein Graft Disease: The Extent Study,” J. Thorac. Cardiovasc. Surg., 134(2), pp. 504–505. [CrossRef] [PubMed]
Hinrichs, W. L. , Zweep, H. P. , Satoh, S. , Feijen, J. , and Wildevuur, C. R. , 1994, “ Supporting, Microporous, Elastomeric, Degradable Prostheses to Improve the Arterialization of Autologous Vein Grafts,” Biomaterials, 15(2), pp. 83–91. [CrossRef] [PubMed]
Ben-Gal, Y. , Taggart, D. P. , Williams, M. R. , Orion, E. , Uretzky, G. , Shofti, R. , Banai, S. , Yosef, L. , and Bolotin, G. , 2013, “ Expandable External Support Device to Improve Saphenous Vein Graft Patency After CABG,” J. Cardiothorac. Surg., 8, p. 122. [CrossRef] [PubMed]
Meirson, T. , Orion, E. , and Avrahami, I. , 2015, “ Numerical Analysis of Venous External Scaffolding Technology for Saphenous Vein Grafts,” J. Biomech., 48(10), pp. 2090–2095. [CrossRef] [PubMed]
Stooker, W. , Niessen, H. W. , Jansen, E. K. , Fritz, J. , Wildevuur, W. R. , Van Hinsbergh, V. W. , Wildevuur, Ch., R. , and Eijsman, L. , 2003, “ Surgical Sealant in the Prevention of Early Vein Graft Injury in an Ex Vivo Model,” Cardiovasc. Pathol., 12(4), pp. 202–206. [CrossRef] [PubMed]
Stooker, W. , Niessen, H. W. , Wildevuur, W. R. , van Hinsbergh, V. W. , Fritz, J. , Jansen, E. K. , Wildevuur, Ch., R. , and Eijsman, L. , 2002, “ Perivenous Application of Fibrin Glue Reduces Early Injury to the Human Saphenous Vein Graft Wall in an Ex Vivo Model,” Eur. J. Cardiothorac. Surg., 21(2), pp. 212–217. [CrossRef] [PubMed]
Liu, S. Q. , 1998, “ Prevention of Focal Intimal Hyperplasia in Rat Vein Grafts by Using a Tissue Engineering Approach,” Atherosclerosis, 140(2), pp. 365–377. [CrossRef] [PubMed]
Barra, J. A. , Volant, A. , Leroy, J. P. , Braesco, J. , Airiau, J. , Boschat, J. , Blanc, J. J. , and Penther, P. , 1986, “ Constrictive Perivenous Mesh Prosthesis for Preservation of Vein Integrity. Experimental Results and Application for Coronary Bypass Grafting,” J. Thorac. Cardiovasc. Surg., 92(3 Pt. 1), pp. 330–336. https://www.ncbi.nlm.nih.gov/pubmed/3528676 [PubMed]
Moore, M. M. , Goldman, J. , Patel, A. R. , Chien, S. , and Liu, S. Q. , 2001, “ Role of Tensile Stress and Strain in the Induction of Cell Death in Experimental Vein Grafts,” J. Biomech., 34(3), pp. 289–297. [CrossRef] [PubMed]
Goldman, J. , Zhong, L. , and Liu, S. Q. , 2003, “ Degradation of Alpha-Actin Filaments in Venous Smooth Muscle Cells in Response to Mechanical Stretch,” Am. J. Physiol.: Heart Circ. Physiol., 284(5), pp. H1839–H1847. [CrossRef] [PubMed]
Liu, S. Q. , Ruan, Y. Y. , Tang, D. , Li, Y. C. , Goldman, J. , and Zhong, L. , 2002, “ A Possible Role of Initial Cell Death Due to Mechanical Stretch in the Regulation of Subsequent Cell Proliferation in Experimental Vein Grafts,” Biomech. Model. Mechanobiol., 1(1), pp. 17–27. [CrossRef] [PubMed]
George, S. J. , Izzat, M. B. , Gadsdon, P. , Johnson, J. L. , Yim, A. P. , Wan, S. , Newby, A. C. , Angelini, G. D. , and Jeremy, J. Y. , 2001, “ Macro-Porosity Is Necessary for the Reduction of Neointimal and Medial Thickening by External Stenting of Porcine Saphenous Vein Bypass Grafts,” Atherosclerosis, 155(2), pp. 329–336. [CrossRef] [PubMed]
Mehta, D. , George, S. J. , Jeremy, J. Y. , Izzat, M. B. , Southgate, K. M. , Bryan, A. J. , Newby, A. C. , and Angelini, G. D. , 1998, “ External Stenting Reduces Long-Term Medial and Neointimal Thickening and Platelet Derived Growth Factor Expression in a Pig Model of Arteriovenous Bypass Grafting,” Nat. Med., 4(2), pp. 235–239. [CrossRef] [PubMed]
Angelini, G. D. , Izzat, M. B. , Bryan, A. J. , and Newby, A. C. , 1996, “ External Stenting Reduces Early Medial and Neointimal Thickening in a Pig Model of Arteriovenous Bypass Grafting,” J. Thorac. Cardiovasc. Surg., 112(1), pp. 79–84. [CrossRef] [PubMed]
Taggart, D. P. , Ben Gal, Y. , Lees, B. , Patel, N. , Webb, C. , Rehman, S. M. , Desouza, A. , Yadav, R. , De Robertis, F. , Dalby, M. , Banning, A. , Channon, K. M. , Di Mario, C. , and Orion, E. , 2015, “ A Randomized Trial of External Stenting for Saphenous Vein Grafts in Coronary Artery Bypass Grafting,” Ann. Thorac. Surg., 99(6), pp. 2039–2045. [CrossRef] [PubMed]
Owida, A. A. , Do, H. , and Morsi, Y. S. , 2012, “ Numerical Analysis of Coronary Artery Bypass Grafts: An Over View,” Comput. Methods Programs Biomed., 108(2), pp. 689–705. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Histology of typical human SV freshly harvested from the venous circulation (a) and harvested 6 months after CABG (b). Note in the grafted vein significant neointima formation above the internal elastic lamina and medial thickening. Figure modified from Ref. [27].

Grahic Jump Location
Fig. 2

Effects of preparation technique on vein structure. Relative to SV isolated using the no touch technique (a), the conventional technique (b) removes significantly more of the adventia. In conventional technique, manual distension using a syringe to exert hydrostatic pressure is used. (Reproduced with permission from Souza et al. [47]. Copyright 2006 by Elsevier.)

Grahic Jump Location
Fig. 3

Summary of stresses on a vessel with an inner radius ri and outer radius ro due to a volumetric flow Q with viscosity μ, transmural pressure P, and axial force F

Grahic Jump Location
Fig. 4

Compliance pressure curves for human SV, iliac artery, and three vascular graft materials (poly(carbonate)polyurethane, Dacron, and expanded polytetrafluorethylene) (Reproduced with permission from Tai et al. [44]. Copyright 2000 by John Wiley and Sons.)

Grahic Jump Location
Fig. 5

Computationally modeled stress distribution in an end-to-side Dacron graft to artery anastomosis. Stresses are concentrated at suture attachment points, and are up to eight times greater than stresses within the host artery. (Reproduced with permission from Ballyk et al. [70]. Copyright 1998 by Elsevier.)

Grahic Jump Location
Fig. 6

Computationally modeled average wall shear stress profiles for rigid (a) and distensible (b) end-to-side anastomoses. Shear stress magnitude is represented by the length of lines on the vessel wall, and lines on the outside of the wall represent positive shear stress resulting from flow toward the outlet of the vessel. The differences between the rigid and distensible cases are also plotted (c) where lines on the inside of the vessel represent shear stress in the distensible case being less than in the rigid case. (Reproduced with permission from Steinman et al. [71]. Copyright 1994 by ASME.)

Grahic Jump Location
Fig. 7

Pressure–diameter relationship for human SV with (filled symbols) and without (open symbols) prior manual distension (Reproduced with permission from Zhao et al. [41]. Copyright 2007 by Elsevier.)

Grahic Jump Location
Fig. 8

Wall thickness as a function of longitudinal position in vein graft with diameter mismatch. Total wall thickness was the greatest in the region downstream from the flow expansion (region B), where localized IH was also present. (Reproduced with permission from Sunamura et al. [117]. Copyright 2007 by Elsevier.)

Grahic Jump Location
Fig. 9

Porcine SV perfused ex vivo. (a) Intimal area/medial area (a marker of intimal area that accounts for different size vessels) as a function of calculated flow-induced shear stress. The horizontal dotted line represents the value for SV freshly isolated from the animal. (b) Medial area as a function of average transmural pressure. (Reproduced with permission from Gusic et al. [42]. Copyright 2005 by Elsevier.)

Grahic Jump Location
Fig. 10

(a) Histological appearance of porcine SV cultured ex vivo with venous (40 mmHg) pO2 is indistinguishable from freshly isolated SV and has intact internal elastic lamina and thin intima. (b) SV cultured ex vivo with arterial (95 mmHg) pO2 exhibits disrupted internal elastic lamina, apparent invasion of cells and tissues from media to intima, and intimal thickening. Oxygen levels have a dose-dependent effect on (c) intimal thickening and cellular proliferation (d) in the media (filled bars) and intima (open bars) [161].



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In