Research Papers

Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits

[+] Author and Article Information
Swithin S. Razu

Department of Bioengineering,
University of Missouri,
801 Clark Hall,
Columbia, MO 65211-4250
e-mail: swithinr@health.missouri.edu

Trent M. Guess

Department of Physical Therapy,
University of Missouri,
801 Clark Hall,
Columbia, MO 65211-4250;
Department of Orthopaedic Surgery,
University of Missouri,
1100 Virginia Ave,
Columbia, MO 65201
e-mail: guesstr@health.missouri.edu

1Corresponding author.

Manuscript received June 8, 2017; final manuscript received October 25, 2017; published online May 18, 2018. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 140(7), 071012 (May 18, 2018) (8 pages) Paper No: BIO-17-1248; doi: 10.1115/1.4038507 History: Received June 08, 2017; Revised October 25, 2017

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Kellett, C. F. , Short, A. , Price, A. , Gill, H. S. , and Murray, D. W. , 2004, “ In Vivo Measurement of Total Knee Replacement Wear,” Knee, 11(3), pp. 183–187. [CrossRef] [PubMed]
Sathasivam, S. , and Walker, P. S. , 1998, “ Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees,” J. Orthop. Res., 16(5), pp. 564–571. [CrossRef] [PubMed]
Wimmer, M. A. , and Andriacchi, T. P. , 1997, “ Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement,” J. Biomech., 30(2), pp. 131–137. [CrossRef] [PubMed]
Andriacchi, T. P. , Mundermann, A. , Smith, R. L. , Alexander, E. J. , Dyrby, C. O. , and Koo, S. , 2004, “ A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee,” Ann. Biomed. Eng., 32(3), pp. 447–457. [CrossRef] [PubMed]
Zhang, L. , Hu, J. , and Athanasiou, K. A. , 2009, “ The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration,” Crit. Rev. Biomed. Eng., 37(1–2), pp. 1–57. [CrossRef] [PubMed]
D'Lima, D. D. , Townsend, C. P. , Arms, S. W. , Morris, B. A. , and Colwell , and C. W., Jr ., 2005, “ An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces,” J. Biomech., 38(2), pp. 299–304. [CrossRef] [PubMed]
Kutzner, I. , Heinlein, B. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, A. , Beier, A. , and Bergmann, G. , 2010, “ Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects,” J. Biomech., 43(11), pp. 2164–2173. [CrossRef] [PubMed]
Ding, Z. , Nolte, D. , Kit Tsang, C. , Cleather, D. J. , Kedgley, A. E. , and Bull, A. M. , 2016, “ In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model,” ASME J. Biomech. Eng., 138(2), p. 021018. [CrossRef]
Jung, Y. , Phan, C. B. , and Koo, S. , 2016, “ Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model,” ASME J. Biomech. Eng., 138(2), p. 021016. [CrossRef]
Moissenet, F. , Cheze, L. , and Dumas, R. , 2016, “ Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model,” ASME J. Biomech. Eng., 138(2), p. 021019. [CrossRef]
Smith, C. R. , Vignos, M. F. , Lenhart, R. L. , Kaiser, J. , and Thelen, D. G. , 2016, “ The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement,” ASME J. Biomech. Eng., 138(2), p. 021017. [CrossRef]
Erdemir, A. , McLean, S. , Herzog, W. , and van den Bogert, A. J. , 2007, “ Model-Based Estimation of Muscle Forces Exerted During Movements,” Clin. Biomech., 22(2), pp. 131–154. [CrossRef]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Kuo, A. D. , 1998, “ A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations,” ASME J. Biomech. Eng., 120(1), pp. 148–159. [CrossRef]
Lloyd, D. G. , and Buchanan, T. S. , 1996, “ A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks,” ASME J. Biomech. Eng., 118(3), pp. 367–376. [CrossRef]
Lloyd, D. G. , and Besier, T. F. , 2003, “ An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo,” J. Biomech., 36(6), pp. 765–776. [CrossRef] [PubMed]
Manal, K. , and Buchanan, T. S. , 2013, “ An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns,” ASME J. Biomech. Eng., 135(2), p. 021014. [CrossRef]
Higginson, J. S. , Ramsay, J. W. , and Buchanan, T. S. , 2012, “ Hybrid Models of the Neuromusculoskeletal System Improve Subject-Specificity,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 226(2), pp. 113–119. [CrossRef]
Sartori, M. , Farina, D. , and Lloyd, D. G. , 2014, “ Hybrid Neuromusculoskeletal Modeling to Best Track Joint Moments Using a Balance Between Muscle Excitations Derived From Electromyograms and Optimization,” J. Biomech., 47(15), pp. 3613–3621. [CrossRef] [PubMed]
Mansouri, M. , Clark, A. E. , Seth, A. , and Reinbolt, J. A. , 2016, “ Rectus Femoris Transfer Surgery Affects Balance Recovery in Children With Cerebral Palsy: A Computer Simulation Study,” Gait Posture, 43, pp. 24–30. [CrossRef] [PubMed]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Dynamic Optimization of Human Walking,” ASME J. Biomech. Eng., 123(5), pp. 381–390. [CrossRef]
Ackermann, M. , and van den Bogert, A. J. , 2010, “ Optimality Principles for Model-Based Prediction of Human Gait,” J. Biomech., 43(6), pp. 1055–1060. [CrossRef] [PubMed]
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads,” J. Orthop. Res., 30(4), pp. 503–513. [CrossRef] [PubMed]
Kinney, A. L. , Besier, T. F. , D'Lima, D. D. , and Fregly, B. J. , 2013, “ Update on Grand Challenge Competition to Predict In Vivo Knee Loads,” ASME J. Biomech. Eng., 135(2), p. 021012. [CrossRef]
Meyer, A. J. , D'Lima, D. D. , Banks, S. A. , Coburn, J. , Harman, M. , Mikashima, Y. , and Fregly, B. J. , 2011, “ Evaluation Regression Equations Medial Lateral Contact Force From Instrumented Knee Implant Data,” ASME Paper No. SBC2011-53938.
Guess, T. M. , Stylianou, A. P. , and Kia, M. , 2014, “ Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait,” ASME J. Biomech. Eng., 136(2), p. 021032. [CrossRef]
Kia, M. , Stylianou, A. P. , and Guess, T. M. , 2014, “ Evaluation of a Musculoskeletal Model With Prosthetic Knee Through Six Experimental Gait Trials,” Med. Eng. Phys., 36(3), pp. 335–344. [CrossRef] [PubMed]
Meister, B. R. , Michael, S. P. , Moyer, R. A. , Kelly, J. D. , and Schneck, C. D. , 2000, “ Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee,” Am. J. Sports Med., 28(6), pp. 869–878. [CrossRef] [PubMed]
Park, S. E. , DeFrate, L. E. , Suggs, J. F. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2005, “ The Change in Length of the Medial and Lateral Collateral Ligaments During In Vivo Knee Flexion,” Knee, 12(5), pp. 377–382. [CrossRef] [PubMed]
Hartshorn, T. , Otarodifard, K. , White, E. A. , and Hatch , G. F., III , 2013, “ Radiographic Landmarks for Locating the Femoral Origin of the Superficial Medial Collateral Ligament,” Am. J. Sports Med., 41(11), pp. 2527–2532. [CrossRef] [PubMed]
LaPrade, R. F. , Engebretsen, A. H. , Ly, T. V. , Johansen, S. , Wentorf, F. A. , and Engebretsen, L. , 2007, “ The Anatomy of the Medial Part of the Knee,” J. Bone Jt. Surg. Am., 89(9), pp. 2000–2010.
Amis, A. A. , Firer, P. , Mountney, J. , Senavongse, W. , and Thomas, N. P. , 2003, “ Anatomy and Biomechanics of the Medial Patellofemoral Ligament,” Knee, 10(3), pp. 215–220. [CrossRef] [PubMed]
Stephen, J. M. , Lumpaopong, P. , Deehan, D. J. , Kader, D. , and Amis, A. A. , 2012, “ The Medial Patellofemoral Ligament: Location of Femoral Attachment and Length Change Patterns Resulting From Anatomic and Nonanatomic Attachments,” Am. J. Sports Med., 40(8), pp. 1871–1879. [CrossRef] [PubMed]
Viste, A. , Chatelet, F. , Desmarchelier, R. , and Fessy, M. H. , 2014, “ Anatomical Study of the Medial Patello-Femoral Ligament: Landmarks for Its Surgical Reconstruction,” Surg. Radiol. Anat., 36(8), pp. 733–739. [CrossRef] [PubMed]
Bowman , K. F., Jr ., and Sekiya, J. K. , 2009, “ Anatomy and Biomechanics of the Posterior Cruciate Ligament and Other Ligaments of the Knee,” Oper. Tech. Sports Med., 17(3), pp. 126–134. [CrossRef]
Chandrasekaran, S. , Ma, D. , Scarvell, J. M. , Woods, K. R. , and Smith, P. N. , 2012, “ A Review of the Anatomical, biomechanical and Kinematic Findings of Posterior Cruciate Ligament Injury With Respect to Non-Operative Management,” Knee, 19(6), pp. 738–745. [CrossRef] [PubMed]
Race, A. , and Amis, A. A. , 1994, “ The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament,” J. Biomech., 27(1), pp. 13–24. [CrossRef] [PubMed]
Osti, M. , Tschann, P. , Kunzel, K. H. , and Benedetto, K. P. , 2012, “ Anatomic Characteristics and Radiographic References of the Anterolateral and Posteromedial Bundles of the Posterior Cruciate Ligament,” Am. J. Sports Med., 40(7), pp. 1558–1563. [CrossRef] [PubMed]
Liu, F. , Gadikota, H. R. , Kozanek, M. , Hosseini, A. , Yue, B. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2011, “ In Vivo Length Patterns of the Medial Collateral Ligament During the Stance Phase of Gait,” Knee Surg. Sports Traumatol. Arthroscopy, 19(5), pp. 719–727. [CrossRef]
Liu, F. , Yue, B. , Gadikota, H. R. , Kozanek, M. , Liu, W. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2010, “ Morphology of the Medial Collateral Ligament of the Knee,” J. Orthop. Surg. Res., 5, p. 69. [CrossRef] [PubMed]
Blankevoort, L. , and Huiskes, R. , 1991, “ Ligament-Bone Interaction in a Three-Dimensional Model of the Knee,” ASME J. Biomech. Eng., 113(3), pp. 263–269. [CrossRef]
Hara, K. , Mochizuki, T. , Sekiya, I. , Yamaguchi, K. , Akita, K. , and Muneta, T. , 2009, “ Anatomy of Normal Human Anterior Cruciate Ligament Attachments Evaluated by Divided Small Bundles,” Am. J. Sports Med., 37(12), pp. 2386–2391. [CrossRef] [PubMed]
Petersen, W. , and Zantop, T. , 2007, “ Anatomy of the Anterior Cruciate Ligament With Regard to Its Two Bundles,” Clin. Orthop. Relat. Res., 454, pp. 35–47. [CrossRef] [PubMed]
Robinson, J. R. , Bull, A. M. , and Amis, A. A. , 2005, “ Structural Properties of the Medial Collateral Ligament Complex of the Human Knee,” J. Biomech., 38(5), pp. 1067–1074. [CrossRef] [PubMed]
Woo, S. L. , Abramowitch, S. D. , Kilger, R. , and Liang, R. , 2006, “ Biomechanics of Knee Ligaments: Injury, Healing, and Repair,” J. Biomech., 39(1), pp. 1–20. [CrossRef] [PubMed]
Guess, T. M. , Razu, S. , and Jahandar, H. , 2016, “ Evaluation of Knee Ligament Mechanics Using Computational Models,” J. Knee Surg., 29(2), pp. 126–137. [CrossRef] [PubMed]
Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Cheng, H. , Obergefell, L. , and Rizer, A. , 1994, “ Generator of Body Data (GEBOD), Manual,” Defense Technical Information Center, Fort Belvoir, VA, Report No. AL/CF-TR-1994-0051. http://www.dtic.mil/docs/citations/ADA289721
Isman, R. E. , Inman, V. T. , and Poor, P. , 1969, “ Anthropometric Studies of the Human Foot and Ankle,” Bull Prosthet. Res., 11, pp. 97–129. https://www.rehab.research.va.gov/jour/69/6/1/97.pdf
Ehrig, R. M. , Taylor, W. R. , Duda, G. N. , and Heller, M. O. , 2006, “ A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints,” J. Biomech., 39(15), pp. 2798–2809. [CrossRef] [PubMed]
Ehrig, R. M. , Taylor, W. R. , Duda, G. N. , and Heller, M. O. , 2007, “ A Survey of Formal Methods for Determining Functional Joint Axes,” J. Biomech., 40(10), pp. 2150–2157. [CrossRef] [PubMed]
Thelen, D. G. , 2003, “ Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults,” ASME J. Biomech. Eng., 125(1), pp. 70–77. [CrossRef]
Winters, J. M. , 1995, “ An Improved Muscle-Reflex Actuator for Use in Large-Scale Neuro-Musculoskeletal Models,” Ann. Biomed. Eng., 23(4), pp. 359–374. [CrossRef] [PubMed]
Zajac, F. E. , 1989, “ Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng., 17(4), pp. 359–411. https://www.ncbi.nlm.nih.gov/pubmed/2676342 [PubMed]
Millard, M. , Uchida, T. , Seth, A. , and Delp, S. L. , 2013, “ Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics,” ASME J. Biomech. Eng., 135(2), p. 021005. [CrossRef]
Buchanan, T. S. , Lloyd, D. G. , Manal, K. , and Besier, T. F. , 2004, “ Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command,” J. Appl. Biomech., 20(4), pp. 367–395. [CrossRef] [PubMed]
Knowlton, C. B. , Wimmer, M. A. , and Lundberg, H. J. , 2012, “ Grand Challenge Competition: A Parametric Numerical Model to Predict Vivo Medial Lateral Knee Forces Walking Gaits,” ASME Paper No. SBC2012-80581.
Valente, G. , Pitto, L. , Testi, D. , Seth, A. , Delp, S. L. , Stagni, R. , Viceconti, M. , and Taddei, F. , 2014, “ Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?,” PLoS One, 9(11), p. e112625. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The knee model used subject-specific bone and knee prosthetic component geometries including ligaments and the patellar tendon. The knee model was integrated into a generic full-body model which included 44 muscle-tendon actuators acting about the hip, knee, and ankle. The standing radiograph was used to confirm limb alignment in the coronal plane.

Grahic Jump Location
Fig. 2

Shoe and foot model. The shoe geometry is divided into three rigid bodies: the shoe, shoe toes, and shoe tip. The foot geometry is divided into two rigid bodies: the foot body and foot toes. Deformable contacts are defined between the three shoe parts and the force plate.

Grahic Jump Location
Fig. 3

Three-dimensional model of the lower limb: (a) bony geometries including the wrapping surfaces for the pelvis, femur, and tibia, (b) wrapping surfaces for the medial and LG, and (c) via points for ankle plantar flexors

Grahic Jump Location
Fig. 4

Feedforward with feedback control scheme for calculating muscle forces and joint contact forces. The feedforward muscle scheme incorporates experimental EMG in conjunction with musculotendon (activation and contraction) dynamics to produce feedforward muscle forces. The feedback muscle scheme uses the error between the current muscle length and the desired muscle length to produce feed-back trim muscle forces. The predicted muscle forces are the sum of the feedforward muscle forces and calculated feed-back trim muscle forces.

Grahic Jump Location
Fig. 5

Medial, lateral, and total tibiofemoral contact forces compared with in vivo measurements obtained during three modifications of gait. Contact force is scaled to bodyweight with 1 BW equal to 686 N.

Grahic Jump Location
Fig. 6

Comparison of normalized experimental EMG and predicted total and feedforward muscle forces for the muscles of BFLH, MG, GMAX, SM, GMED, TA, VL, and SO for the three versions of gait. Note: scale for muscle forces of VL and SO (bottom row) is greater than scale for other muscles.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In