Research Papers

Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach

[+] Author and Article Information
Xiaoya Guo

Department of Mathematics,
Southeast University,
Nanjing 210096, China

Don P. Giddens

Department of Medicine,
Emory University School of Medicine,
Atlanta, GA 30307;
The Wallace H. Coulter Department
of Biomedical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

David Molony, Habib Samady

Department of Medicine,
Emory University School of Medicine,
Atlanta, GA 30307

Chun Yang

Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

Jie Zheng

Mallinckrodt Institute of Radiology,
Washington University,
St. Louis, MO 63110

Gary S. Mintz, Akiko Maehara

The Cardiovascular Research Foundation,
Columbia University,
New York, NY 10022

Liang Wang

Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

Xuan Pei, Zhi-Yong Li

School of Biological Science
& Medical Engineering,
Southeast University,
Nanjing 210096, China

Dalin Tang

Department of Mathematics,
Southeast University,
Nanjing 210096, China;
Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

1Corresponding author.

Manuscript received May 28, 2017; final manuscript received October 4, 2017; published online January 23, 2018. Assoc. Editor: Alison Marsden.

J Biomech Eng 140(4), 041005 (Jan 23, 2018) (12 pages) Paper No: BIO-17-1228; doi: 10.1115/1.4038263 History: Received May 28, 2017; Revised October 04, 2017

Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid–structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Gijsen, F. J. H. , and Migliavacca, F. , 2014, “ Plaque Mechanics,” J. Biomech., 47(4), pp. 763–764. [CrossRef] [PubMed]
Holzapfel, G. A. , Mulvihill, J. J. , Cunnane, E. M. , and Walsh, M. T. , 2014, “ Computational Approaches for Analyzing the Mechanics of Atherosclerotic Plaques: A Review,” J. Biomech., 47(4), pp. 859–869. [CrossRef] [PubMed]
Friedman, M. H. , Krams, R. , and Chandran, K. B. , 2010, “ Flow Interactions With Cells and Tissues: Cardiovascular Flows and Fluid-Structure Interactions,” Ann. Biomed. Eng., 38(3), pp. 1178–1187. [CrossRef] [PubMed]
Tang, D. , Kamm, R. D. , Yang, C. , Zheng, J. , Canton, G. , and Bach, R. G. , 2014, “ Image-Based Modeling for Better Understanding and Assessment of Atherosclerotic Plaque Progression and Vulnerability: Data, Modeling, Validation, Uncertainty and Predictions,” J. Biomech., 47(4), pp. 834–846. [CrossRef] [PubMed]
Cardoso, L. , and Weinbaum, S. , 2014, “ Changing Views of the Biomechanics of Vulnerable Plaque Rupture: A Review,” Ann. Biomed. Eng., 42(2), pp. 415–431. [CrossRef] [PubMed]
Mintz, G. S. , Nissen, S. E. , Anderson, W. D. , Bailey, S. R. , Erbel, R. , Fitzgerald, P. J. , Pinto, F. J. , Rosenfield, K. , Siegel, R. J. , Tuzcu, E. M. , and Yock, P. G. , 2001, “ American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents,” J. Am. Coll. Cardiol., 37(5), pp. 1478–1492. [CrossRef] [PubMed]
Nair, A. , Kuban, B. D. , Tuzcu, E. M. , Schoenhagen, P. , Nissen, S. E. , and Vince, D. G. , 2002, “ Coronary Plaque Classification With Intravascular Ultrasound Radiofrequency Data Analysis,” Circulation, 106(17), pp. 2200–2206. [CrossRef] [PubMed]
Stone, G. W. , Maehara, A. , Lansky, A. J. , de Bruyne, B. , Cristea, E. , Mintz, G. S. , Mehran, R. , McPherson, J. , Farhat, N. , Marso, S. P. , Parise, H. , Templin, B. , White, R. , Zhang, Z. , and Serruys, P. W. , 2011, “ A Prospective Natural-History Study of Coronary Atherosclerosis,” N. Engl. J. Med., 364(3), pp. 226–235. [CrossRef] [PubMed]
Stone, P. H. , Saito, S. , Takahashi, S. , Makita, Y. , Nakamura, S. , Kawasaki, T. , Takahashi, A. , Katsuki, T. , Nakamura, S. , Namiki, A. , Hirohata, A. , Matsumura, T. , Yamazaki, S. , Yokoi, H. , Tanaka, S. , Otsuji, S. , Yoshimach, F. , Honye, J. , Harwood, D. , Reitman, M. , Coskun, A. U. , Papafaklis, M. I. , and Feldman, C. L. , 2012, “ Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The Prediction Study,” Circulation, 126(2), pp. 172–181. [CrossRef] [PubMed]
Virmani, R. , Kolodgie, F. D. , Burke, A. P. , Farb, A. , and Schwartz, S. M. , 2000, “ Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions,” Arterioscler. Thromb. Vasc. Biol., 20(5), pp. 1262–1275. [CrossRef] [PubMed]
Virmani, R. , Ladich, E. R. , Burke, A. P. , and Kolodgie, F. D. , 2006, “ Histopathology of Carotid Atherosclerotic Disease,” Neurosurgery, 59(5), p. S3-13. https://www.ncbi.nlm.nih.gov/pubmed/17053606
Bourantas, C. V. , Garcia-Garcia, H. M. , Farooq, V. , Maehara, A. , Xu, K. , Généreux, P. , Diletti, R. , Muramatsu, T. , Fahy, M. , Weisz, G. , Stone, G. W. , and Serruys, P. W. , 2013, “ Clinical and Angiographic Characteristics of Patients Likely to Have Vulnerable Plaques: Analysis From the Prospect Study,” JACC: Cardiovasc. Imaging, 6(12), pp. 1263–1272. [CrossRef] [PubMed]
Brown, A. J. , Obaid, D. R. , Costopoulos, C. , Parker, R. A. , Calvert, P. A. , Teng, Z. , Hoole, S. P. , West, N. E. , Goddard, M. , and Bennett, M. R. , 2015, “ Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma,” Circ. Cardiovasc. Imaging, 8(10), p. e003487. https://www.ncbi.nlm.nih.gov/pubmed/26429760 [PubMed]
Maehara, A. , Mintz, G. S. , and Stone, G. W. , 2013, “ OCT Versus IVUS: Accuracy Versus Clinical Utility,” JACC: Cardiovasc. Imaging, 6(10), pp. 1105–1107. [CrossRef] [PubMed]
Mintz, G. S. , 2016, “ Understanding Why and When Optical Coherence Tomography Does Not Detect Vulnerable Plaques—Is it Important?,” Circ. Cardiovasc. Interventions., 9(7), p. e004144. [CrossRef]
Mintz, G. S. , 2016, “ Vulnerable Plaque Detection: When OCT is Not Enough,” JACC: Cardiovasc. Imaging., 9(2), pp. 173–175. [CrossRef] [PubMed]
Tearney, G. J. , Regar, E. , Akasaka, T. , Adriaenssens, T. , Barlis, P. , Bezerra, H. G. , Bouma, B. , Bruining, N. , Cho, J. M. , Chowdhary, S. , and Costa, M. A. , 2012, “ Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation,” J. Am. Coll. Cardiol., 59(12), pp. 1058–1072. [CrossRef] [PubMed]
Raber, L. , Heo, J. H. , Radu, M. D. , Garcia-Garcia, H. M. , Stefanini, G. G. , Moschovitis, A. , Dijkstra, J. , Kelbaek, H. , Windecker, S. , and Serruys, P. W. , 2012, “ Offline Fusion of Co-Registered Intravascular Ultrasound and Frequency Domain Optical Coherence Tomography Images for the Analysis of Human Atherosclerotic Plaques,” EuroIntervention, 8(1), pp. 98–108. [CrossRef] [PubMed]
Karanasos, A. , Schuurbiers, J. C. , Garcia-Garcia, H. M. , Simsek, C. , Onuma, Y. , Serruys, P. W. , Zijlstra, F. , van Geuns, R. J. , Regar, E. , and Wentzel, J. J. , 2015, “ Association of Wall Shear Stress With Long-Term Vascular Healing Response Following Bioresorbable Vascular Scaffold Implantation,” Int. J. Cardiol., 191, pp. 279–283. [CrossRef] [PubMed]
Bourantas, C. V. , Jaffer, F. A. , Gijsen, F. J. , van Soest, G. , Madden, S. P. , Courtney, B. K. , Fard, A. M. , Tenekecioglu, E. , Zeng, Y. , van der Steen, A. F. , and Emelianov, S. , 2016, “ Hybrid Intravascular Imaging: Recent Advances, Technical Considerations, and Current Applications in the Study of Plaque Pathophysiology,” Eur. Heart J., 38(6), pp. 400–412. https://www.ncbi.nlm.nih.gov/pubmed/27118197
Hung, O. Y. , Molony, D. , Corban, M. T. , Rasoul-Arzrumly, E. , Maynard, C. , Eshtehardi, P. , Dhawan, S. , Timmins, L. H. , Piccinelli, M. , Ahn, S. G. , and Gogas, B. D. , 2016, “ Comprehensive Assessment of Coronary Plaque Progression With Advanced Intravascular Imaging, Physiological Measures, and Wall Shear Stress: A Pilot Double-Blinded Randomized Controlled Clinical Trial of Nebivolol Versus Atenolol in Nonobstructive Coronary Artery Disease,” J. Am. Heart. Assoc., 5(1), p. e002764. [CrossRef] [PubMed]
Samady, H. , Eshtehardi, P. , McDaniel, M. C. , Suo, J. , Dhawan, S. S. , Maynard, C. , Timmins, L. H. , Quyyumi, A. A. , and Giddens, D. P. , 2011, “ Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease,” Circulation, 124(7), pp. 779–788. [CrossRef] [PubMed]
Yang, C. , Bach, R. , Zheng, J. , Naqa, I. E. , Woodard, P. K. , Teng, Z. , Billiar, K. L. , and Tang, D. , 2009, “ In Vivo IVUS-Based 3D Fluid Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis,” IEEE Trans. Biomed. Eng., 56(10), pp. 2420–2428. [CrossRef] [PubMed]
Molony, D. S. , Timmins, L. H. , Rasoul-Arzrumly, E. , Samady, H. , and Giddens, D. P. , 2016, “ Evaluation of a Framework for the Co-Registration of Intravascular Ultrasound and Optical Coherence Tomography Coronary Artery Pullbacks,” J. Biomech., 49(16), pp. 4048–4056. [CrossRef] [PubMed]
Wang, Z. , Chamie, D. , Bezerra, H. G. , Yamamoto, H. , Kanovsky, J. , Wilson, D. L. , Costa, M. A. , and Rollins, A. M. , 2012, “ Volumetric Quantification of Fibrous Caps Using Intravascular Optical Coherence Tomography,” Biomed. Opt. Express, 3(6), pp. 1413–1426. [CrossRef] [PubMed]
Wahle, A. , Prause, G. P. , von Birgelen, C. , Erbel, R. , and Sonka, M. , 1999, “ Fusion of Angiography and Intravascular Ultrasound In Vivo: Establishing the Absolute 3-D Frame Orientation,” IEEE Trans. Biomed. Eng., 46(10), pp. 1176–1180. [CrossRef] [PubMed]
Holzapfel, G. A. , 2000, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, Chichester, UK.
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “ A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity., 61(1–3), pp. 1–48. [CrossRef]
Guo, X. , Zhu, J. , Maehara, A. , Monoly, D. , Samady, H. , Wang, L. , Billiar, K. L. , Zheng, J. , Yang, C. , Mintz, G. S. , Giddens, D. P. , and Tang, D. , 2016, “ Quantify Patient-Specific Coronary Material Property and Its Impact on Stress/Strain Calculations Using In Vivo IVUS Data and 3D FSI Models: A Pilot Study,” Biomech. Model. Mechanobiol., 16(1), pp. 333–344. https://www.ncbi.nlm.nih.gov/pubmed/27561649 [PubMed]
Walsh, M. T. , Cunnane, E. M. , Mulvihill, J. J. , Akyildiz, A. C. , Gijsen, F. J. , and Holzapfel, G. A. , 2014, “ Uniaxial Tensile Testing Approaches for Characterization of Atherosclerotic Plaques,” J. Biomech., 47(4), pp. 793–804. [CrossRef] [PubMed]
Teng, Z. , Zhang, Y. , Huang, Y. , Feng, J. , Yuan, J. , Lu, Q. , Sutcliffe, M. P. , Brown, A. J. , Jing, Z. , and Gillard, J. H. , 2014, “ Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study,” Acta Biomater., 10(12), pp. 5055–5063. [CrossRef] [PubMed]
Wang, L. , Zheng, J. , Maehara, A. , Yang, C. , Billiar, K. L. , Wu, Z. , Bach, R. , Muccigrosso, D. , Mintz, G. S. , and Tang, D. , 2015, “ Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations With Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-Patient Study,” PLoS Comput. Biol., 11(12), p. e1004652. [CrossRef] [PubMed]
Teng, Z. , Tang, D. , Zheng, J. , Woodard, P. K. , and Hoffman, A. H. , 2009, “ An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions,” J. Biomech., 42(15), pp. 2535–2539. [CrossRef] [PubMed]
Mintz, G. S. , 2015, “ Optical Coherence Tomography and Virtual-Histology Intravascular Ultrasound Strange Bedfellows?… or Not?,” Circ. Cardiovasc. Imaging, 8(10), p. e004045. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 4

Three-dimensional vessel curvature reconstructed from biplane angiography: (a) reconstructed 3D curvature, (b) 3D vessel geometry with nine IVUS+OCT slices marked, (c) a angiography frame showing IVUS guidewire, and (d) vessel center line. The red part is the selected 86 slices: s50–s135 (color figure displayed online).

Grahic Jump Location
Fig. 3

IVUS and OCT segmentation, merging, and 3D reconstruction process. Slice numbers are original VH-IVUS numbers (referred to as S1–S9 in the rest of the paper): (a) selected IVUS slices, (b) matching OCT slices and segmented contours, (c) IVUS and OCT combined, after smooth (IVUS + OCT model), and (d) reconstructed 3D geometry.

Grahic Jump Location
Fig. 2

Merging VH-IVUS and OCT for more accurate cap thickness quantification (calcification ignored in this plot): (a) VH-IVUS slice, (b) contours directly from VH-IVUS showing zero cap thickness, (c) VH-IVUS contours with a thin cap added, (d) matching OCT Slice, (e) contours from OCT showing accurate cap thickness, and (f) IVUS+OCT has entire vessel with accurate cap thickness

Grahic Jump Location
Fig. 1

Plaque rupture: a coronary plaque sample with IVUS, OCT, and angiography showing rupture: (a) OCT slices showing plaque rupture, (b) matching grayscale IVUS, possible rupture identified site, (c) segmented OCT, (d) angiography, and (e) colors used in (c)

Grahic Jump Location
Fig. 5

Bar plots of mean, maximum and minimum slice cap thickness show differences from IVUS + OCT, IVUS50, and IVUS180 sets. Unit: mm. Mean cap thickness and max cap thickness are average of slice values. Min cap thickness is min of slice min cap thickness. 2P min average is the patient min cap thickness average: (a) patient 1 (nine slices), (b) patient 2 (18 slices), and (c) P1 and P2 combined (27slices).

Grahic Jump Location
Fig. 6

Stress distribution on lumen and cross section cuts showing differences from IVUS + OCT and IVUS50 models of patient 1. Bar plots of mean, maximum, and minimum cap stress are showing differences from IVUS + OCT, IVUS50 and IVUS180 models of two patients. Mean cap stress and min cap stress are average of cap values. Max cap stress is max of max slice cap stresses: (a) P1, IVUS + OCT model, stress distribution on lumen, (b) P1, IVUS50 model, stress distribution on lumen, (c) P1, IVUS + OCT model, stress on cross sections, (d) P1, IVUS50 model, stress on cross sections, (e) P1, cap stress (kPa), and (f) P2, cap stress (kPa).

Grahic Jump Location
Fig. 7

Strain distribution on lumen and cross section cuts showing differences from IVUS + OCT and IVUS50 models of patient 1. Bar plots of mean, maximum and minimum cap strain showing differences from IVUS + OCT, IVUS50, and IVUS180 models of two patients. Mean cap strain and min cap strain are average of cap values. Max cap strain is max of max slice cap strain values: (a) P1, IVUS+OCT model, stress distribution on lumen, (b) P1, IVUS50 model, stress distribution on lumen, (c) P1, IVUS+OCT model, stress on cross sections, (d) P1, IVUS50 model, stress on cross sections, (e) P1, cap strain (kPa), and (f) P2, cap strain (kPa).

Grahic Jump Location
Fig. 8

Fluid maximum shear stress (FSS) distribution on lumen and cross section cuts showing differences from IVUS + OCT and IVUS50 models of patient 1. Bar plots of mean, maximum, and minimum cap FSS showing differences from IVUS + OCT, IVUS50, and IVUS180 models of two patients. Mean cap FSS and min cap FSS are average of cap values. Max cap FSS is max of max slice cap FSS values: (a) P1, IVUS + OCT model, FSS distribution on lumen, (b) P1, IVUS50 model, FSS distribution on lumen, (c) P1, IVUS + OCT model, FSS on cross sections (dyn/cm2), (d) P1, IVUS50 model, stress on cross sections (dyn/cm2), (e) P1, FSS, and (f) P2, FSS.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In