Research Papers

Reproduction Differentially Affects Trabecular Bone Depending on Its Mechanical Versus Metabolic Role

[+] Author and Article Information
Chantal M. J. de Bakker

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: chantald@seas.upenn.edu

Wei-Ju Tseng

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: weits@pennmedicine.upenn.edu

Yihan Li

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: yihanl@seas.upenn.edu

Hongbo Zhao

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104;
Key Laboratory of Biorheological Science and
Ministry of Education and Bioengineering
Chongqing University,
Chongqing 400044, China
e-mail: zhhongbo@pennmedicine.upenn.edu

Allison R. Altman-Singles

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104;
Department of Kinesiology,
Pennsylvania State University,
Berks Campus,
Reading, PA 19610
e-mail: ara5093@psu.edu

Yonghoon Jeong

Division of Orthodontics,
College of Dentistry,
The Ohio State University,
Columbus, OH 43210
e-mail: yonghoonj@yahoo.com

Juhanna Robberts

McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: robberts@seas.upenn.edu

Lin Han

School of Biomedical Engineering,
Science, and Health Systems,
Drexel University,
Philadelphia, PA 19104
e-mail: lh535@drexel.edu

Do-Gyoon Kim

Division of Orthodontics,
College of Dentistry,
The Ohio State University,
Columbus, OH 43210
e-mail: kim.2508@osu.edu

X. Sherry Liu

McKay Orthopaedic Research Laboratory,
Perelman School of Medicine,
Department of Orthopaedic Surgery,
University of Pennsylvania,
426C Stemmler Hall,
36th Street and Hamilton Walk Philadelphia,
Philadelphia, PA 19104
e-mail: xiaoweil@pennmedicine.upenn.edu

1Corresponding author.

Manuscript received May 18, 2017; final manuscript received September 15, 2017; published online October 13, 2017. Assoc. Editor: Kyle Allen.

J Biomech Eng 139(11), 111006 (Oct 13, 2017) (10 pages) Paper No: BIO-17-1221; doi: 10.1115/1.4038110 History: Received May 18, 2017; Revised September 15, 2017

During pregnancy and lactation, the maternal skeleton provides calcium for fetal/infant growth, resulting in substantial bone loss, which partially recovers after weaning. However, the amount of bone that is lost and the extent of post-weaning recovery are highly variable among different skeletal sites, and, despite persistent alterations in bone structure at some locations, reproductive history does not increase postmenopausal fracture risk. To explain this phenomenon, we hypothesized that the degree of reproductive bone loss/recovery at trabecular sites may vary depending on the extent to which the trabecular compartment is involved in the bone’s load-bearing function. Using a rat model, we quantified the proportion of the load carried by the trabeculae, as well as the extent of reproductive bone loss and recovery, at two distinct skeletal sites: the tibia and lumbar vertebra. Both sites underwent significant bone loss during pregnancy and lactation, which was partially recovered post-weaning. However, the extent of the deterioration and the resumption of trabecular load-bearing capacity after weaning varied substantially. Tibial trabecular bone, which bore a low proportion of the total applied load, underwent dramatic and irreversible microstructural deterioration during reproduction. Meanwhile, vertebral trabecular bone bore a greater fraction of the load, underwent minimal deterioration in microarchitecture, and resumed its full load-bearing capacity after weaning. Because pregnancy and lactation are physiological processes, the distinctive responses to these natural events among different skeletal sites may help to elucidate the extent of the trabecular bone’s structural versus metabolic functions.

Copyright © 2017 by ASME
Topics: Bone , Stress
Your Session has timed out. Please sign back in to continue.


Kovacs, C. S. , 2011, “ Calcium and Bone Metabolism Disorders During Pregnancy and Lactation,” Endocrinol. Metab. Clin. North Am., 40(4), pp. 795–826. [CrossRef] [PubMed]
Kovacs, C. S. , 2016, “ Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery,” Physiol. Rev., 96(2), pp. 449–547. [CrossRef] [PubMed]
Kent, G. N. , Price, R. I. , Gutteridge, D. H. , Allen, J. R. , Barnes, M. P. , Hickling, C. J. , Retallack, R. W. , Wilson, S. G. , Devlin, R. D. , Price, R. I. , Smith, M. , Bhagat, C. I. , Davies, C. , and St. Johns, A. , 1990, “ Human Lactation: Forearm Trabecular Bone Loss, Increased Bone Turnover, and Renal Conservation of Calcium and Inorganic Phosphate With Recovery of Bone Mass Following Weaning,” J. Bone Miner. Res., 5(4), pp. 361–369. [CrossRef] [PubMed]
Sowers, M. , Corton, G. , Shapiro, B. , Jannausch, M. L. , Crutchfield, M. , Smith, M. L. , Randolph, J. F. , and Hollis, B. , 1993, “ Changes in Bone Density With Lactation,” JAMA, 269(24), pp. 3130–3135. [CrossRef] [PubMed]
Liu, X. S. , Ardeshirpour, L. , VanHouten, J. N. , Shane, E. , and Wysolmerski, J. J. , 2012, “ Site-Specific Changes in Bone Microarchitecture, Mineralization, and Stiffness During Lactation and After Weaning in Mice,” J. Bone Miner. Res., 27(4), pp. 865–875. [CrossRef] [PubMed]
VanHouten, J. N. , and Wysolmerski, J. J. , 2003, “ Low Estrogen and High Parathyroid Hormone-Related Peptide Levels Contribute to Accelerated Bone Resorption and Bone Loss in Lactating Mice,” Endocrinology, 144(12), pp. 5521–5529. [CrossRef] [PubMed]
Zeni, S. N. , Di Gregorio, S. , and Mautalen, C. , 1999, “ Bone Mass Changes During Pregnancy and Lactation in the Rat,” Bone, 25(6), pp. 681–685. [CrossRef] [PubMed]
Bowman, B. M. , Siska, C. C. , and Miller, S. C. , 2002, “ Greatly Increased Cancellous Bone Formation With Rapid Improvements in Bone Structure in the Rat Maternal Skeleton After Lactation,” J. Bone Miner. Res., 17(11), pp. 1954–1960. [CrossRef] [PubMed]
Miller, S. C. , Anderson, B. L. , and Bowman, B. M. , 2005, “ Weaning Initiates a Rapid and Powerful Anabolic Phase in the Rat Maternal Skeleton,” Biol. Reprod., 73(1), pp. 156–162. [CrossRef] [PubMed]
Miller, S. C. , and Bowman, B. M. , 2004, “ Rapid Improvements in Cortical Bone Dynamics and Structure After Lactation in Established Breeder Rats,” Anat. Rec., Part A, 276(2), pp. 143–149. [CrossRef]
Cummings, S. R. , Nevitt, M. C. , Browner, W. S. , Stone, K. , Fox, K. M. , Ensrud, K. E. , Cauley, J. , Black, D. , and Vogt, T. M. , 1995, “ Risk Factors for Hip Fracture in White Women. Study of Osteoporotic Fractures Research Group,” N. Engl. J. Med., 332(12), pp. 767–773. [CrossRef] [PubMed]
Cure-Cure, C. , Cure-Ramirez, P. , Teran, E. , and Lopez-Jaramillo, P. , 2002, “ Bone-Mass Peak in Multiparity and Reduced Risk of Bone-Fractures in Menopause,” Int. J. Gynaecol. Obstet., 76(3), pp. 285–291. [CrossRef] [PubMed]
Hillier, T. A. , Rizzo, J. H. , Pedula, K. L. , Stone, K. L. , Cauley, J. A. , Bauer, D. C. , and Cummings, S. R. , 2003, “ Nulliparity and Fracture Risk in Older Women: The Study of Osteoporotic Fractures,” J. Bone Miner. Res., 18(5), pp. 893–899. [CrossRef] [PubMed]
Kauppi, M. , Heliovaara, M. , Impivaara, O. , Knekt, P. , and Jula, A. , 2011, “ Parity and Risk of Hip Fracture in Postmenopausal Women,” Osteoporosis Int., 22(6), pp. 1765–1771. [CrossRef]
Mori, T. , Ishii, S. , Greendale, G. A. , Cauley, J. A. , Ruppert, K. , Crandall, C. J. , and Karlamangla, A. S. , 2015, “ Parity, Lactation, Bone Strength, and 16-Year Fracture Risk in Adult Women: Findings From the Study of Women’s Health Across the Nation (SWAN),” Bone, 73, pp. 160–166. [CrossRef] [PubMed]
Petersen, H. C. , Jeune, B. , Vaupel, J. W. , and Christensen, K. , 2002, “ Reproduction Life History and Hip Fractures,” Ann. Epidemiol., 12(4), pp. 257–263. [CrossRef] [PubMed]
Taylor, B. C. , Schreiner, P. J. , Stone, K. L. , Fink, H. A. , Cummings, S. R. , Nevitt, M. C. , Bowman, P. J. , and Ensrud, K. E. , 2004, “ Long-Term Prediction of Incident Hip Fracture Risk in Elderly White Women: Study of Osteoporotic Fractures,” J. Am. Geriatr. Soc., 52(9), pp. 1479–1486. [CrossRef] [PubMed]
Affinito, P. , Tommaselli, G. A. , di Carlo, C. , Guida, F. , and Nappi, C. , 1996, “ Changes in Bone Mineral Density and Calcium Metabolism in Breastfeeding Women: A One Year Follow-up Study,” J. Clin. Endocrinol. Metab., 81(6), pp. 2314–2318. [PubMed]
Ardeshirpour, L. , Dann, P. , Adams, D. J. , Nelson, T. , VanHouten, J. , Horowitz, M. C. , and Wysolmerski, J. J. , 2007, “ Weaning Triggers a Decrease in Receptor Activator of Nuclear Factor-KappaB Ligand Expression, Widespread Osteoclast Apoptosis, and Rapid Recovery of Bone Mass After Lactation in Mice,” Endocrinology, 148(8), pp. 3875–3886. [CrossRef] [PubMed]
Bornstein, S. , Brown, S. A. , Le, P. T. , Wang, X. , DeMambro, V. , Horowitz, M. C. , MacDougald, O. , Baron, R. , Lotinun, S. , Karsenty, G. , Wei, W. , Ferron, M. , Kovacs, C. S. , Clemmons, D. , Wan, Y. , and Rosen, C. J. , 2014, “ FGF-21 and Skeletal Remodeling During and After Lactation in C57BL/6J Mice,” Endocrinology, 155(9), pp. 3516–3526. [CrossRef] [PubMed]
Bowman, B. M. , and Miller, S. C. , 1999, “ Skeletal Mass, Chemistry, and Growth During and After Multiple Reproductive Cycles in the Rat,” Bone, 25(5), pp. 553–559. [CrossRef] [PubMed]
More, C. , Bettembuk, P. , Bhattoa, H. P. , and Balogh, A. , 2001, “ The Effects of Pregnancy and Lactation on Bone Mineral Density,” Osteoporosis Int., 12(9), pp. 732–737. [CrossRef]
Bjornerem, A. , Ghasem-Zadeh, A. , Wang, X. , Bui, M. , Walker, S. P. , Zebaze, R. , and Seeman, E. , 2016, “ Irreversible Deterioration of Cortical and Trabecular Microstructure Associated With Breastfeeding,” J. Bone Miner. Res., 32(4), pp. 681–687.
Brembeck, P. , Lorentzon, M. , Ohlsson, C. , Winkvist, A. , and Augustin, H. , 2015, “ Changes in Cortical Volumetric Bone Mineral Density and Thickness, and Trabecular Thickness in Lactating Women Postpartum,” J. Clin. Endocrinol. Metab., 100(2), pp. 535–543. [CrossRef] [PubMed]
Miller, S. C. , and Bowman, B. M. , 1998, “ Comparison of Bone Loss During Normal Lactation With Estrogen Deficiency Osteopenia and Immobilization Osteopenia in the Rat,” Anat. Rec., 251(2), pp. 265–274. [CrossRef] [PubMed]
Whitehead, C. C. , 2004, “ Overview of Bone Biology in the Egg-Laying Hen,” Poult. Sci., 83(2), pp. 193–199. [CrossRef] [PubMed]
de Bakker, C. M. , Altman-Singles, A. R. , Li, Y. , Tseng, W. J. , Li, C. , and Liu, X. S. , 2017, “ Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats,” J. Bone Miner. Res., 32(5), pp. 1014–1026.
Wegrzyn, J. , Roux, J. P. , Arlot, M. E. , Boutroy, S. , Vilayphiou, N. , Guyen, O. , Delmas, P. D. , Chapurlat, R. , and Bouxsein, M. L. , 2010, “ Role of Trabecular Microarchitecture and Its Heterogeneity Parameters in the Mechanical Behavior of Ex Vivo Human L3 Vertebrae,” J. Bone Miner. Res., 25(11), pp. 2324–2331. [CrossRef] [PubMed]
Ito, M. , Nishida, A. , Koga, A. , Ikeda, S. , Shiraishi, A. , Uetani, M. , Hayashi, K. , and Nakamura, T. , 2002, “ Contribution of Trabecular and Cortical Components to the Mechanical Properties of Bone and Their Regulating Parameters,” Bone, 31(3), pp. 351–358. [CrossRef] [PubMed]
Cao, K. D. , Grimm, M. J. , and Yang, K. H. , 2001, “ Load Sharing Within a Human Lumbar Vertebral Body Using the Finite Element Method,” Spine (Philadelphia), 26(12), pp. e253–e260. [CrossRef]
Eswaran, S. K. , Gupta, A. , Adams, M. F. , and Keaveny, T. M. , 2006, “ Cortical and Trabecular Load Sharing in the Human Vertebral Body,” J. Bone Miner. Res., 21(2), pp. 307–314. [CrossRef] [PubMed]
Homminga, J. , Weinans, H. , Gowin, W. , Felsenberg, D. , and Huiskes, R. , 2001, “ Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution,” Spine (Philadelphia), 26(14), pp. 1555–1561. [CrossRef]
Vajda, E. G. , Bowman, B. M. , and Miller, S. C. , 2001, “ Cancellous and Cortical Bone Mechanical Properties and Tissue Dynamics During Pregnancy, Lactation, and Postlactation in the Rat,” Biol. Reprod., 65(3), pp. 689–695. [CrossRef] [PubMed]
Lan, S. , Luo, S. , Huh, B. K. , Chandra, A. , Altman, A. R. , Qin, L. , and Liu, X. S. , 2013, “ 3D Image Registration Is Critical to Ensure Accurate Detection of Longitudinal Changes in Trabecular Bone Density, Microstructure, and Stiffness Measurements in Rat Tibiae by In Vivo Microcomputed Tomography (muCT),” Bone, 56(1), pp. 83–90. [CrossRef] [PubMed]
Bouxsein, M. L. , Boyd, S. K. , Christiansen, B. A. , Guldberg, R. E. , Jepsen, K. J. , and Muller, R. , 2010, “ Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography,” J. Bone Miner. Res., 25(7), pp. 1468–1486. [CrossRef] [PubMed]
Hollister, S. J. , Brennan, J. M. , and Kikuchi, N. , 1994, “ A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress,” J. Biomech., 27(4), pp. 433–444. [CrossRef] [PubMed]
Guo, X. E. , and Goldstein, S. A. , 1997, “ Is Trabecular Bone Tissue Different From Cortical Bone Tissue?,” Forma, 12, pp. 185–196.
Little, R. B. , Wevers, H. W. , Siu, D. , and Cooke, T. D. , 1986, “ A Three-Dimensional Finite Element Analysis of the Upper Tibia,” ASME J. Biomech. Eng., 108(2), pp. 111–119. [CrossRef]
Pendleton, M. M. , Alwood, J. S. , O’Connell, G. D. , and Keaveny, T. M. , 2016, “ Design of Fatigue Test for Ex-Vivo Mouse Vertebra,” Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C), Oxon Hill, MD, June 29–July 2, pp. 1115–1116.
Hogan, H. A. , Ruhmann, S. P. , and Sampson, H. W. , 2000, “ The Mechanical Properties of Cancellous Bone in the Proximal Tibia of Ovariectomized Rats,” J. Bone Miner. Res., 15(2), pp. 284–292. [CrossRef] [PubMed]
Huja, S. S. , Beck, F. M. , and Thurman, D. T. , 2006, “ Indentation Properties of Young and Old Osteons,” Calcif. Tissue Int., 78(6), pp. 392–397. [CrossRef] [PubMed]
Kim, D. G. , Huja, S. S. , Lee, H. R. , Tee, B. C. , and Hueni, S. , 2010, “ Relationships of Viscosity With Contact Hardness and Modulus of Bone Matrix Measured by Nanoindentation,” ASME J. Biomech. Eng., 132(2), p. 024502 [CrossRef]
Kim, D. G. , Huja, S. S. , Navalgund, A. , D’Atri, A. , Tee, B. , Reeder, S. , and Lee, H. R. , 2013, “ Effect of Estrogen Deficiency on Regional Variation of a Viscoelastic Tissue Property of Bone,” J. Biomech., 46(1), pp. 110–115. [CrossRef] [PubMed]
Oliver, W. C. , and Pharr, G. M. , 1992, “ An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1583. [CrossRef]
Miller, S. C. , and Bowman, B. M. , 2007, “ Rapid Inactivation and Apoptosis of Osteoclasts in the Maternal Skeleton During the Bone Remodeling Reversal at the End of Lactation,” Anat. Rec., 290(1), pp. 65–73. [CrossRef]
Kushida, K. , Takahashi, M. , Kawana, K. , and Inoue, T. , 1995, “ Comparison of Markers for Bone Formation and Resorption in Premenopausal and Postmenopausal Subjects, and Osteoporosis Patients,” J. Clin. Endocrinol. Metab., 80(8), pp. 2447–2450. [PubMed]
Qing, H. , Ardeshirpour, L. , Pajevic, P. D. , Dusevich, V. , Jahn, K. , Kato, S. , Wysolmerski, J. , and Bonewald, L. F. , 2012, “ Demonstration of Osteocytic Perilacunar/Canalicular Remodeling in Mice During Lactation,” J. Bone Miner. Res, 27(5), pp. 1018–1029. [CrossRef] [PubMed]
Kaya, S. , Basta-Pljakic, J. , Seref-Ferlengez, Z. , Majeska, R. J. , Cardoso, L. , Bromage, T. G. , Zhang, Q. , Flach, C. R. , Mendelsohn, R. , Yakar, S. , Fritton, S. P. , and Schaffler, M. B. , 2017, “ Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue,” J. Bone Miner. Res., 32(4), pp. 688–697. [CrossRef] [PubMed]
Smit, T. H. , 2002, “ The Use of a Quadruped as an In Vivo Model for the Study of the Spine—Biomechanical Considerations,” Eur. Spine J., 11(2), pp. 137–144. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Representative three-dimensional renderings of trabecular microstructure at the proximal tibia and the L4 vertebra in virgin, pregnancy, lactation, and 6-week post-weaning rats. (b)–(g) Microstructural parameters at the tibia and L4 at each reproductive stage, including: (b) BV/TV, (c) Tb.N, (d) Tb.Th, (e) Tb.Sp, (f) SMI, and (g) Conn.D. * indicate significant differences among groups (p < 0.05), # indicate trends toward differences among groups (p < 0.1).

Grahic Jump Location
Fig. 2

Trabecular bone remodeling in virgin, pregnancy, lactation, and 2-week post-weaning rats. (a) Representative calcein-labeled histology slides used to evaluate bone formation. (b) Representative trichrome-stained slides. Triangles indicate osteoblast locations; asterisks indicate osteoclast locations. Close-up images of osteoblasts (in virgin and post-weaning groups) and osteoclasts (in pregnancy and lactation groups) are shown in the bottom left-corner of each slide. (c)–(e) Bone formation parameters during each reproductive phase, including (c) BFR/BS, (d) MS/BS, and (e) MAR, as quantified through fluorescent-labeled dynamic histomorphometry. (f) Serum TRAP. (g)–(j) Static histomorphometry-based cell numbers and surfaces, including (g) Ob.N/BS, (h) Ob.S/BS, (i) Oc.N/BS, and (e) Oc.S/BS. * indicate significant differences among groups (p < 0.05), # indicate trends toward differences among groups (p < 0.1).

Grahic Jump Location
Fig. 3

Finite element analysis (FEA). (a) Schematic illustrating the isolation of trabecular (gray) and cortical (black) compartments at L4 (left) and the tibia (right) for calculation of load-share fraction. (b) Whole-bone stiffness and (c) trabecular load-share fraction in virgin, pregnancy, lactation, and 6-week post-weaning groups. * indicate significant differences among groups (p < 0.05).

Grahic Jump Location
Fig. 4

Lumbar vertebra mechanics in virgin, lactation, and 6-week post-weaning rats. (a)–(c) Extrinsic properties of the vertebra measured through compression testing of L2: (a) peak load, (b) stiffness, (c) energy to failure. (d)–(f) Apparent-level properties derived through normalization of L2 compression results for bone size: (d) ultimate stress, (e) elastic modulus, (f) toughness. (g)–(h) Nanoindentation of L1: (g) schematic illustrating the locations where nanoindentation was performed to assess material properties of the surface and center regions of the trabeculae, (h) nanoindentation-based Young’s modulus at the center and surface regions. * indicate significant differences among groups (p < 0.05).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In