Research Papers

Design and Fabrication of a Three-Dimensional Multi-Electrode Array for Neuron Electrophysiology

[+] Author and Article Information
Lei Zuo

Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061
e-mail: leizuo@vt.edu

Shifeng Yu

Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061

Clark A. Briggs

Department of Neuroscience,
Rosalind Franklin University,
North Chicago, IL 60064

Stanislaw Kantor

Research & Development,
AbbVie, Inc.,
1 North Waukegan Road,
North Chicago, IL 60064

Jeffery Y. Pan

Research & Development,
AbbVie, Inc.,
1 North Waukegan Rd,
North Chicago, IL 60064
e-mail: jeffrey.pan@abbvie.com

1Corresponding author.

Manuscript received February 28, 2017; final manuscript received September 10, 2017; published online October 3, 2017. Assoc. Editor: Carlijn V. C Bouten.

J Biomech Eng 139(12), 121011 (Oct 03, 2017) (6 pages) Paper No: BIO-17-1086; doi: 10.1115/1.4037948 History: Received February 28, 2017; Revised September 10, 2017

Neural recording and stimulation with high spatial and temporal resolution are highly desirable in the study of neurocommunication and diseases. Planar multiple microelectrode arrays (MEA) or quasi-three-dimensional (3D) MEA with fixed height have been proposed by many researchers and become commercially available. In this paper, we present the design, fabrication, and test of a novel true 3D multiple electrode array for brain slice stimulation and recording. This MEA is composed of 105 microelectrodes with 50 μm diameter and 125 μm center-to-center spacing integrated in a 1.2 × 1.2 mm2 area. This “true” 3D MEA allows us to precisely position the individual electrodes by piezoelectric-based actuators to penetrate the inactive tissue layer and to approach the active neurons so as to optimize the recording and stimulation of electrical field potential. The capability to stimulate nerve fibers and record postsynaptic field potentials was demonstrated in an experiment using mouse brain hippocampus slice.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Hamill, O. P. , Marty, A. , Neher, E. , Sakmann, B. , and Sigworth, F. J. , 1981, “ Improved Patch-Clamp Techniques for High-Resolution Current Recording From Cells and Cell-Free Membrane Patches,” Pflügers Arch. Eur. J. physiol., 391(2), pp. 85–100. [CrossRef]
Stuart, G. J. , Dodt, H. U. , and Sakmann, B. , 1993, “ Patch-Clamp Recordings From the Soma and Dendrites of Neurons in Brain Slices Using Infrared Video Microscopy,” Pflügers Arch. Eur. J. Physiol., 423(5), pp. 511–518. [CrossRef]
Thomas, C. , Springer, P. , Loeb, G. , Berwald-Netter, Y. , and Okun, C. , 1972, “ A Miniature Microelectrode Array to Monitor the Bioelectric Activity of Cultured Cells,” Exp. Cell Res., 74(1), pp. 61–66. [CrossRef] [PubMed]
Gross, G. , Rieske, E. , Kreutzberg, G. , and Meyer, A. , 1977, “ A New Fixed-Array Multi-Microelectrode System Designed for Long-Term Monitoring of Extracellular Single Unit Neuronal Activity In Vitro,” Neurosci. Lett., 6(2–3), pp. 101–106. [CrossRef] [PubMed]
Novak, J. , and Wheeler, B. , 1988, “ Multisite Hippocampal Slice Recording and Stimulation Using a 32 Element Microelectrode Array,” J. Neurosci. Methods, 23(2), pp. 149–159. [CrossRef] [PubMed]
Oka, H. , Shimono, K. , Ogawa, R. , Sugihara, H. , and Taketani, M. , 1999, “ A New Planar Multielectrode Array for Extracellualr Recording: Application to Hippocampal Acute Slice,” J. Neurosci. Methods, 93(1), pp. 61–78. [CrossRef] [PubMed]
Litke, A. , Bezayiff, N. , Chichilnisky, E. , Cunningham, W. , Dabrowski, W. , Grillo, A. , Grivich, M. , Grybos, P. , Hottowy, P. , Kachiguine, S. , Kalmar, R. , Mathieson, K. , Petrusca, D. , Rahman, M. , and Sher, A. , 2004, “ What Does the Eye Tell the Brain?: Development of a System for the Large-Scale Recording of Retina Output Activity,” IEEE Trans. Nucl. Sci., 51(4), pp. 1434–1440. [CrossRef]
James, C. , Spence, A. , Dowell-Mesfin, M. , Hussain, R. , Smith, K. , Craighead, H. , Isaacson, M. , Shain, W. , and Turner, J. , 2004, “ Extracellular Recordings From Patterned Neuronal Networks Using Planar Microelectrode Arrays,” IEEE Trans. Biomed. Eng., 51(9), pp. 1640–1648. [CrossRef] [PubMed]
Heuschkel, M. O. , Wirth, C. , Steidl, E.-M. , and Buisson, B. , 2006, “ Development of 3-D Multi-Electrode Arrays for Use With Acute Tissue Slices,” Advances in Network Electrophysiology, Springer, Boston, MA, pp. 69–111. [CrossRef]
Abdoun, O. , Joucla, S. , Mazzocco, C. , and Yvert, B. , 2011, “ NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data,” Front. Neuroinf., 4, p. 119. [CrossRef]
Charvet, G. , Billoint, O. , Rousseau, L. , and Yvert, B. , 2010, “ BioMEATM : A 256-Channel MEA System With Integrated Electronics,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS), Lyon, France, Aug. 22–26, pp. 171–174.
Dipalo, M. , Messina, G. C. , Amin, H. , La Rocca, R. , Shalabaeva, V. , Simi, A. , Maccione, A. , Zilio, P. , Berdondini, L. , and De Angelis, F. , 2015, “ 3D Plasmonic Nanoantennas Integrated With MEA Biosensors,” Nanoscale, 7(8), pp. 3703–3711. [CrossRef] [PubMed]
Kusko, M. , Craciunoiu, F. , Amuzescu, B. , Halitzchi, F. , Selescu, T. , Radoi, A. , Popescu, M. , Simion, M. , Bragaru, A. , and Ignat, T. , 2012, “ Design, Fabrication and Characterization of a Low-Impedance 3D Electrode Array System for Neuro-Electrophysiology,” Sensors, 12(12), pp. 16571–16590. [CrossRef] [PubMed]
Ito, S. , Yeh, F.-C. , Hiolski, E. , Rydygier, P. , Gunning, D. E. , Hottowy, P. , Timme, N. , Litke, A. M. , and Beggs, J. M. , 2014, “ Large-Scale, High-Resolution Multielectrode-Array Recording Depicts Functional Network Differences of Cortical and Hippocampal Cultures,” PLoS One, 9(8), p. e105324. [CrossRef] [PubMed]
Heuschkel, M. O. , Fejtl, M. , Raggenbass, M. , Bertrand, D. , and Renaud, P. , 2002, “ A Three-Dimensional Multi-Electrode Array for Multi-Site Stimulation and Recording in Acute Brain Slices,” J. Neurosci. Methods, 114(2), pp. 135–148. [CrossRef] [PubMed]
Charvet, G. , Rousseau, L. , Billoint, O. , Gharbi, S. , Rostaing, J.-P. , Joucla, S. , Trevisiol, M. , Bourgerette, A. , Chauvet, P. , Moulin, C. , and Goy, F. , 2010, “ BioMEA: A Versatile High-Density 3D Microelectrode Array System Using Integrated Electronics,” Biosens. Bioelectron., 25(8), pp. 1889–1896. [CrossRef] [PubMed]
Scholvin, J. , Kinney, J. P. , Bernstein, J. G. , Moore-Kochlacs, C. , Kopell, N. , Fonstad, C. G. , and Boyden, E. S. , 2016, “ Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording,” IEEE Trans. Biomed. Eng., 63(1), pp. 120–130. [CrossRef] [PubMed]
Campbell, P. K. , Jones, K. E. , Huber, R. J. , Horch, K. W. , and Normann, R. A. , 1991, “ A Silicon-Based Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array,” IEEE Trans. Biomed. Eng., 38(8), pp. 758–767. [CrossRef] [PubMed]
Bai, Q. , Wise, K. D. , and Anderson, D. J. , 2000, “ A High-Yield Microassembly Structure for Three Dimensional Microelectrode Arrays,” IEEE Trans. Biomed. Eng., 47(3), pp. 281–289. [CrossRef] [PubMed]
Fofonoff, T. A. , Martel, S. M. , Hatsopoulos, N. G. , Donoghue, J. P. , and Hunter, I. W. , 2004, “ Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching,” IEEE Trans. Biomed. Eng., 51(6), pp. 890–895. [CrossRef] [PubMed]
Seker, E. , Berdichevsky, Y. , Begley, M. , Reed, M. , Staley, K. , and Yarmush, M. , 2010, “ The Fabrication of Low-Impedance Nanoporous Gold Multiple-Electrode Arrays for Neural Electrophysiology Studies,” Nanotechnology, 21(12), p. 125504. [CrossRef] [PubMed]
Merla, C. , Ticaud, N. , Arnaud-Cormos, D. , Veyret, B. , and Leveque, P. , 2011, “ Real-Time RF Exposure Setup Based on a Multiple Electrode Array (MEA) for Electrophysiological Recording of Neuronal Networks,” IEEE Trans. Microwave Theory Tech., 59(3), pp. 755–762. [CrossRef]
Shulyzki, R. , Abdelhalim, K. , Bagheri, A. , Salam, M. T. , Florez, C. M. , Velazquez, J. L. P. , Carlen, P. L. , and Genov, R. , 2015, “ 320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation,” IEEE Trans. Biomed. Circuits Syst., 9(1), pp. 34–49. [CrossRef] [PubMed]
Jackson, A. , and Fetz, E. , 2007, “ Compact Movable Microwire Array for Long-Term Chronic Unit Recording in Cerebra Cortex of Primates,” J. Neurophysiol., 98(5), pp. 3109–3118. [CrossRef] [PubMed]
Johnson, J. , and Welsh, J. , 2003, “ Independently Moveable Multielectrode Array to Record Multiple Fast Spiking Neurons in the Cerebral Cortex During Cognition,” Methods, 30(1), pp. 64–78. [CrossRef] [PubMed]
Sato, T. , Suzukia, T. , and Mabuchia, K. , 2007, “ A New Multi-Electrode Array Design for Chronic Neural Recording, With Independent and Automatic Hydraulic Positioning,” J. Neurosci. Methods, 160(1), pp. 45–51. [CrossRef] [PubMed]
Mathieson, K. , Kachiguine, S. , Adams, C. , Cunningham, W. , Gunning, D. , O'Shea, V. , Smith, K. M. , Chichilnisky, E. J. , Litke, A. M. , and Sher, A. , 2004, “ Large-Area Microelectrode Arrays for Recording of Neural Signals,” IEEE Trans. Nucl. Sci., 51(5), pp. 2027–2032. [CrossRef]
Fujishiro, A. , Kaneko, H. , Kawashima, T. , Ishida, M. , and Kawano, T. , 2014, “ In Vivo Neuronal Action Potential Recordings Via Three-Dimensional Microscale Needle-Electrode Arrays,” Sci. Rep., 4, p. 4868. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Illustration of remote actuation

Grahic Jump Location
Fig. 2

(a) The displacement of the electrode during the penetration and (b) the relationship between the measured force (stress) and the displacement of (strain) the electrode

Grahic Jump Location
Fig. 3

The model for the electrode position control system

Grahic Jump Location
Fig. 4

The capillary array, the electrodes will sit inside the holes of this array, and the dots highlight the locations of moveable electrodes

Grahic Jump Location
Fig. 5

(a) The assembly of the MEA including the MEA and the PZT controller, (b) the front view of the microwire-based electrode array after dicing(left electrode is in actuation), (c) the bottom view of the electrode array after dicing

Grahic Jump Location
Fig. 6

Impedance test of the electrodes

Grahic Jump Location
Fig. 7

(a) The neuron signal stimulation experiment setup, (b) recording of field excitatory postsynaptic potential at three immobile electrodes (17–19) in hippocampus area of mouse brain slice, (c) field excitatory postsynaptic potential recording using mobile elecotrodes (61, 62, and 63) in the hippocampus area of mouse brain slice



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In