Review Article

Primary and Secondary Consequences of Rotator Cuff Injury on Joint Stabilizing Tissues in the Shoulder

[+] Author and Article Information
Hafizur Rahman

Department of Mechanical Science
and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: mrahman3@illinois.edu

Eric Currier

Department of Mechanical Science
and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: ecurrier0@gmail.com

Marshall Johnson

Department of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: mvjohns2@gatech.edu

Rick Goding

Department of Orthopaedic,
Joint Preservation Institute of Iowa,
West Des Moines, IA 50266
e-mail: R.goding@jointpreservationiowa.com

Amy Wagoner Johnson

Department of Mechanical Science
and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: ajwj@illinois.edu

Mariana E. Kersh

Department of Mechanical Science
and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: mkersh@illinois.edu

1Corresponding author.

Manuscript received May 13, 2017; final manuscript received September 13, 2017; published online September 29, 2017. Assoc. Editor: Kyle Allen.

J Biomech Eng 139(11), 110801 (Sep 29, 2017) (10 pages) Paper No: BIO-17-1211; doi: 10.1115/1.4037917 History: Received May 13, 2017; Revised September 13, 2017

Rotator cuff tears (RCTs) are one of the primary causes of shoulder pain and dysfunction in the upper extremity accounting over 4.5 million physician visits per year with 250,000 rotator cuff repairs being performed annually in the U.S. While the tear is often considered an injury to a specific tendon/tendons and consequently treated as such, there are secondary effects of RCTs that may have significant consequences for shoulder function. Specifically, RCTs have been shown to affect the joint cartilage, bone, the ligaments, as well as the remaining intact tendons of the shoulder joint. Injuries associated with the upper extremities account for the largest percent of workplace injuries. Unfortunately, the variable success rate related to RCTs motivates the need for a better understanding of the biomechanical consequences associated with the shoulder injuries. Understanding the timing of the injury and the secondary anatomic consequences that are likely to have occurred are also of great importance in treatment planning because the approach to the treatment algorithm is influenced by the functional and anatomic state of the rotator cuff and the shoulder complex in general. In this review, we summarized the contribution of RCTs to joint stability in terms of both primary (injured tendon) and secondary (remaining tissues) consequences including anatomic changes in the tissues surrounding the affected tendon/tendons. The mechanical basis of normal shoulder joint function depends on the balance between active muscle forces and passive stabilization from the joint surfaces, capsular ligaments, and labrum. Evaluating the role of all tissues working together as a system for maintaining joint stability during function is important to understand the effects of RCT, specifically in the working population, and may provide insight into root causes of shoulder injury.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Blausen.com Staff, 2014, “ Medical Gallery of Blausen Medical 2014,” WikiJournal Med., 1(2), p. 68.
Gray, H. , 1918, Anatomy of the Human Body, 20th ed., Lea & Febiger, Philadelphia, PA.
Brown, L. P. , Niehues, S. L. , Harrah, A. , Yavorsky, P. , and Hirshman, H. P. , 1988, “ Upper Extremity Range of Motion and Isokinetic Strength of the Internal and External Shoulder Rotators in Major League Baseball Players,” Am. J. Sports Med., 16(6), pp. 577–585. [CrossRef] [PubMed]
United States Bone and Joint Initiative, 2014, The Burden of Musculoskeletal Diseases in the United States (BMUS), 3rd ed., United States Bone and Joint Initiative, Rosemont, IL.
Oh, L. S. , Wolf, B. R. , Hall, M. P. , Levy, B. A. , and Marx, R. G. , 2007, “ Indications for Rotator Cuff Repair: A Systematic Review,” Clin. Orthop. Relat. Res., 455(455), pp. 52–63. [CrossRef] [PubMed]
Galatz, L. M. , Rothermich, S. Y. , Zaegel, M. , Silva, M. J. , Havlioglu, N. , and Thomopoulos, S. , 2005, “ Delayed Repair of Tendon to Bone Injuries Leads to Decreased Biomechanical Properties and Bone Loss,” J. Orthop. Res., 23(6), pp. 1441–1447. [CrossRef] [PubMed]
Yeranosian, M. G. , Terrell, R. D. , Wang, J. C. , McAllister, D. R. , and Petrigliano, F. A. , 2013, “ The Costs Associated With the Evaluation of Rotator Cuff Tears Before Surgical Repair,” J. Shoulder Elbow Surg., 22(12), pp. 1662–1666. [CrossRef] [PubMed]
Goutallier, D. , Postel, J. M. , Gleyze, P. , Leguilloux, P. , and Van Driessche, S. , 2003, “ Influence of Cuff Muscle Fatty Degeneration on Anatomic and Functional Outcomes After Simple Suture of Full-Thickness Tears,” J. Shoulder Elbow Surg., 12(6), pp. 550–554. [CrossRef] [PubMed]
Kumar, R. , and Jadhav, U. , 2014, “ Functional Evaluation of Patient After Arthroscopic Repair of Rotator Cuff Tear,” J. Clin. Orthop. Trauma, 5(2), pp. 84–90. [CrossRef] [PubMed]
Gumina, S. , ed., 2017, Rotator Cuff Tear, 1st ed., Springer International Publishing, Cham, Switzerland. [CrossRef]
Pandey, V. , and Jaap Willems, W. , 2015, “ Rotator Cuff Tear: A Detailed Update,” Asia-Pac. J. Sports Med. Arthroscopy Rehabil. Technol., 2(1), pp. 1–14.
Smith, K. L. , Harryman, D. T., II , Antoniou, J. , Campbell, B. , Sidles, J. A. , and Matsen, F. A., III , 2000, “ A Prospective, Multipractice Study of Shoulder Function and Health Status in Patients With Documented Rotator Cuff Tears,” J. Shoulder Elbow Surg., 9(5), pp. 395–402. [CrossRef] [PubMed]
Milgrom, C. , Schaffler, M. , Gilbert, S. , and van Holsbeeck, M. , 1995, “ Rotator-Cuff Changes in Asymptomatic Adults. The Effect of Age, Hand Dominance and Gender,” J. Bone Jt. Surg., 77(2), pp. 296–298.
Minagawa, H. , Yamamoto, N. , Abe, H. , Fukuda, M. , Seki, N. , Kikuchi, K. , Kijima, H. , and Itoi, E. , 2013, “ Prevalence of Symptomatic and Asymptomatic Rotator Cuff Tears in the General Population: From Mass-Screening in One Village,” J. Orthop., 10(1), pp. 8–12. [CrossRef] [PubMed]
Vidt, M. E. , Santago, A. C. , Marsh, A. P. , Hegedus, E. J. , Tuohy, C. J. , Poehling, G. G. , Freehill, M. T. , Miller, M. E. , and Saul, K. R. , 2016, “ The Effects of a Rotator Cuff Tear on Activities of Daily Living in Older Adults: A Kinematic Analysis,” J. Biomech., 49(4), pp. 611–617. [CrossRef] [PubMed]
Parsons, I. , Apreleva, M. , Fu, F. H. , and Woo, S. L.-Y. , 2002, “ The Effect of Rotator Cuff Tears on Reaction Forces at the Glenohumeral Joint,” J. Orthop. Res., 20(3), pp. 439–446. [CrossRef] [PubMed]
Melis, B. , Nemoz, C. , and Walch, G. , 2009, “ Muscle Fatty Infiltration in Rotator Cuff Tears: Descriptive Analysis of 1688 Cases,” Orthop. Traumatol.: Surg. Res., 95(5), pp. 319–324. [CrossRef] [PubMed]
Miyazaki, A. N. , Santos, P. D. , Silva, L. A. D. , Sella, G. D. V. , Miranda, E. R. D. A. B. , and Zampieri, R. , 2015, “ Fatty Muscle Infiltration in Cuff Tear: Pre and Post Operative Evaluation by MRI,” Acta Ortop. Bras., 23(5), pp. 251–254. [CrossRef] [PubMed]
Burkhart, S. S. , 1991, “ Arthroscopic Treatment of Massive Rotator Cuff Tears: Clinical Results and Biomechanical Rationale,” Clin. Orthop. Relat. Res., 267, pp. 45–56.
Gimbel, J. A. , Van Kleunen, J. P. , Mehta, S. , Perry, S. M. , Williams, G. R. , and Soslowsky, L. J. , 2004, “ Supraspinatus Tendon Organizational and Mechanical Properties in a Chronic Rotator Cuff Tear Animal Model,” J. Biomech., 37(5), pp. 739–749. [CrossRef] [PubMed]
Dourte, L. M. , Perry, S. M. , Getz, C. L. , and Soslowsky, L. J. , 2010, “ Tendon Properties Remain Altered in a Chronic Rat Rotator Cuff Model,” Clin. Orthop. Relat. Res., 468(6), pp. 1485–1492. [CrossRef] [PubMed]
Trudel, G. , Ramachandran, N. , Ryan, S. E. , Rakhra, K. , and Uhthoff, H. K. , 2010, “ Supraspinatus Tendon Repair Into a Bony Trough in the Rabbit: Mechanical Restoration and Correlative Imaging,” J. Orthop. Res., 28(6), pp. 710–715. [PubMed]
Trudel, G. , Ramachandran, N. , Ryan, S. E. , Rakhra, K. , and Uhthoff, H. K. , 2012, “ Improved Strength of Early Versus Late Supraspinatus Tendon Repair: A Study in the Rabbit,” J. Shoulder Elbow Surg., 21(6), pp. 828–834. [CrossRef] [PubMed]
Plate, J. F. , Brown, P. J. , Walters, J. , Clark, J. A. , Smith, T. L. , Freehill, M. T. , Tuohy, C. J. , Stitzel, J. D. , and Mannava, S. , 2014, “ Advanced Age Diminishes Tendon-to-Bone Healing in a Rat Model of Rotator Cuff Repair,” Am. J. Sports Med., 42(4), pp. 859–868. [CrossRef] [PubMed]
Safran, O. , Derwin, K. A. , Powell, K. , and Iannotti, J. P. , 2005, “ Changes in Rotator Cuff Muscle Volume, fat Content, and Passive Mechanics After Chronic Detachment in a Canine Model,” J. Bone Jt. Surg., 87(12), pp. 2662–2670.
Coleman, S. H. , Fealy, S. , Ehteshami, J. R. , MacGillivray, J. D. , Altchek, D. W. , Warren, R. F. , and Turner, A. S. , 2003, “ Chronic Rotator Cuff Injury and Repair Model in Sheep,” J. Bone Jt. Surg., 85(12), pp. 2391–2402. [CrossRef]
Chaudhury, S. , Holland, C. , Vollrath, F. , Carr, A. J. , Holland, C. , and Vollrath, F. , 2011, “ Comparing Normal and Torn Rotator Cuff Tendons Using Dynamic Shear Analysis,” J. Bone Jt. Surg., 93(7), pp. 942–948. [CrossRef]
Thomopoulos, S. , Williams, G. R. , Gimbel, J. A. , Favata, M. , and Soslowsky, L. J. , 2003, “ Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site,” J. Orthop. Res., 21(3), pp. 413–419. [CrossRef] [PubMed]
Thomopoulos, S. , Marquez, J. P. , Weinberger, B. , Birman, V. , and Genin, G. M. , 2006, “ Collagen Fiber Orientation at the Tendon to Bone Insertion and Its Influence on Stress Concentrations,” J. Biomech., 39(10), pp. 1842–1851. [CrossRef] [PubMed]
Genin, G. M. , Kent, A. , Birman, V. , Wopenka, B. , Pasteris, J. D. , Marquez, P. J. , and Thomopoulos, S. , 2009, “ Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone,” Biophys. J., 97(4), pp. 976–985. [CrossRef] [PubMed]
Liu, Y. , Birman, V. , Chen, C. , Thomopoulos, S. , and Genin, G. M. , 2011, “ Mechanisms of Bimaterial Attachment at the Interface of Tendon to Bone,” ASME J. Eng. Mater. Technol., 29(1), pp. 997–1003.
Galatz, L. M. , Sandell, L. J. , Rothermich, S. Y. , Das, R. , Mastny, A. , Havlioglu, N. , Silva, M. J. , and Thomopoulos, S. , 2006, “ Characteristics of the Rat Supraspinatus Tendon During Tendon-to-Bone Healing After Acute Injury,” J. Orthop. Res., 24(3), pp. 541–550. [CrossRef] [PubMed]
Smith, L. , Xia, Y. , Galatz, L. M. , Genin, G. M. , and Thomopoulos, S. , 2012, “ Tissue-Engineering Strategies for the Tendon/Ligament-to-Bone Insertion,” Connect. Tissue Res., 53(2), pp. 95–105. [CrossRef] [PubMed]
Thomopoulos, S. , Williams, G. R. , and Soslowsky, L. J. , 2003, “ Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels,” ASME J. Biomech. Eng., 125(1), pp. 106–113. [CrossRef]
Gimbel, J. A. , Van Kleunen, J. P. , Williams, G. R. , Thomopoulos, S. , and Soslowsky, L. J. , 2007, “ Long Durations of Immobilization in the Rat Result in Enhanced Mechanical Properties of the Healing Supraspinatus Tendon Insertion Site,” ASME J. Biomech. Eng., 129(3), pp. 400–404. [CrossRef]
Peltz, C. D. , Dourte, L. M. , Kuntz, A. F. , Sarver, J. J. , Kim, S. Y. , Williams, G. R. , and Soslowsky, L. J. , 2009, “ The Effect of Postoperative Passive Motion on Rotator Cuff Healing in a Rat Model,” J. Bone Jt. Surg. Am., 91(10), pp. 2421–2429. [CrossRef]
Manning, C. N. , Kim, H. M. , Sakiyama-Elbert, S. , Galatz, L. M. , Havlioglu, N. , and Thomopoulos, S. , 2011, “ Sustained Delivery of Transforming Growth Factor Beta Three Enhances Tendon-to-Bone Healing in a Rat Model,” J. Orthop. Res., 29(7), pp. 1099–1105. [CrossRef] [PubMed]
Aoki, M. , Oguma, H. , Fukushima, S. , Ishii, S. , Ohtani, S. , and Murakami, G. , 2001, “ Fibrous Connection to Bone After Immediate Repair of the Canine Infraspinatus: The Most Effective Bony Surface for Tendon Attachment,” J. Shoulder Elbow Surg., 10(2), pp. 123–128. [CrossRef] [PubMed]
Fujioka, H. , Thakur, R. , Wang, G. J. , Mizuno, K. , Balian, G. , and Hurwitz, S. R. , 1998, “ Comparison of Surgically Attached and Non-Attached Repair of the Rat Achilles Tendon-Bone Interface. Cellular Organization and Type X Collagen Expression,” Connect. Tissue Res., 37(3–4), pp. 205–218. [CrossRef] [PubMed]
Fujioka, H. , Wang, G. J. , Mizuno, K. , Balian, G. , and Hurwitz, S. R. , 1997, “ Changes in the Expression of Type-X Collagen in the Fibrocartilage of Rat Achilles Tendon Attachment During Development,” J. Orthop. Res., 15(5), pp. 675–681. [CrossRef] [PubMed]
Rodeo, S. A. , Arnoczky, S. P. , Torzilli, P. A. , Hidaka, C. , and Warren, R. F. , 1993, “ Tendon-Healing in a Bone Tunnel. A Biomechanical and Histological Study in the Dog,” J. Bone Jt. Surg., 75(12), pp. 1795–1803. [CrossRef]
Silva, M. J. , Boyer, M. I. , Ditsios, K. , Burns, M. E. , Harwood, F. L. , Amiel, D. , and Gelberman, R. H. , 2002, “ The Insertion Site of the Canine Flexor Digitorum Profundus Tendon Heals Slowly Following Injury and Structure Repair,” J. Orthop. Res., 20(3), pp. 447–453. [CrossRef] [PubMed]
St Pierre, P. , Olson, E. N. , Elliott, J. J. , O'Hair, K. C. , McKinney, L. A. , and Ryan, J. , 1995, “ Tendon-Healing to Cortical Bone Compared With Healing to a Cancellous Trough. A Biomechanical and Histological Evaluation in Goats,” J. Bone Jt. Surg., 77(12), pp. 1858–1866. [CrossRef]
Thomopoulos, S. , Hattersley, G. , Rosen, V. , Mertens, M. , Galatz, L. , Williams, G. R. , and Soslowsky, L. J. , 2002, “ The Localized Expression of Extracellular Matrix Components in Healing Tendon Insertion Sites: An In Situ Hybridization Study,” J. Orthop. Res., 20(3), pp. 454–463. [CrossRef] [PubMed]
Benjamin, M. , Kumai, T. , Milz, S. , Boszczyk, B. M. , Boszczyk, A. A. , and Ralphs, J. R. , 2002, “ The Skeletal Attachment of Tendons–Tendon “Entheses”,” Comp. Biochem. Physiol., Part A, 133(4), pp. 931–945. [CrossRef]
Benjamin, M. , Newell, R. L. , Evans, E. J. , Ralphs, J. R. , and Pemberton, D. J. , 1992, “ The Structure of the Insertions of the Tendons of Biceps Brachii, Triceps and Brachialis in Elderly Dissecting Room Cadavers,” J. Anat., 180(Pt. 2), pp. 327–332. [PubMed]
Benjamin, M. , and Ralphs, J. R. , 1998, “ Fibrocartilage in Tendons and Ligaments—An Adaptation to Compressive Load,” J. Anat., 193(4), pp. 481–494. [CrossRef] [PubMed]
Newsham-West, R. , Nicholson, H. , Walton, M. , and Milburn, P. , 2007, “ Long-Term Morphology of a Healing Bone-Tendon Interface: A Histological Observation in the Sheep Model,” J. Anat., 210(3), pp. 318–327. [CrossRef] [PubMed]
Silva, M. J. , Thomopoulos, S. , Kusano, N. , Zaegel, M. A. , Harwood, F. L. , Matsuzaki, H. , Havlioglu, N. , Dovan, T. T. , Amiel, D. , and Gelberman, R. H. , 2006, “ Early Healing of Flexor Tendon Insertion Site Injuries: Tunnel Repair is Mechanically and Histologically Inferior to Surface Repair in a Canine Model,” J. Orthop. Res., 24(5), pp. 990–1000. [CrossRef] [PubMed]
Iannotti, J. , Naranja, R. , and Gartsman, G. , 1994, “ Surgical Treatment of the Intact Cuff and Repairable Cuff Defect: Arthroscopic and Open Techniques,” Orthopaedic Knowledge Update: Shoulder and Elbow, American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 151–156.
Perry, S. M. , Getz, C. L. , and Soslowsky, L. J. , 2009, “ After Rotator Cuff Tears, the Remaining (Intact) Tendons are Mechanically Altered,” J. Shoulder Elbow Surg., 18(1), pp. 52–57. [CrossRef] [PubMed]
Reuther, K. E. , Thomas, S. J. , Sarver, J. J. , Tucker, J. J. , Lee, C. S. , Gray, C. F. , Glaser, D. L. , and Soslowsky, L. J. , 2013, “ Effect of Return to Overuse Activity Following an Isolated Supraspinatus Tendon Tear on Adjacent Intact Tendons and Glenoid Cartilage in a Rat Model,” J. Orthop. Res., 31(5), pp. 710–715. [CrossRef] [PubMed]
Reuther, K. , Thomas, S. , Tucker, J. , Sarver, J. , Gray, C. , Evans, E. , Ilkhani-Pour, S. , Glaser, D. , and Soslowsky, L. , 2013, “ Returning to Overuse Activity Following a Supraspinatus and Infraspinatus Tear Leads to Joint Damage in a Rat Model,” J. Biomech., 46(11), pp. 1818–1824. [CrossRef] [PubMed]
Reuther, K. E. , Thomas, S. J. , Tucker, J. J. , Sarver, J. J. , Gray, C. F. , Rooney, S. I. , Glaser, D. L. , and Soslowsky, L. J. , 2014, “ Disruption of the Anterior-Posterior Rotator Cuff Force Balance Alters Joint Function and Leads to Joint Damage in a Rat Model,” J. Orthop. Res., 32(5), pp. 638–644. [CrossRef] [PubMed]
Reuther, K. E. , Sarver, J. J. , Schultz, S. M. , Lee, C. S. , Sehgal, C. M. , Glaser, D. L. , and Soslowsky, L. J. , 2012, “ Glenoid Cartilage Mechanical Properties Decrease After Rotator Cuff Tears in a Rat Model,” J. Orthop. Res., 30(9), pp. 1435–1439. [CrossRef] [PubMed]
Thomas, S. J. , Reuther, K. E. , Tucker, J. J. , Sarver, J. J. , Yannascoli, S. M. , Caro, A. C. , Voleti, P. B. , Rooney, S. I. , Glaser, D. L. , and Soslowsky, L. J. , 2014, “ Biceps Detachment Decreases Joint Damage in a Rotator Cuff Tear Rat Model,” Clin. Orthop. Relat. Res., 472(8), pp. 2404–2412. [CrossRef] [PubMed]
Hsu, H.-C. , Luo, Z.-P. , Stone, J. J. , Huang, T.-H. , and An, K.-N. , 2003, “ Correlation Between Rotator Cuff Tear and Glenohumeral Degeneration,” Acta Orthop. Scand., 74(1), pp. 89–94. [CrossRef] [PubMed]
Umans, H. R. , Pavlov, H. , Berkowitz, M. , and Warren, R. F. , 2001, “ Correlation of Radiographic and Arthroscopic Findings With Rotator Cuff Tears and Degenerative Joint Disease,” J. Shoulder Elbow Surg., 10(5), pp. 428–433. [CrossRef] [PubMed]
Radke, S. , Kenn, W. , and Gohlke, F. , 2001, “ MRI of the Shoulder,” The Orthopaedist, 30(8), pp. 484–491. [CrossRef]
Petersson, C. J. , 1983, “ Degeneration of the Gleno-Humeral Joint: An Anatomical Study,” Acta Orthop. Scand., 54(2), pp. 277–283. [CrossRef] [PubMed]
Kernwein, G. A. , 1965, “ Roentgenographic Diagnosis of Shoulder Dysfunction,” JAMA, 194(10), pp. 1081–1085. [CrossRef] [PubMed]
Lugo, R. , Kung, P. , and Ma, C. B. , 2008, “ Shoulder Biomechanics,” Eur. J. Radiol., 68(1), pp. 16–24. [CrossRef] [PubMed]
Soslowsky, L. J. , An, C. H. , Johnston, S. P. , and Carpenter, J. E. , 1994, “ Geometric and Mechanical Properties of the Coracoacromial Ligament and Their Relationship to Rotator Cuff Disease,” Clin. Orthop. Relat. Res., (304), pp. 10–17.
Fremerey, R. , Bastian, L. , and Siebert, W. E. , 2000, “ The Coracoacromial Ligament: Anatomical and Biomechanical Properties With Respect to Age and Rotator Cuff Disease,” Knee Surg. Sports Traumatol. Arthroscopy, 8(5), pp. 309–313. [CrossRef]
Kesmezacar, H. , Akgun, I. , Ogut, T. , Gokay, S. , and Uzun, I. , 2008, “ The Coracoacromial Ligament: The Morphology and Relation to Rotator Cuff Pathology,” J. Shoulder Elbow Surg., 17(1), pp. 182–188. [CrossRef] [PubMed]
Kijima, H. , Minagawa, H. , Tomioka, T. , Yamada, S. , and Nozaka, K. , 2013, “ Elasticity of the Coracoacromial Ligament in Shoulders With Rotator Cuff Tears: Measurement With Ultrasound Elastography,” Surg. Sci., 4(09), pp. 1–5. [CrossRef]
Kijima, H. , Minagawa, H. , Saijo, Y. , Sano, H. , Tomioka, T. , Yamamoto, N. , Shimada, Y. , Okada, K. , and Itoi, E. , 2009, “ Degenerated Coracoacromial Ligament in Shoulders With Rotator Cuff Tears Shows Higher Elastic Modulus: Measurement With Scanning Acoustic Microscopy,” J. Orthop. Sci., 14(1), pp. 62–67. [CrossRef] [PubMed]
Hashimoto, T. , Nobuhara, K. , and Hamada, T. , 2003, “ Pathologic Evidence of Degeneration as a Primary Cause of Rotator Cuff Tear,” Clin. Orthop. Relat. Res., 415, pp. 111–120. [CrossRef]
Sommerich, C. M. , McGlothlin, J. D. , and Marras, W. S. , 1993, “ Occupational Risk Factors Associated With Soft Tissue Disorders of the Shoulder: A Review of Recent Investigations in the Literature,” Ergonomics, 36(6), pp. 697–717. [CrossRef] [PubMed]
Sørensen, A. K. B. , Bak, K. , Krarup, A. L. , Thune, C. H. , Nygaard, M. , Jørgensen, U. , Sloth, C. , and Torp-Pedersen, S. , 2007, “ Acute Rotator Cuff Tear: Do We Miss the Early Diagnosis? A Prospective Study Showing a High Incidence of Rotator Cuff Tears After Shoulder Trauma,” J. Shoulder Elbow Surg., 16(2), pp. 174–180. [CrossRef] [PubMed]
Itoi, E. , Berglund, L. J. , Grabowski, J. J. , Schultz, F. M. , Growney, E. S. , Morrey, B. F. , and An, K. N. , 1995, “ Tensile Properties of the Supraspinatus Tendon,” J. Orthop. Res., 13(20), pp. 578–584. [CrossRef] [PubMed]
Waehrer, G. M. , Dong, X. S. , Miller, T. , Haile, E. , and Men, Y. , 2007, “ Costs of Occupational Injuries in Construction in the United States,” Accid. Anal. Prev., 39(6), pp. 1258–1266. [CrossRef] [PubMed]
Barry, M. , and Huang, L. , 2014, “ Work-Related Risk Factors for Rotator Cuff Syndrome,” Accident Compensation Corporation, Wellington, New Zealand, accessed Sept. 26, 2017, https://www.acc.co.nz/assets/research/work-risk-rotator-cuff.pdf
van der Meijden, O. A. , Westgard, P. , Chandler, Z. , Gaskill, T. R. , Kokmeyer, D. , and Millett, P. J. , 2012, “ Rehabilitation After Arthroscopic Rotator Cuff Repair: Current Concepts Review and Evidence-Based Guidelines,” Int. J. Sports Phys. Ther., 7(2), p. 197. [PubMed]
Brislin, K. J. , Field, L. D. , and Savoie, F. H. , 2007, “ Complications After Arthroscopic Rotator Cuff Repair,” Arthroscopy, 23(2), pp. 124–128. [CrossRef] [PubMed]
Gerber, C. , Schneeberger, A. G. , Perren, S. M. , and Nyffeler, R. W. , 1999, “ Experimental Rotator Cuff Repair. A Preliminary Study,” J. Bone Jt. Surg., 81(9), pp. 1281–1290. [CrossRef]
Parsons, B. O. , Gruson, K. I. , Chen, D. D. , Harrison, A. K. , Gladstone, J. , and Flatow, E. L. , 2010, “ Does Slower Rehabilitation After Arthroscopic Rotator Cuff Repair Lead to Long-Term Stiffness?,” J. Shoulder Elbow Surg., 19(7), pp. 1034–1039. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Shoulder joint including bones, cartilage, and capsule, (b) posterior, and (c) anterior view of muscles that span the shoulder with rotator cuff muscles highlighted, (d) ligaments of the shoulder joint with coracoacromial, coracohumeral, and glenohumeral ligaments highlighted, (e) a full thickness tear in supraspinatus tendon, and (f) a partial thickness tear in supraspinatus tendon [1,2]

Grahic Jump Location
Fig. 2

Number of articles found during the Pubmed search. For Pubmed search, we used the keywords as “A” and “B”, where “A” indicates either “Shoulder injury” or “RCT.” “B” indicates “Sports” or “Occupational” or “Work.” Graph shows that there was higher number of papers published for “Sports” compared to work-related injuries.

Grahic Jump Location
Fig. 3

Change in supraspinatus tendon (a) area and (b) modulus of elasticity over time following its injury in rat (n = 10 for each data point). Change in supraspinatus tendon (c) area and (d) modulus of elasticity over time following both supraspinatus and infraspinatus injuries (n = 12 for each data point). Change in infraspinatus (e) area and (f) modulus of elasticity over time following both supraspinatus and infraspinatus injury (n = 12 for each data point). The X-axis represents the time after injury. The Y-axis represents the properties. Closed and open symbols represent data for the control and injured tendons, respectively. * indicates statistically significant difference between control (uninjured) and injured tendon [20,21].

Grahic Jump Location
Fig. 4

Change in insertion: (a) stiffness, (b) area, and (c) modulus of elasticity over time after operation. The X-axis represents the time after injury and repair. Y-axis represents the properties. Each unique symbol denotes a different study. All studies have been done using rodents and n indicates the number of the rodents used in different cases. Closed symbols represent the control data for each study. Studies 1, 2, 3, 4, and 5 represent Refs. [35], [32], [37], [34], and [36], respectively.

Grahic Jump Location
Fig. 5

Change in (a) infraspinatus and subscapularis properties due to supraspinatus tendon detachment (b) subscapularis properties after supraspinatus and infraspinatus tendons detachment, and (c) infraspinatus properties and supraspinatus and subscapularis tendons detachment. Properties are expressed as the percent change after the detachment compared to control (uninjured). 4 wks and 8 wks indicate properties measured at 4 weeks and 8 weeks after injury. The squiggly lines near the tendon insertion site represent tendon detachment. Properties above and below the solid lines indicate percent increase and percent decrease from control, respectively. “nsd” indicates no significant differences from control for that property [51].

Grahic Jump Location
Fig. 6

Thickness and elastic modulus change in glenoid cartilage after RCT. nsd indicates no statistically significant difference after multitendon tears (supraspinatus and infraspinatus) compared to the control (uninjured). ↓ indicates statistically significant decrease after multitendon tears compared to the control [55].

Grahic Jump Location
Fig. 7

Distribution of statistically significant odds ratios with RCTs as a function of risk factors [73]



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In