Review Article

Kinesin and Dynein Mechanics: Measurement Methods and Research Applications

[+] Author and Article Information
Zachary Abraham, Daniel Hayosh

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106

Emma Hawley

Department of Biomedical Engineering,
Case Western Reserve University,
Cleveland, OH 44106

Victoria A. Webster-Wood

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
10900 Euclid Avenue,
Cleveland, OH 44106
e-mail: Webster-wood@case.edu

Ozan Akkus

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106

1Corresponding author.

Manuscript received July 2, 2017; final manuscript received September 7, 2017; published online January 12, 2018. Editor: Victor H. Barocas.

J Biomech Eng 140(2), 020805 (Jan 12, 2018) (11 pages) Paper No: BIO-17-1289; doi: 10.1115/1.4037886 History: Received July 02, 2017; Revised September 07, 2017

Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Alberts, B. , 1970, “ Molecular Motors,” Molecular Biology of the Cell, 4th ed., National Library of Medicine, New York.
Goodman, B. S. , Derr, N. D. , and Reck-Peterson, S. L. , 2012, “ Engineered, Harnessed, and Hijacked: Synthetic Uses for Cytoskeletal Systems,” Trends Cell Biol., 22(12), pp. 644–652. [CrossRef] [PubMed]
Hancock, W. O. , 2016, “ The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus,” Biophys. J., 110(6), pp. 1216–1225. [CrossRef] [PubMed]
Gennerich, A. , and Vale, R. D. , 2009, “ Walking the Walk: How Kinesin and Dynein Coordinate Their Steps,” Curr. Opin. Cell Biol., 21(1), pp. 59–67. [CrossRef] [PubMed]
Hirokawa, N. , and Takemura, R. , 2013, Kinesin Superfamily Proteins, 2nd ed., Wiley, New York.
Levy, J. R. , and Holzbaur, E. L. F. , 2006, “ Cytoplasmic Dynein/Dynactin Function and Dysfunction in Motor Neurons,” Int. J. Dev. Neurosci., 24(2–3), pp. 103–111. [CrossRef] [PubMed]
Spundich, J. A. , 2011, “ Molecular Motors, Beauty in Complexity,” Science, 331(6021), pp. 1143–1145. [CrossRef] [PubMed]
Impetux, 2015, “ Measurement of the Stall Force of Kinesins in Living Cells With Lunam™ T-40i by IMPETUX,” Impetux, Barcelona, Spain, accessed Sept. 19, 2017, http://www.impetux.com/wp-content/uploads/2015/08/cell_biology.pdf
Scholz, T. , Vicary, J. A. , Jeppesen, G. M. , Ulcinas, A. , Hörber, J. K. H. , and Antognozzi, M. , 2011, “ Processive Behaviour of Kinesin Observed Using Micro-Fabricated Cantilevers,” Nanotechnology, 22(9), pp. 1–7. [CrossRef]
Hall, K. , Cole, D. , Yeh, Y. , and Baskin, R. J. , 1996, “ Kinesin Force Generation Measured Using a Centrifuge Microscope Sperm-Gliding Motility Assay,” Biophys. J., 71(6), pp. 3467–3476. [CrossRef] [PubMed]
Kuo, S. C. , Gelles, J. , Steuer, E. , and Sheetz, M. P. , 1991, “ A Model for Kinesin Movement From Nanometer-Level Movements of Kinesin and Cytoplasmic Dynein and Force Measurements.,” J. Cell Sci., 14, pp. 135–138. https://www.ncbi.nlm.nih.gov/pubmed/1832166
Fallesen, T. L. , Macosko, J. C. , and Holzwarth, G. , 2011, “ Force-Velocity Relationship for Multiple Kinesin Motors Pulling a Magnetic Bead,” Eur. Biophys. J., 40(9), pp. 1071–1079. [CrossRef] [PubMed]
Salmon, E. D. , 1995, “ VE-DIC Light Microscopy and the Discovery of Kinesin,” Trends Cell Biol., 5(4), pp. 154–158. [CrossRef] [PubMed]
Bugiel, M. , Fantana, H. , Bormuth, V. , Trushko, A. , Schiemann, F. , Howard, J. , Schäffer, E. , and Jannasch, A. , 2015, “ Versatile Microsphere Attachment of GFP-Labeled Motors and Other Tagged Proteins With Preserved Functionality,” J. Biol. Methods, 2(4), pp. 1–8. [CrossRef]
Gelles, J. , Schnapp, B. J. , and Sheetz, M. P. , 1988, “ Tracking Kinesin-Driven Movements With Nanometre-Scale Precision,” Nature, 331(6155), pp. 450–453. [CrossRef] [PubMed]
Svoboda, K. , Schmidt, C. F. , Schnapp, B. J. , and Block, S. M. , 1993, “ Direct Observation of Kinesin Stepping by Optical Trapping Interferometry,” Nature, 365(6448), pp. 721–727. [CrossRef] [PubMed]
Block, S. M. , Goldstein, L. S. B. , and Schnapp, B. J. , 1990, “ Bead Movement by Single Kinesis Molecules Studied With Optical Tweezers,” Nature, 348(6299), pp. 348–352. [CrossRef] [PubMed]
Kojima, H. , Muto, E. , Higuchi, H. , and Yanagida, T. , 1997, “ Mechanics of Single Kinesin Molecules Measured by Optical Trapping Nanometry,” Biophys. J., 73(4), pp. 2012–2022. [CrossRef] [PubMed]
Schroeder, H. W. , Hendricks, A. G. , Ikeda, K. , Shuman, H. , Rodionov, V. , Ikebe, M. , Goldman, Y. E. , and Holzbaur, E. L. F. , 2012, “ Force-Dependent Detachment of Kinesin-2 Biases Track Switching at Cytoskeletal Filament Intersections,” Biophys. J., 103(1), pp. 48–58. [CrossRef] [PubMed]
Gennerich, A. , Carter, A. P. , Reck-Peterson, S. L. , and Vale, R. D. , 2007, “ Force-Induced Bidirectional Stepping of Cytoplasmic Dynein,” Cell, 131(5), pp. 952–965. [CrossRef] [PubMed]
Reck-Peterson, S. L. , Yildiz, A. , Carter, A. P. , Gennerich, A. , Zhang, N. , and Vale, R. D. , 2006, “ Single-Molecule Analysis of Dynein Processivity and Stepping Behavior,” Cell, 126(2), pp. 335–348. [CrossRef] [PubMed]
Verbrugge, S. , Kapitein, L. C. , and Peterman, E. J. G. , 2007, “ Kinesin Moving Through the Spotlight: Single-Motor Fluorescence Microscopy With Submillisecond Time Resolution,” Biophys. J., 92(7), pp. 2536–2545. [CrossRef] [PubMed]
Korten, T. , Nitzsche, B. , Gell, C. , Ruhnow, F. , and Diez, S. , 2011, “ Fluorescence Imaging of Single Kinesin Motors on Immobolized Microtubules,” Methods Mol. Biol., 783(8), pp. 121–137. [CrossRef] [PubMed]
Yildiz, A. , Tomishige, M. , Vale, R. D. , and Selvin, P. R. , 2004, “ Kinesin Walks Hand-Over-Hand,” Science, 303(5658), pp. 676–678. [CrossRef] [PubMed]
Toba, S. , Watanabe, T. M. , Yamaguchi-Okimoto, L. , Toyoshima, Y. Y. , and Higuchi, H. , 2006, “ Overlapping Hand-Over-Hand Mechanism of Single Molecular Motility of Cytoplasmic Dynein,” Proc. Natl. Acad. Sci. U. S. A., 103(15), pp. 5741–5745. [CrossRef] [PubMed]
Vale, R. D. , Funatsu, T. , Pierce, D. W. , and Romberg, L. , 1996, “ Direct Observation of Single Kinesin Molecules Moving Along Microtubules,” Nature, 380(6573), pp. 451–453. [CrossRef] [PubMed]
Nicholas, M. P. , Berger, F. , Rao, L. , Brenner, S. , Cho, C. , and Gennerich, A. , 2015, “ Cytoplasmic Dynein Regulates Its Attachment to Microtubules Via Nucleotide State-Switched Mechanosensing at Multiple AAA Domains,” Proc. Natl. Acad. Sci., 112(20), pp. 6371–6376. [CrossRef]
Fallesen, T. L. , MacOsko, J. C. , and Holzwarth, G. , 2011, “ Measuring the Number and Spacing of Molecular Motors Propelling a Gliding Microtubule,” Phys. Rev. E, 83(1), pp. 1–8. [CrossRef]
Fallesen, T. , Hill, D. B. , Steen, M. , MacOsko, J. C. , Bonin, K. , and Holzwarth, G. , 2010, “ Magnet Polepiece Design for Uniform Magnetic Force on Superparamagnetic Beads,” Rev. Sci. Instrum., 81(7), p. 074303. [CrossRef] [PubMed]
Gagliano, J. , Walb, M. , Blaker, B. , MacOsko, J. C. , and Holzwarth, G. , 2010, “ Kinesin Velocity Increases With the Number of Motors Pulling Against Viscoelastic Drag,” Eur. Biophys. J., 39(5), pp. 801–813. [CrossRef] [PubMed]
Schaap, I. A. T. , Carrasco, C. , De Pablo, P. J. , and Schmidt, C. F. , 2011, “ Kinesin Walks the Line: Single Motors Observed by Atomic Force Microscopy,” Biophys. J., 100(10), pp. 2450–2456. [CrossRef] [PubMed]
Antognozzi, M. , Ulcinas, A. , Picco, L. , Simpson, S. H. , Heard, P. J. , Szczelkun, M. D. , Brenner, B. , and Miles, M. J. , 2008, “ A New Detection System for Extremely Small Vertically Mounted Cantilevers,” Nanotechnology, 19(38), p. 384002. [CrossRef] [PubMed]
Visscher, K. , Schnitzer, M. J. , and Block, S. M. , 1999, “ Single Kinesin Molecules Studied With a Molecular Force Clamp,” Nature, 400(6740), pp. 184–189. [CrossRef] [PubMed]
Kawaguchi, K. , and Ishiwata, S. , 2000, “ Temperature Dependence of Force, Velocity, and Processivity of Single Kinesin Molecules,” Biochem. Biophys. Res. Commun., 272(3), pp. 895–899. [CrossRef] [PubMed]
Fehr, A. N. , Asbury, C. L. , and Block, S. M. , 2008, “ Kinesin Steps Do Not Alternate in Size,” Biophys. J., 94(3), pp. L20–L22. [CrossRef] [PubMed]
Carter, N. J. , and Cross, R. A. , 2005, “ Mechanics of the Kinesin Step,” Nature, 435(7040), pp. 308–312. [CrossRef] [PubMed]
Schmitz, K. A. , Holcomb-Wygle, D. L. , Oberski, D. J. , and Lindemann, C. B. , 2000, “ Measurement of the Force Produced by an Intact Bull Sperm Flagellum in Isometric Arrest and Estimation of the Dynein Stall Force,” Biophys. J., 79(1), pp. 468–478. [CrossRef] [PubMed]
Kanimura, S. , and Takahashi, K. , 1981, “ Direct Measurement of the Force of Microtubule Sliding in Flagella,” Nature, 293(5833), pp. 566–568. [CrossRef] [PubMed]
Oiwa, K. , and Takahashi, K. , 1988, “ The Force-Velocity Relationship for Microtubule Sliding in Demembranated Sperm Flagella of the Sea Urchin,” Cell Struct. Funct., 13(3), pp. 193–205. [CrossRef] [PubMed]
Yoneda, M. , 1962, “ Force Exerted by a Single Cilium of Mytilus Edulis,” J. Exp. Biol., 39, pp. 307–317. http://jeb.biologists.org/content/39/2/307
Coppin, C. M. , Pierce, D. W. , Hsu, L. , and Vale, R. D. , 1997, “ The Load Dependence of Kinesin's Mechanical Cycle,” Proc. Natl. Acad. Sci. U. S. A., 94(16), pp. 8539–8544. [CrossRef] [PubMed]
Svoboda, K. , and Block, S. M. , 1994, “ Force and Velocity Measured for Single Kinesin Molecules,” Cell, 77(5), pp. 773–784. [CrossRef] [PubMed]
Hong, W. , Takshak, A. , Osunbayo, O. , Kunwar, A. , and Vershinin, M. , 2016, “ The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J., 111(6), pp. 1287–1294. [CrossRef] [PubMed]
Hyeon, C. , and Onuchic, J. N. , 2007, “ Internal Strain Regulates the Nucleotide Binding Site of the Kinesin Leading Head,” Proc. Natl. Acad. Sci. U. S. A., 104(7), pp. 2175–2180. [CrossRef] [PubMed]
Gibbons, F. , Chauwin, J.-F. , Despósito, M. , and José, J. V. , 2001, “ A Dynamical Model of Kinesin-Microtubule Motility Assays,” Biophys. J., 80(6), pp. 2515–2526. [CrossRef] [PubMed]
Bameta, T. , Padinhateeri, R. , and Inamdar, M. M. , 2013, “ Force Generation and Step-Size Fluctuations in a Dynein Motor,” J. Stat. Mech. Theory Exp., 2013(02), p. P02030. [CrossRef]
Mallik, R. , Carter, B. C. , Lex, S. A. , King, S. J. , and Gross, S. P. , 2004, “ Cytoplasmic Dynein Functions as a Gear in Response to Load,” Nature, 427(6975), pp. 649–652. [CrossRef] [PubMed]
Ikuta, J. , Kamisetty, N. K. , Shintaku, H. , Kotera, H. , Kon, T. , and Yokokawa, R. , 2014, “ Tug-of-War of Microtubule Filaments at the Boundary of a Kinesin- and Dynein-Patterned Surface,” Sci. Rep., 4(5281), pp. 1–8.
Howard, J. , Hudspeth, A. J. , and Vale, R. D. , 1989, “ Movement of Microtubules by Single Kinesin Molecules,” Nature, 342(6246), pp. 154–158. [CrossRef] [PubMed]
Van Den Heuvel, M. G. L. , and Dekker, C. , 2007, “ Motor Proteins at Work for Nanotechnology,” Science, 317(5836), pp. 333–336. [CrossRef] [PubMed]
Hendricks, A. G. , Epureanu, B. I. , and Meyhöfer, E. , 2009, “ Collective Dynamics of Kinesin,” Phys. Rev. E, 79(3), pp. 1–12. [CrossRef]
Holzwarth, G. , Bonin, K. , and Hill, D. B. , 2002, “ Forces Required of Kinesin During Processive Transport Through Cytoplasm,” Biophys. J., 82(4), pp. 1784–1790. [CrossRef] [PubMed]
Shao, Q. , and Gao, Y. Q. , 2006, “ On the Hand-Over-Hand Mechanism of Kinesin,” Proc. Natl. Acad. Sci. U. S. A., 103(21), pp. 8072–8077. [CrossRef] [PubMed]
Mukherji, S. , 2008, “ Model for the Unidirectional Motion of a Dynein Molecule,” Phys. Rev., 77(5), pp. 1–8.
Mandelkow, E. , and Mandelkow, E. , 2002, “ Kinesin Motors and Disease,” Trends Cell Biol., 12(12), pp. 585–591. [CrossRef] [PubMed]
Gramlich, M. W. , Conway, L. , Liang, W. H. , Labastide, J. A. , King, S. J. , Xu, J. , and Ross, J. L. , 2017, “ Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects,” Sci. Rep., 7, p. 44290. [CrossRef] [PubMed]
Liang, W. H. , Li, Q. , Faysal, K. M. R. , King, S. J. , Gopinathan, A. , and Xu, J. , 2016, “ Microtubule Defects Influence Kinesin-Based Transport In Vitro,” Biophys. J., 110(10), pp. 2229–2240. [CrossRef] [PubMed]
Zhao, C. , Takita, J. , Tanaka, Y. , Setou, M. , Nakagawa, T. , Takeda, S. , Yang, H. W. , Terada, S. , Nakata, T. , Takei, Y. , Saito, M. , Tsuji, S. , Hayashi, Y. , and Hirokawa, N. , 2001, “ Charcot-Marie-Tooth Disease Type 2A Caused by Mutation in a Microtubule Motor KIF1Bbeta,” Cell, 105(5), pp. 587–597. [CrossRef] [PubMed]
Yamada, M. D. , Nakajima, Y. , Maeda, H. , and Maruta, S. , 2007, “ Photocontrol of Kinesin ATPase Activity Using an Azobenzene Derivative,” J. Biochem., 142(6), pp. 691–698. [CrossRef] [PubMed]
Baird, F. J. , and Bennett, C. L. , 2013, “ Microtubule Defects & Neurodegeneration,” J. Genet. Syndr. Gene Ther., 4, p. 203.
DelRosso, N. V. , and Derr, N. D. , 2017, “ Exploiting Molecular Motors as Nanomachines: The Mechanisms of de Novo and Re-Engineered Cytoskeletal Motors,” Curr. Opin. Biotechnol., 46, pp. 20–26. [CrossRef] [PubMed]
Goel, A. , and Vogel, V. , 2008, “ Harnessing Biological Motors to Engineer Systems for Nanoscale Transport and Assembly,” Nat. Nanotechnol., 3(8), pp. 465–475. [CrossRef] [PubMed]
Hess, H. , 2011, “ Engineering Applications of Biomolecular Motors,” Annu. Rev. Biomed. Eng., 13(1), pp. 429–450. [CrossRef] [PubMed]
Diez, S. , Korten, T. , and Ma, A. , 2010, “ Towards the Application of Cytoskeletal Motor Proteins in Molecular Detection and Diagnostic Devices,” Curr. Opin. Biotechnol., 21(4), pp. 477–488. [CrossRef] [PubMed]
Ramachandran, S. , Ernst, K. , Bachand, G. D. , Vogel, V. , and Hess, H. , 2006, “ Selective Loading of Kinesin-Powered Molecular Shuttles With Protein Cargo and Its Application to Biosensing,” Small, 2(3), pp. 330–334. [CrossRef] [PubMed]
Bachand, G. D. , Rivera, S. B. , Carroll-Portillo, A. , and Hess, H. , 2006, “ Active Capture and Transport of Virus Particles Using a Biomolecular Motor-Driven Nanoscale ANtibody Sandwich Assay,” Small, 2(3), pp. 381–385. [CrossRef] [PubMed]
Shishido, H. , and Maruta, S. , 2012, “ Engineering of a Novel Ca2+-Regulated Kinesin Molecular Motor Using a Calmodulin Dimer Linker,” Biochem. Biophys. Res. Commun., 423(2), pp. 386–391. [CrossRef] [PubMed]
Hoersch, D. , and Kortemme, T. , 2016, “ A Model for the Molecular Mechanism of an Engineered Light-Driven Protein Machine,” Structure, 24(4), pp. 576–584. [CrossRef] [PubMed]
Furuta, A. , Amino, M. , Yoshio, M. , Oiwa, K. , Kojima, H. , and Furuta, K. , 2016, “ Creating Biomolecular Motors Based on Dynein and Actin-Binding Proteins,” Nat. Nanotechnol., 12(3), pp. 233–237. [CrossRef] [PubMed]
Driller-Colangelo, A. R. , Chau, K. W. L. , Morgan, J. M. , and Derr, N. D. , 2016, “ Cargo Rigidity Affects the Sensitivity of Dynein Ensembles to Individual Motor Pausing,” Cytoskeleton, 73(12), pp. 693–702. [CrossRef] [PubMed]
Toledo, M. A. S. , Janissen, R. , Favaro, M. T. P. , Cotta, M. A. , Montiero, G. A. , Prazeres, D. M. F. , Souza, A. P. , and Azzoni, A. R. , 2012, “ Development of a Recombinant Fusion Protein Based on the Dynein Light Chain LC8 for Non-Viral Gene Delivery,” J. Controlled Release, 159(2), pp. 222–231. [CrossRef]


Grahic Jump Location
Fig. 1

The directional stepping process of kinesin (left) and dynein (right)

Grahic Jump Location
Fig. 2

A comparison of the structure of dynein and kinesin. The left-side image, modified from Ref. [7], depicts dynein next to the globular motor domain that is consistent between all kinesins. The binding of dynein is modulated during the ATPase cycle via primarily the AAA1 domain. On the right side is a detailed view of the kinesin motor domain (image from public domain).

Grahic Jump Location
Fig. 3

(a) A diagram of the optical trapping measurement technique. A bead is captured by the focused optical trap such that either a force is applied, or the escape force (Fk) generated by the protein to move the bead within the trap are met with a resistive force (Ft). (b) The motion of the bead can be tacked with DIC (as shown, image from Ref. [14], CC BY 3.0) or with fluorescent microscopy and related to the applied force.

Grahic Jump Location
Fig. 4

Using AFM, the position of kinesin on a microtubule can be visualized in three-dimensional. This functions for high concentrations of motor proteins (a) or for single proteins (b). Image from Ref. [31].

Grahic Jump Location
Fig. 5

(a) Magnetic tweezers, similar to optical traps, trap a bead which is attached to either a motor protein or a microtubule. An external force (Fm) can then be applied to the bead via a magnetic field. The effect of the force on the bead can be seen between (b) when no magnetic field is present and (c) when the field is applied. (b) and (c) adapted from Ref. [28].

Grahic Jump Location
Fig. 6

(a) The relationship between ATP concentration and kinesin velocity as reported across the literature (see Table 1). (b) The effect of temperature on kinesin velocity at two ATP concentrations [34,43]. At both concentrations, the relationship is seen to follow a similar trend. (c) Approximate force–velocity relationships adapted from the existing literature [9,12,18,50].

Grahic Jump Location
Fig. 7

Engineered motor proteins offer exciting new possibilities in research and clinical applications. By modifying an existing motor protein, researchers can generate new structures capable of performing novel tasks or improving native protein function.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In