Technical Brief

Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension–Inflation Testing

[+] Author and Article Information
Kathryn M. Robison

Department of Biomedical Engineering,
Tulane University,
6823 St. Charles Avenue,
New Orleans, LA 70118
e-mail: krobison@tulane.edu

Cassandra K. Conway

Department of Biomedical Engineering,
Tulane University,
6823 St. Charles Avenue,
New Orleans, LA 70118
e-mail: cconway2@tulane.edu

Laurephile Desrosiers

Department of Female Pelvic Medicine
& Reconstructive Surgery,
Ochsner Clinical School,
1514 Jefferson Highway,
New Orleans, LA 70121
e-mail: laurephile.desrosiers@ochsner.org

Leise R. Knoepp

Department of Female Pelvic Medicine
& Reconstructive Surgery,
Ochsner Clinical School,
1514 Jefferson Highway,
New Orleans, LA 70121
e-mail: lknoepp@ochsner.org

Kristin S. Miller

Department of Biomedical Engineering,
Tulane University,
6823 St. Charles Avenue,
New Orleans, LA 70118
e-mail: kmille11@tulane.edu

1Corresponding author.

Manuscript received February 8, 2017; final manuscript received August 1, 2017; published online August 24, 2017. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 139(10), 104504 (Aug 24, 2017) (8 pages) Paper No: BIO-17-1053; doi: 10.1115/1.4037559 History: Received February 08, 2017; Revised August 01, 2017

Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure–function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension–inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension–inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure–diameter and force–length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress–stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure–function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Jelovsek, J. , Maher, C. , and Barber, M. , 2007, “ Pelvic Organ Prolapse,” Lancet, 369(9566), pp. 1027–1038. [CrossRef] [PubMed]
Pizarro-Berdichevsky, J. , Clifton, M. M. , and Goldman, H. B. , 2015, “ Evaluation and Management of Pelvic Organ Prolapse in Elderly Women,” Clin. Geriatr. Med., 31(4), pp. 507–521. [CrossRef] [PubMed]
Hendrix, S. L. , Clark, A. , Nygaard, I. , Aragaki, A. , Barnabei, V. , and McTiernan, A. , 2002, “ Pelvic Organ Prolapse in the Women's Health Initiative: Gravity and Gravidity,” Am. J. Obstet. Gynecol., 186(6), pp. 1160–1166. [CrossRef] [PubMed]
Olsen, A. L. , Smith, V. J. , Bergstrom, J. O. , Colling, J. C. , and Clark, A. L. , 1997, “ Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence,” Obstet. Gynecol., 89(4), pp. 501–506. [CrossRef] [PubMed]
Subak, L. L. , Waetjen, L. E. , van den Eeden, S. , Thom, D. H. , Vittinghoff, E. , and Brown, J. S. , 2001, “ Cost of Pelvic Organ Prolapse Surgery in the United States,” Obstet. Gynecol., 98(4), pp. 646–651. [PubMed]
DeLancey, J. O. , 2005, “ The Hidden Epidemic of Pelvic Floor Dysfunction: Achievable Goals for Improved Prevention and Treatment,” Am. J. Obstet. Gynecol., 192(5), pp. 1488–1495. [CrossRef] [PubMed]
DeLancey, J. O. , and Starr, R. A. , 1990, “ Histology of the Connection Between the Vagina and Levator Ani Muscles. Implications for Urinary Tract Function,” J. Reprod. Med., 35(8), pp. 765–771. https://www.ncbi.nlm.nih.gov/pubmed/2213737 [PubMed]
Tracy, P. V. , DeLancey, J. O. , and Ashton-Miller, J. A. , 2016, “ A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery,” ASME J. Biomech. Eng., 138(2), p. 021001. [CrossRef]
DeLancey, J. O. , Morgan, D. M. , Fenner, D. E. , Kearney, R. , Guire, K. , Miller, J. M. , Hussain, H. , Umek, W. , Hsu, Y. , and Ashton-Miller, J. A. , 2007, “ Comparison of Levator Ani Muscle Defects and Function in Women With and Without Pelvic Organ Prolapse,” Obstet. Gynecol., 109(2 Pt. 1), pp. 295–302. [CrossRef] [PubMed]
Miklos, J. R. , Moore, R. D. , and Kohli, N. , 2002, “ Laparoscopic Surgery for Pelvic Support Defects,” Curr. Opin. Obstet. Gynecol., 14(4), pp. 387–395. [CrossRef] [PubMed]
DeLancey, J. , 1992, “ Anatomic Aspects of Vaginal Eversion After Hysterectomy,” Am. J. Obstet. Gynecol., 166(6 Pt. 1), pp. 1717–1724. [CrossRef] [PubMed]
Becker, W. R. , and De Vita, R. , 2015, “ Biaxial Mechanical Properties of Swine Uterosacral and Cardinal Ligaments,” Biomech. Model. Mechanobiol., 14(3), pp. 549–560. [CrossRef] [PubMed]
Goh, J. T. , 2002, “ Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women,” Int. Urogynecol. J. Pelvic Floor Dysfunct., 13(2), pp. 76–79. [CrossRef] [PubMed]
Cosson, M. , Lambaudie, E. , Boukerrou, M. , Lobry, P. , Crépin, G. , and Ego, A. , 2004, “ A Biomechanical Study of the Strength of Vaginal Tissues. Results on 16 Post-Menopausal Patients Presenting With Genital Prolapse,” Eur. J. Obstet. Gynecol. Reprod. Biol., 112(2), pp. 201–205. [CrossRef] [PubMed]
Lei, L. , Song, Y. , and Chen, R. , 2007, “ Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women,” Int. Urogynecol. J. Pelvic Floor Dysfunct., 18(6), pp. 603–607. [CrossRef] [PubMed]
Rahn, D. D. , Ruff, M. D. , Brown, S. A. , Tibbals, H. F. , and Word, R. A. , 2008, “ Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse,” Am. J. Obstet. Gynecol., 198(5), pp. 590.e1–590.e6. [CrossRef]
Lowder, J. L. , Debes, K. M. , Moon, D. K. , Howden, N. , Abramowitch, S. D. , and Moalli, P. A. , 2007, “ Biomechanical Adaptations of the Rat Vagina and Supportive Tissues in Pregnancy to Accommodate Delivery,” Obstet. Gynecol., 109(1), pp. 136–143. [CrossRef] [PubMed]
Peña, E. , Calvo, B. , Martínez, M. A. , Martins, P. , Mascarenhas, T. , Jorge, R. M. , Ferreira, A. , and Doblaré, M. , 2010, “ Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue,” Biomech. Model. Mechanobiol., 9(1), pp. 35–44. [CrossRef] [PubMed]
Peña, E. , Martins, P. , Mascarenhas, T. , Natal Jorge, R. M. , Ferreira, A. , Doblaré, M. , and Calvo, B. , 2011, “ Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue,” J. Mech. Behav. Biomed. Mater., 4(3), pp. 275–283. [CrossRef] [PubMed]
Martins, P. A. , Jorge, R. M. , Ferreia, A. J. , Saleme, C. S. , Roza, T. , Parente, M. M. , Pinotti, M. , Mascarenhas, T. , Santos, A. , Santos, L. , and Silva-Filho, A. L. , 2011, “ Vaginal Tissue Properties Versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study,” Gynecol. Obstet. Invest., 71(3), pp. 145–150. [CrossRef] [PubMed]
Martins, P. , Peña, E. , Calvo, B. , Doblaré, M. , Mascarenhas, T. , Natal Jorge, R. , and Ferreira, A. , 2010, “ Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation,” Comput. Methods Biomech. Biomed. Eng., 13(3), pp. 327–337. [CrossRef]
Abramowitch, S. D. , Feola, A. , Jallah, Z. , and Moalli, P. A. , 2009, “ Tissue Mechanics, Animal Models, and Pelvic Organ Prolapse: A Review,” Eur. J. Obstet. Gynecol. Reprod. Biol., 144(Suppl. 1), pp. S146–S158. [CrossRef] [PubMed]
Timmons, B. C. , Fairhurst, A. M. , and Mahendroo, M. S. , 2009, “ Temporal Changes in Myeloid Cells in the Cervix During Pregnancy and Parturition,” J. Immunol., 182(5), pp. 2700–2707.
Yellon, S. M. , Ebner, C. A. , and Elovitz, M. A. , 2009, “ Medroxyprogesterone Acetate Modulates Remodeling, Immune Cell Census, and Nerve Fibers in the Cervix of a Mouse Model for Inflammation-Induced Preterm Birth,” Reprod. Sci., 16(3), pp. 257–264.
Baah-Dwomoh, A. , McGuire, J. , Tan, T. , and De Vita, R. , 2016, “ Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge,” ASME Appl. Mech. Rev., 68(6), p. 060801. [CrossRef]
Tan, T. , Cholewa, N. M. , Case, S. W. , and De Vita, R. , 2016, “ Micro-Structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex,” Ann. Biomed. Eng., 44(11), pp. 3225–3237. [CrossRef] [PubMed]
Amin, M. , Le, V. P. , and Wagenseil, J. E. , 2012, “ Mechanical Testing of Mouse Carotid Arteries: From Newborn to Adult,” J. Visualized Exp., 60, p. e3733.
Ferruzzi, J. , Bersi, M. , and Humphrey, J. , 2013, “ Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models,” Ann. Biomed. Eng., 41(7), pp. 1311–1330. [CrossRef] [PubMed]
Moalli, P. A. , Howden, N. S. , Lowder, J. L. , Navarro, J. , Debes, K. M. , Abramowitch, S. D. , and Woo, S. L. , 2005, “ A Rat Model to Study the Structural Properties of the Vagina and Its Supportive Tissues,” Am. J. Obstet. Gynecol., 192(1), pp. 80–88. [CrossRef] [PubMed]
Balgobin, S. , Montoya, T. I. , Shi, H. , Acevedo, J. F. , Keller, P. W. , Riegel, M. , Wai, C. Y. , and Word, R. A. , 2013, “ Estrogen Alters Remodeling of the Vaginal Wall After Surgical Injury in Guinea Pigs,” Biol. Reprod., 89(6), p. 138. [CrossRef] [PubMed]
Drewes, P. G. , Yanagisawa, H. , Starcher, B. , Hornstra, I. , Csiszar, K. , Marinis, S. I. , Keller, P. , and Word, R. A. , 2007, “ Pelvic Organ Prolapse in Fibulin-5 Knockout Mice: Pregnancy-Induced Changes in Elastic Fiber Homeostasis in Mouse Vagina,” Am. J. Pathol., 170(2), pp. 578–589. [CrossRef] [PubMed]
Rahn, D. , Acevedo, J. , Roshanravan, S. , Keller, P. , Davis, E. , Marmorstein, L. , and Word, R. , 2009, “ Failure of Pelvic Organ Support in Mice Deficient in Fibulin-3,” Am. J. Pathol., 174(1), pp. 206–215. [CrossRef] [PubMed]
Word, R. A. , Pathi, S. , and Schaffer, J. I. , 2009, “ Pathophysiology of Pelvic Organ Prolapse,” Obstet. Gynecol. Clin. North Am., 36(3), pp. 521–539. [CrossRef] [PubMed]
Tan, T. , Davis, F. M. , Gruber, D. D. , Massengill, J. C. , Robertson, J. L. , and De Vita, R. , 2015, “ Histo-Mechanical Properties of the Swine Cardinal and Uterosacral Ligaments,” J. Mech. Behav. Biomed. Mater., 42, pp. 129–137.
Budatha, M. , Roshanravan, S. , Zheng, Q. , Weislander, C. , Chapman, S. L. , Davis, E. C. , Starcher, B. , Word, R. A. , and Yanagisawa, H. , 2011, “ Extracellular Matrix Proteases Contribute to Progression of Pelvic Organ Prolapse in Mice and Humans,” J. Clin. Invest., 121(5), pp. 2048–2059. [CrossRef] [PubMed]
Budatha, M. , Silva, S. , Montoya, T. I. , Suzuki, A. , Shah-Simpson, S. , Wieslander, C. K. , Yanagisawa, M. , Word, R. A. , and Yanagisawa, H. , 2013, “ Dysregulation of Protease and Protease Inhibitors in a Mouse Model of Human Pelvic Organ Prolapse,” PLoS One, 8(2), p. e56376. [CrossRef] [PubMed]
Couri, B. , Borazjani, A. , Lenis, A. , Balog, B. , Kuang, M. , Lin, D. , and Damaser, M. , 2014, “ Validation of Genetically Matched Wild-Type Strain and Lysyl Oxidase-Like 1 Knockout Mouse Model of Pelvic Organ Prolapse,” Female Pelvic Med. Reconstr. Surg., 20(5), pp. 287–292. [CrossRef] [PubMed]
Rahn, D. D. , Acevedo, J. F. , and Word, R. A. , 2008, “ Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Role in the Pathogenesis of Pelvic Organ Prolapse,” Am. J. Physiol.: Regul., Integr. Comp. Physiol., 295(4), pp. R1351–R1358. [CrossRef]
Wieslander, C. K. , Rahn, D. D. , McIntire, D. D. , Acevedo, J. F. , Drewes, P. G. , Yanagisawa, H. , and Word, R. A. , 2009, “ Quantification of Pelvic Organ Prolapse in Mice: Vaginal Protease Activity Precedes Increased MOPQ Scores in Fibulin 5 Knockout Mice,” Biol. Reprod., 80(3), pp. 407–414. [CrossRef] [PubMed]
Couri, B. M. , Lenis, A. T. , Borazjani, A. , Paraiso, M. F. , and Damaser, M. S. , 2012, “ Animal Models of Female Pelvic Organ Prolapse: Lessons Learned,” Expert Rev. Obstet. Gynecol., 7(3), pp. 249–260. [CrossRef] [PubMed]
Couri, B. , Lenis, A. , Kinley, B. , Balog, B. , Kuang, M. , and Damaser, M. , 2012, “ Injury Related Stem Cell Homing Cytokines in Lysyl Oxidase Like-1 Knockout Mice: A Pelvic Organ Prolapse Model,” J. Urol., 187(4), p. E863. [CrossRef]
Couri, B. , Venkataraman, L. , Bashur, C. , Lenis, A. , Wilk, D. , Ramamurthi, A. , and Damaser, M. , 2013, “ Pathophysiologic Changes in Loxl-1 Knockout Mouse With Pelvic Floor Dysfunction Induce a Compensatory and Aberrant Elastin Regenerative Response by Vaginal Smooth Muscle Cells,” J. Urol., 189(4), p. E50. [CrossRef]
Couri, B. , Wilson-Harris, B. , Pizarro-Berdichevsky, J. , Borazjani, A. , Gonzalez-Ramos, S. , Dijkema, G. , Kuang, M. , Balog, B. , and Damaser, M. , 2015, “ Reduction in Pelvic Organ Prolapse in Lysyl Oxidase Like-1 (LOXL1) Knockout (KO) Mice Using a Cell Based Therapy,” J. Urol., 193(4), pp. E76–E77. [CrossRef]
Gustilo-Ashby, A. M. , Lee, U. , Vurbic, D. , Sypert, D. , Kuang, M. , Daneshgari, F. , Barber, M. D. , and Damaser, M. S. , 2010, “ The Impact of Cesarean Delivery on Pelvic Floor Dysfunction in Lysyl Oxidase Like-1 Knockout Mice,” Female Pelvic Med. Reconstr. Surg., 16(1), pp. 21–30. [CrossRef] [PubMed]
Lee, U. , Gustilo-Ashby, A. , Daneshgari, F. , Kuang, M. , Vrubic, D. , Lin, D. , Flask, C. , Li, T. , and Damaser, M. , 2008, “ Functional and Anatomical Phenotype in Lysyl Oxidase Like-1 Knockout Mice Resembles the Natural History of Pelvic Organ Prolapse in Humans,” J. Urol., 179(4), pp. 444–445. [CrossRef]
Lee, U. J. , Gustilo-Ashby, A. M. , Daneshgari, F. , Kuang, M. , Vurbic, D. , Lin, D. L. , Flask, C. A. , Li, T. , and Damaser, M. S. , 2008, “ Lower Urogenital Tract Anatomical and Functional Phenotype in Lysyl Oxidase Like-1 Knockout Mice Resembles Female Pelvic Floor Dysfunction in Humans,” Am. J. Physiol.-Renal Physiol., 295(2), pp. F545–F555.
Montoya, T. I. , Maldonado, P. A. , Acevedo, J. F. , and Word, R. A. , 2015, “ Effect of Vaginal or Systemic Estrogen on Dynamics of Collagen Assembly in the Rat Vaginal Wall,” Biol. Reprod., 92(2), p. 43. [CrossRef] [PubMed]
Ripperda, C. M. , Maldonado, P. A. , Acevedo, J. F. , Keller, P. W. , Akgul, Y. , Shelton, J. M. , and Word, R. A. , 2017, “ Vaginal Estrogen: A Dual-Edged Sword in Postoperative Healing of the Vaginal Wall,” Menopause, 24(7), pp. 838–849. [CrossRef] [PubMed]
Rubod, C. , Boukerrou, M. , Brieu, M. , Dubois, P. , and Cosson, M. , 2007, “ Biomechanical Properties of Vaginal Tissue—Part 1: New Experimental Protocol,” J. Urol., 178(1), pp. 320–325. [CrossRef] [PubMed]
Humphrey, J. D. , 2013, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer Science & Business Media, New York.
Lake, S. P. , Miller, K. S. , Elliott, D. M. , and Soslowsky, L. J. , 2009, “ Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading,” J. Orthop. Res., 27(12), pp. 1596–1602. [CrossRef] [PubMed]
Van Loon, P. , 1976, “ Length-Force and Volume-Pressure Relationships of Arteries,” Biorheology, 14(4), pp. 181–201. https://www.ncbi.nlm.nih.gov/pubmed/912047
Sokolis, D. P. , Petsepe, D. C. , Papadodima, S. A. , and Kourkoulis, S. K. , 2017, “ Age- and Region-Related Changes in the Biomechanical Properties and Composition of the Human Ureter,” J. Biomech., 51, pp. 57–64. [CrossRef] [PubMed]
Caulk, A. W. , Nepiyushchikh, Z. V. , Shaw, R. , Dixon, J. B. , and Gleason, R. L. , 2015, “ Quantification of the Passive and Active Biaxial Mechanical Behaviour and Microstructural Organization of Rat Thoracic Ducts,” J. R. Soc. Interface, 12(108), p. 20150280. [CrossRef] [PubMed]
von Maltzahn, W. W. , Warriyar, R. G. , and Keitzer, W. F. , 1984, “ Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries,” J. Biomech., 17(11), pp. 839–847. [CrossRef] [PubMed]
Rubod, C. , Brieu, M. , Cosson, M. , Rivaux, G. , Clay, J. , de Landsheere, L. , and Gabriel, B. , 2012, “ Biomechanical Properties of Human Pelvic Organs,” Urology, 79(4), pp. 968.e17–968.e22. [CrossRef]
Collins, M. , Eberth, J. , Wilson, E. , and Humphrey, J. , 2012, “ Acute Mechanical Effects of Elastase on the Infrarenal Mouse Aorta: Implications for Models of Aneurysms,” J. Biomech., 45(4), pp. 660–665. [CrossRef] [PubMed]
Ferruzzi, J. , Collins, M. J. , Yeh, A. T. , and Humphrey, J. D. , 2011, “ Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome,” Cardiovasc. Res., 92(2), pp. 287–295. [CrossRef] [PubMed]
Fonck, E. , Prod'hom, G. , Roy, S. , Augsburger, L. , Rüfenacht, D. A. , and Stergiopulos, N. , 2007, “ Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model,” Am. J. Physiol.: Heart Circ. Physiol., 292(6), pp. H2754–H2763. [CrossRef] [PubMed]
Cardamone, L. , Valentin, A. , Eberth, J. , and Humphrey, J. , 2009, “ Origin of Axial Prestretch and Residual Stress in Arteries,” Biomech. Model. Mechanobiol., 8(6), pp. 431–446. [CrossRef] [PubMed]
Kerkhof, M. H. , Hendriks, L. , and Brölmann, H. A. , 2009, “ Changes in Connective Tissue in Patients With Pelvic Organ Prolapse—A Review of the Current Literature,” Int. Urogynecol. J. Pelvic Floor Dysfunct., 20(4), pp. 461–474. [CrossRef] [PubMed]
House, M. , Sanchez, C. C. , Rice, W. L. , Socrate, S. , and Kaplan, D. L. , 2010, “ Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells,” Tissue Eng. Part A, 16(6), pp. 2101–2112.
Downing, K. T. , Billah, M. , Raparia, E. , Shah, A. , Silverstein, M. C. , Ahmad, A. , and Boutis, G. S. , 2014, “ The Role of Mode of Delivery on Elastic Fiber Architecture and Vaginal Vault Elasticity: A Rodent Model Study,” J. Mech. Behav. Biomed. Mater., 29, pp. 190–198. [CrossRef] [PubMed]
Becher, N. , Hein, M. , Danielsen, C. C. , and Uldbjerg, N. , 2010, “ Matrix Metalloproteinases in the Cervical Mucus Plug in Relation to Gestational Age, Plug Compartment, and Preterm Labor,” Reprod. Biol. Endocrinol., 8, p. 113.
Timmons, B. , Akins, M. , and Mahendroo, M. , 2010, “ Cervical Remodeling During Pregnancy and Parturition,” Trends Endocrinol. Metab., 21(6), pp. 353–361.
Akins, M. L. , Luby-Phelps, K. , and Mahendroo, M. , 2010, “ Second Harmonic Generation Imaging as a Potential Tool for Staging Pregnancy and Predicting Preterm Birth,” J. Biomed. Opt., 15(2), p. 026020.
Kerkhof, M. H. , Ruiz-Zapata, A. M. , Bril, H. , Bleeker, M. C. , Belien, J. A. , Stoop, R. , and Helder, M. N. , 2014, “ Changes in Tissue Composition of the Vaginal Wall of Premenopausal Women With Prolapse,” Am. J. Obstet. Gynecol., 210(2), pp. 168.e1–168.e9. [CrossRef]
van der Walt, I. , Bø, K. , Hanekom, S. , and Rienhardt, G. , 2014, “ Ethnic Differences in Pelvic Floor Muscle Strength and Endurance in South African Women,” Int. Urogynecol. J., 25(6), pp. 799–805. [PubMed]
Ferruzzi, J. , Bersi, M. , Uman, S. , Yanagisawa, H. , and Humphrey, J. , 2015, “ Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex,” ASME J. Biomech. Eng., 137(3), p. 031007. [CrossRef]
Fung, Y. , Fronek, K. , and Patitucci, P. , 1979, “ Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression,” Am. J. Physiol.: Heart Circ. Physiol., 237(5), pp. H620–H631. https://www.ncbi.nlm.nih.gov/pubmed/495769
Feola, A. , Moalli, P. , Alperin, M. , Duerr, R. , Gandley, R. E. , and Abramowitch, S. , 2011, “ Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina,” Ann. Biomed. Eng., 39(1), pp. 549–558. [CrossRef] [PubMed]
Skoczylas, L. C. , Jallah, Z. , Sugino, Y. , Stein, S. E. , Feola, A. , Yoshimura, N. , and Moalli, P. , 2013, “ Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology,” Reprod. Sci., 20(4), pp. 382–390. [CrossRef] [PubMed]
Barone, W. R. , Allah, Z. , Mollie, P. M. , and Abramowitch, S. D. , 2015, “ Effect of Active Smooth Muscle Contraction on the Planar Biaxial Mechanical Properties of the Rat Vagina,” Midwest American Society of Biomechanics Regional Meeting, Akron, OH, Feb. 16–17.
Murtada, S.-I. , Ferruzzi, J. , Yanagisawa, H. , and Humphrey, J. , 2016, “ Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice,” ASME J. Biomech. Eng., 138(5), p. 051008. [CrossRef]
House, M. , Kaplan, D. L. , and Socrate, S. , 2009, “ Relationships Between Mechanical Properties and Extracellular Matrix Constituents of the Cervical Stroma During Pregnancy,” Semin. Perinatol., 33(5), pp. 300–307.


Grahic Jump Location
Fig. 1

Murine reproductive system pre- (left) and postexplant (right) with white lines denoting the border between the cervix and vagina and approximate distances from the border to the base of the vagina and split of the uterine horns

Grahic Jump Location
Fig. 2

Postexplant murine reproductive system demonstrating the point at which the bifurcated external os (two rings) of the cervix merges into the vaginal canal (one ring)

Grahic Jump Location
Fig. 3

Vaginal sample mounted onto cannulas in preparation for testing. The unloaded length (left) can be found by identifying the point at which the ridges on either side of where the urethra was removed from (white dotted lines added for emphasis) begin to buckle. Note that the ridges become more linear in the in vivo configuration (right).

Grahic Jump Location
Fig. 4

Schematic of the biaxial testing protocol for pressure (top) and force (bottom) over time. The protocol consists of: (I) five cycles of pressure–diameter preconditioning from 0 to 25 mm Hg, (II) five cycles of force–length preconditioning with pressure held at 2 mm Hg and the stretch ranging from −4% to 4% of the unloaded length, (III) equilibration period with the pressure held at 2 mm Hg at the estimated in vivo stretch, (IV) pressure–diameter tests performed at (a) −4% in vivo stretch, (b) in vivo stretch, and (c) 4% in vivo stretch over 0–25 mm Hg, and (V) force–length tests: (a) pressure held at 2 mm Hg, (b) 8 mm Hg, (c) 12 mm Hg, and (d) 25 mm Hg over the range of in vivo stretches.

Grahic Jump Location
Fig. 5

Schematic of a bilinear curve fit wherein the built-in matlab function lsqcurvefit is used to identify the moduli of the toe and linear regions as well as the transition stress and stretch at the transition point

Grahic Jump Location
Fig. 6

Testing data (mean ± SEM) from pressure–diameter (a) and (b) and force–length (c) protocols conducted on n = 16 specimens. Estimation of the in vivo axial stretch ratio based on the near constancy of the transducer-measured force–pressure response during the cyclic pressure–diameter testing (b), and typical force–length responses for which the intersection in the force–axial stretch data, denoted by the black line, reveals the in vivo axial stretch (c) as described previously in Refs. [52] and [55].

Grahic Jump Location
Fig. 7

Circumferential Cauchy stress–stretch curves (mean ± SEM of n = 16 specimens) calculated from p–d testing data for loading (filled) and unloading (unfilled) cycles at the estimated in vivo axial stretch, denoting the effect of cycle on vaginal wall mechanical behavior

Grahic Jump Location
Fig. 8

Axial Cauchy stress versus circumferential stretch curves (mean ± SEM of n = 16 specimens) calculated from p–d testing data for loading (filled) and unloading (unfilled) cycles at 4% above (gray) and below (black) the in vivo axial stretch, denoting the effect of cycle and axial coupling on vaginal wall mechanical behavior

Grahic Jump Location
Fig. 9

Axial Cauchy stress–stretch curves (mean ± SEM of n = 16 specimens) calculated from f–l testing data for loading (filled) and unloading (unfilled) cycles at 2 (black) and 25 mm Hg (gray), denoting the effect of cycle and axial coupling on vaginal wall mechanical behavior



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In