0
Research Papers

Noninvasive Assessment of Biochemical and Mechanical Properties of Lumbar Discs Through Quantitative Magnetic Resonance Imaging in Asymptomatic Volunteers

[+] Author and Article Information
Mary H. Foltz

Department of Rehabilitation Medicine,
University of Minnesota,
MMC 388 Mayo,
420 Delaware Street SE,
Minneapolis, MN 55455
e-mail: foltz017@umn.edu

Craig C. Kage

Department of Rehabilitation Medicine,
University of Minnesota,
MMC 388 Mayo,
420 Delaware Street SE,
Minneapolis, MN 55455
e-mail: kagex001@umn.edu

Casey P. Johnson

Department of Radiology,
Center for Magnetic Resonance Research,
University of Minnesota,
2021 6th Street S.E.,
Minneapolis, MN 55455
e-mail: john5037@umn.edu

Arin M. Ellingson

Department of Rehabilitation Medicine,
University of Minnesota,
MMC 388 Mayo,
420 Delaware Street SE,
Minneapolis, MN 55455
e-mail: ellin224@umn.edu

1Corresponding author.

Manuscript received May 13, 2017; final manuscript received August 1, 2017; published online September 27, 2017. Assoc. Editor: Kyle Allen.

J Biomech Eng 139(11), 111002 (Sep 27, 2017) (7 pages) Paper No: BIO-17-1212; doi: 10.1115/1.4037549 History: Received May 13, 2017; Revised August 01, 2017

Intervertebral disc degeneration is a prevalent phenomenon associated with back pain. It is of critical clinical interest to discriminate disc health and identify early stages of degeneration. Traditional clinical T2-weighted magnetic resonance imaging (MRI), assessed using the Pfirrmann classification system, is subjective and fails to adequately capture initial degenerative changes. Emerging quantitative MRI techniques offer a solution. Specifically, T2* mapping images water mobility in the macromolecular network, and our preliminary ex vivo work shows high predictability of the disc's glycosaminoglycan content (s-GAG) and residual mechanics. The present study expands upon this work to predict the biochemical and biomechanical properties in vivo and assess their relationship with both age and Pfirrmann grade. Eleven asymptomatic subjects (range: 18–62 yrs) were enrolled and imaged using a 3T MRI scanner. T2-weighted images (Pfirrmann grade) and quantitative T2* maps (predict s-GAG and residual stress) were acquired. Surface maps based on the distribution of these properties were generated and integrated to quantify the surface volume. Correlational analyses were conducted to establish the relationship between each metric of disc health derived from the quantitative T2* maps with both age and Pfirrmann grade, where an inverse trend was observed. Furthermore, the nucleus pulposus (NP) signal in conjunction with volumetric surface maps provided the ability to discern differences during initial stages of disc degeneration. This study highlights the ability of T2* mapping to noninvasively assess the s-GAG content, residual stress, and distributions throughout the entire disc, which may provide a powerful diagnostic tool for disc health assessment.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ma, V. Y. , Chan, L. , and Carruthers, K. J. , 2014, “ Incidence, Prevalence, Costs, and Impact on Disability of Common Conditions Requiring Rehabilitation in the United States: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain,” Arch. Phys. Med. Rehabil., 95(5), pp. 986–995. [CrossRef] [PubMed]
Katz, J. N. , 2006, “ Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences,” J. Bone Jt. Surg., 88(Suppl. 2), pp. 21–24.
Andersson, G. B. , 1999, “ Epidemiological Features of Chronic Low-Back Pain,” Lancet, 354(9178), pp. 581–585. [CrossRef] [PubMed]
Martin, B. I. , 2008, “ Expenditures and Health Status Among Adults With Back and Neck Problems,” JAMA, 299(6), pp. 656–664. [CrossRef] [PubMed]
Adams, M. A. , and Roughley, P. J. , 2006, “ What Is Intervertebral Disc Degeneration, and What Causes It?,” Spine, 31(18), pp. 2151–2161. [CrossRef] [PubMed]
Johannessen, W. , and Elliott, D. M. , 2005, “ Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression,” Spine, 30(24), pp. E724–E729. [CrossRef] [PubMed]
Buckwalter, J. A. , 1995, “ Aging and Degeneration of the Human Intervertebral Disc,” Spine, 20(11), pp. 1307–1314. [CrossRef] [PubMed]
Jensen, M. C. , Brant-Zawadki, M. N. , Obuchowski, N. , Modic, M. T. , Malkasian, D. , and Ross, J. S. , 1994, “ Magnetic Resonance Imaging of the Lumbar Spine in People Without Back Pain,” N. Engl. J. Med., 331(2), pp. 69–73. [CrossRef] [PubMed]
Powell, M. C. , Szypryt, P. , Wilson, M. , Symonds, E. M. , and Worthington, B. S. , 1986, “ Prevalence of Lumbar Disc Degeneration Observed by Magnetic Resonance in Symptomless Women,” Lancet, 328(8520), pp. 1366–1367. [CrossRef]
Pfirrmann, C. W. A. , Metzdorf, A. , Zanetti, M. , Hodler, J. , and Boos, N. , 2001, “ Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration,” Spine, 26(17), pp. 1873–1878. [CrossRef] [PubMed]
Benneker, L. M. , Heini, P. F. , Anderson, S. E. , Alini, M. , and Ito, K. , 2005, “ Correlation of Radiographic and MRI Parameters to Morphological and Biochemical Assessment of Intervertebral Disc Degeneration,” Eur. Spine J., 14(1), pp. 27–35. [CrossRef] [PubMed]
Lao, L. , Daubs, M. , Scott, T. , Lord, E. L. , Cohen, J. R. , Yin, R. , Zhong, G. , and Wang, J. , 2015, “ Effect of Disc Degeneration on Lumbar Segmental Mobility Analyzed by Kinetic Magnetic Resonance Imaging,” Spine, 40(5), pp. 316–322. [CrossRef] [PubMed]
Takashima, H. , Takebayashi, T. , Yoshimoto, M. , Terashima, Y. , Tsuda, H. , Ida, K. , and Yamashita, T. , 2012, “ Correlation Between T2 Relaxation Time and Intervertebral Disc Degeneration,” Skeletal Radiol., 41(2), pp. 163–167. [CrossRef] [PubMed]
Welsch, G. H. , Trattnig, S. , Paternostro-Sluga, T. , Bohndorf, K. , Goed, S. , Stelzeneder, D. , and Mamisch, T. C. , 2011, “ Parametric T2 and T2* Mapping Techniques to Visualize Intervertebral Disc Degeneration in Patients With Low Back Pain: Initial Results on the Clinical Use of 3.0 Tesla MRI,” Skeletal Radiol., 40(5), pp. 543–551. [CrossRef] [PubMed]
Niu, G. , Yang, J. , Wang, R. , Dang, S. , Wu, E. X. , and Guo, Y. , 2011, “ MR Imaging Assessment of Lumbar Intervertebral Disc Degeneration and Age-Related Changes: Apparent Diffusion Coefficient Versus T2 Quantitation,” Am. J. Neuroradiol., 32(9), pp. 1617–1623. [CrossRef]
Ellingson, A. M. , Mehta, H. , Polly, D. W. , Ellermann, J. , and Nuckley, D. J. , 2013, “ Disc Degeneration Assessed by Quantitative T2* (T2 Star) Correlated With Functional Lumbar Mechanics,” Spine, 38(24), pp. E1533–E1540. [CrossRef] [PubMed]
Chavhan, G. B. , Babyn, P. S. , Thomas, B. , Shroff, M. M. , and Haacke, E. M. , 2009, “ Principles, Techniques, and Applications of T2*-Based MR Imaging and Its Special Applications,” Radiographics, 29(5), pp. 1433–1449. [CrossRef] [PubMed]
Ellingson, A. M. , Nagel, T. M. , Polly, D. W. , Ellermann, J. , and Nuckley, D. J. , 2014, “ Quantitative T2* (T2 Star) Relaxation Times Predict Site Specific Proteoglycan Content and Residual Mechanics of the Intervertebral Disc Throughout Degeneration,” J. Orthop. Res., 32(8), pp. 1083–1089. [CrossRef] [PubMed]
Hoppe, S. , Quirbach, S. , Mamisch, T. C. , Krause, F. G. , Werlen, S. , and Benneker, L. M. , 2012, “ Axial T2* Mapping in Intervertebral Discs: A New Technique for Assessment of Intervertebral Disc Degeneration,” Eur. Radiol., 22(9), pp. 2013–2019. [CrossRef] [PubMed]
Zhang, X. , Yang, L. , Gao, F. , Yuan, Z. G. , Lin, X. T. , Yao, B. , Chen, W. B. , Chan, Q. , and Wang, G. B. , 2015, “ Comparison of T1ρ and T2* Relaxation Mapping in Patients With Different Grades of Disc Degeneration at 3T MR,” Med. Sci. Monit., 21, pp. 1934–1941. [CrossRef] [PubMed]
Ellingson, A. M. , and Nuckley, D. J. , 2012, “ Intervertebral Disc Viscoelastic Parameters and Residual Mechanics Spatially Quantified Using a Hybrid Confined/In Situ Indentation Method,” J. Biomech., 45(3), pp. 491–496. [CrossRef] [PubMed]
Detiger, S. E. L. , Holewijn, R. M. , Hoogendoorn, R. J. W. , van Royen, B. J. , Helder, M. N. , Berger, F. H. , Kuijer, J. P. A. , and Smit, T. H. , 2014, “ MRI T2* Mapping Correlates With Biochemistry and Histology in Intervertebral Disc Degeneration in a Large Animal Model,” Eur. Spine J., 24(9), pp. 1935–1943. [CrossRef] [PubMed]
Huang, M. , Guo, Y. , Ye, Q. , Chen, L. , Zhou, K. , Wang, Q. J. , Shao, L. X. , Shi, Q. L. , and Chen, C. , 2016, “ Correlation Between T2* (T2 Star) Relaxation Time and Cervical Intervertebral Disc Degeneration,” Medicine, 95(47), p. e4502. [CrossRef] [PubMed]
Shen, S. , Wang, H. , Zhang, J. , Wang, F. , and Liu, S.-R. , 2016, “ Diffusion Weighted Imaging, Diffusion Tensor Imaging, and T2* Mapping of Lumbar Intervertebral Disc in Young Healthy Adults,” Iran. J. Radiol., 13(1), p. e30069. [CrossRef] [PubMed]
Blumenkrantz, G. , Zuo, J. , Li, X. , Kornak, J. , Link, T. M. , and Majumdar, S. , 2010, “ In Vivo 3.0-Tesla Magnetic Resonance T1ρ and T2 Relaxation Mapping in Subjects With Intervertebral Disc Degeneration and Clinical Symptoms,” Magn. Reson. Med., 63(5), pp. 1193–1200. [CrossRef] [PubMed]
Marinelli, N. L. , Haughton, V. M. , and Anderson, P. A. , 2010, “ T2 Relaxation Times Correlated With Stage of Lumbar Intervertebral Disc Degeneration and Patient Age,” Am. J. Neuroradiol., 31(7), pp. 1278–1282. [CrossRef]
Watanabe, A. , Benneker, L. M. , Boesch, C. , Watanabe, T. , Obata, T. , and Anderson, S. E. , 2007, “ Classification of Intervertebral Disc Degeneration With Axial T2 Mapping,” Am. J. Roentgenol., 189(4), pp. 936–942. [CrossRef]
Iatridis, J. C. , MacLean, J. J. , O'Brien, M. , and Stokes, I. A. F. , 2007, “ Measurements of Proteoglycan and Water Content Distribution in Human Lumbar Intervertebral Discs,” Spine, 32(14), pp. 1493–1497. [CrossRef] [PubMed]
Urban, J. P. G. , and McMullin, J. F. , 1988, “ Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration,” Spine, 13(2), pp. 179–187. [CrossRef] [PubMed]
Wilke, H.-J. , Neef, P. , Hinz, B. , Seidel, H. , and Claes, L. , 2001, “ Intradiscal Pressure Together With Anthropometric Data—A Data Set for the Validation of Models,” Clin. Biomech., 16(1), pp. S111–S126. [CrossRef]
Andersson, G. B. J. , Ortengren, R. , and Nachemson, A. , 1977, “ Intradiskal Pressure, Intra-Abdominal Pressure and Myoelectric Back Muscle Activity Related to Posture and Loading,” Clin. Orthop. Relat. Res., 129, pp. 156–164. [CrossRef]
Sato, K. , Kikuchi, S. , and Yonezawa, T. , 1999, “ In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems,” Spine, 24(23), p. 2468. [CrossRef] [PubMed]
Ebara, S. , Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Mow, V. C. , and Weidenbaum, M. , 1996, “ Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus,” Spine, 21(4), pp. 452–461. [CrossRef] [PubMed]
Acaroglu, E. R. , Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Mow, V. C. , and Weidenbaum, M. , 1995, “ Degeneration and Aging Affect the Tensile Behaviour of Human Lumbar Anulus Fibrosus,” Spine, 20(24), pp. 2690–2701. [CrossRef] [PubMed]
Galante, J. O. , 1967, “ Tensile Properties of the Human Lumbar Annulus Fibrosus,” Acta Orthop. Scand., 38(Supp. 100), pp. 1–91. [CrossRef] [PubMed]
Antoniou, J. , Steffen, T. , Nelson, F. , Winterbottom, N. , Hollander, A. P. , Poole, R. A. , Aebi, M. , and Alini, M. , 1996, “ The Human Lumbar Intervertebral Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration,” J. Clin. Invest., 98(4), pp. 996–1003. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 3

Correlation plots between metrics of disc health (T2* relaxation time, s-GAG, and residual stress) and age (left) and Pfirrmann grade (right) in the NP. s-GAG content is represented in red with one side of the prediction interval displayed below the prediction. Residual stress is represented in blue with one side of the prediction interval displayed above the prediction. Pearson's correlation coefficient (r) and p-value are displayed.

Grahic Jump Location
Fig. 5

Correlation plot of Pfirrmann grade and T2* surface volume of the disc with the linear and second-order polynomial regression; R2, adjusted R2, and p-value

Grahic Jump Location
Fig. 2

Representative axial T2* map of a healthy (top) and severely degenerated (bottom) intervertebral disc with corresponding surface maps of T2* relaxation times, s-GAG, and residual stress. Healthy: Pfirrmann grade 1; severe: Pfirrmann grade 5. Figure partially adapted from Ellingson et al. [18].

Grahic Jump Location
Fig. 4

Correlation plot of age and T2* surface volume of the disc with corresponding correlation coefficient (r) and p-value

Grahic Jump Location
Fig. 1

Axial T2* map of a healthy intervertebral disc with ROIs identified: aAF, pAF, oAF, iAF, and NP. The iAF and oAF were obtained from the left and right lateral sides of the disc. (Reprinted with permission from Ellingson et al. [18]. Copyright 2014 by Wiley.)

Grahic Jump Location
Fig. 6

Depiction of the continuum of early degeneration with sagittal T2-weighted images with corresponding Pfirrmann grade, axial T2* maps with NP T2* relaxation time, and T2* surface maps with quantified surface volume

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In