0
Research Papers

Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts

[+] Author and Article Information
Yueqian Jia, Yangyang Qiao, Aung Maung, Jack Norfleet, Alain J. Kassab

Department of Mechanical and Aerospace Engineering,
College of Engineering and Computer Science,
University of Central Florida,
4000 Central Florida Boulevard,
Orlando, FL 32816

I. Ricardo Argueta-Morales

Cardiothoracic Surgery,
The Heart Center at Arnold Palmer Hospital for Children,
92 West Miller Street,
Orlando, FL 32806

Yuanli Bai

Department of Mechanical and Aerospace Engineering,
College of Engineering and Computer Science,
University of Central Florida,
4000 Central Florida Boulevard,
Orlando, FL 32816
e-mail: bai@ucf.edu

Eduardo Divo

Department of Mechanical Engineering,
College of Engineering,
Embry-Riddle Aeronautical University,
600 South Clyde Morris Boulevard,
Daytona Beach, FL 32114

William M. DeCampli

Cardiothoracic Surgery,
The Heart Center at Arnold Palmer Hospital for Children,
92 West Miller Street,
Orlando, FL 32806;
Medical Education,
College of Medicine,
University of Central Florida,
6850 Lake Nona Boulevard,
Orlando, FL 32827
e-mail: william.decampli@orlandohealth.com

1Corresponding authors.

Manuscript received October 14, 2016; final manuscript received July 11, 2017; published online August 16, 2017. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 139(10), 101003 (Aug 16, 2017) (10 pages) Paper No: BIO-16-1405; doi: 10.1115/1.4037400 History: Received October 14, 2016; Revised July 11, 2017

Homografts and synthetic grafts are used in surgery for congenital heart disease (CHD). Determining these materials' mechanical properties will aid in understanding tissue behavior when subjected to abnormal CHD hemodynamics. Homograft tissue samples from anterior/posterior aspects, of ascending/descending aorta (AA, DA), innominate artery (IA), left subclavian artery (LScA), left common carotid artery (LCCA), main/left/right pulmonary artery (MPA, LPA, RPA), and synthetic vascular grafts, were obtained in three orientations: circumferential, diagonal (45 deg relative to circumferential direction), and longitudinal. Samples were subjected to uniaxial tensile testing (UTT). True strain-Cauchy stress curves were individually fitted for each orientation to calibrate Fung model. Then, they were used to calibrate anisotropic Holzapfel–Gasser model (R2 > 0.95). Most samples demonstrated a nonlinear hyperelastic strain–stress response to UTT. Stiffness (measured by tangent modulus at different strains) in all orientations were compared and shown as contour plots. For each vessel segment at all strain levels, stiffness was not significantly different among aspects and orientations. For synthetic grafts, stiffness was significantly different among orientations (p < 0.042). Aorta is significantly stiffer than pulmonary artery at 10% strain, comparing all orientations, aspects, and regions (p = 0.0001). Synthetic grafts are significantly stiffer than aortic and pulmonary homografts at all strain levels (p < 0.046). Aortic, pulmonary artery, and synthetic grafts exhibit hyperelastic biomechanical behavior with anisotropic effect. Differences in mechanical properties among vascular grafts may affect native tissue behavior and ventricular/arterial mechanical coupling, and increase the risk of deformation due to abnormal CHD hemodynamics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hu, N. , Christensen, D. A. , Agrawal, A. K. , Beaumont, C. , Clark, E. B. , and Hawkins, J. A. , 2009, “ Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec., 292(5), pp. 652–660. [CrossRef]
Szilagyi, D. E. , Elliot, J. P. , Smith, R. F. , Reddy, D. J. , and McPharlin, M. , 1986, “ A Thirty-Year Survey of Reconstructive Surgical Treatment of Aortoiliac Occlusive Disease,” J. Vasc. Surg., 3(3), pp. 421–436. [CrossRef] [PubMed]
Myers, J. W. , Ghanayem, N. S. , Cao, Y. , Simpson, P. , Trapp, K. , Mitchell, M. E. , Tweddell, J. S. , and Woods, R. K. , 2014, “ Outcomes of Systemic to Pulmonary Artery Shunts in Patients Weighing Less Than 3 kg: Analysis of Shunt Type, Size, and Surgical Approach,” J. Thorac. Cardiovasc. Surg., 147(2), pp. 672–677. [CrossRef] [PubMed]
van Brakel, T. J. , Schoof, P. H. , de Roo, F. , Nikkels, P. G. , Evens, F. C. , and Haas, F. , 2014, “ High Incidence of Dacron Conduit Stenosis for Extracardiac Fontan Procedure,” J. Thorac. Cardiovasc. Surg., 147(5), pp. 1568–1572. [CrossRef] [PubMed]
Machii, M. , and Becker, A. E. , 1997, “ Morphologic Features of the Normal Aortic Arch in Neonates, Infants, and Children Pertinent to Growth,” Ann. Thorac. Surg., 64(2), pp. 511–515. [CrossRef] [PubMed]
Fata, B. , Carruthers, C. A. , Gibson, G. , Watkins, S. C. , Gottlieb, D. , Mayer, J. E. , and Sacks, M. S. , 2013, “ Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth,” ASME J. Biomech. Eng., 135(2), p. 021022. [CrossRef]
Fogel, M. A. , 2005, “ Pediatric Congenital and Acquired Heart Disease as it Relates to Ventricular Function and Blood Flow,” Ventricular Function and Blood Flow in Congenital Heart Disease, 1st ed., M. A. Fogel , ed., Blackwell Publishing, Malden, MA, pp. 3–10. [CrossRef]
Biglino, G. , Schievano, S. , Steeden, J. A. , Ntsinjana, H. , Baker, C. , Khambadkone, S. , de Leval, M. R. , Hsia, T.-Y. , Taylor, A. M. , Giardini, A. , and Modeling of Congenital Hearts Alliance (MOCHA) Collaborative Group, 2012, “ Reduced Ascending Aorta Distensibility Relates to Adverse Ventricular Mechanics in Patients With Hypoplastic Left Heart Syndrome: Noninvasive Study Using Wave Intensity Analysis,” J. Thorac. Cardiovasc. Surg., 144(6), pp. 1307–1314. [CrossRef] [PubMed]
Jia, Y. , Argueta-Morales, I. R. , Liu, M. , Bai, Y. , Divo, E. , Kassab, A. J. , and DeCampli, W. M. , 2015, “ Experimental Study of Anisotropic Stress/Strain Relationships of the Piglet Great Vessels and Relevance to Pediatric Congenital Heart Disease,” Ann. Thorac. Surg., 99(4), pp. 1399–1407. [CrossRef] [PubMed]
Gasser, T. C. , Ogden, R. W. , and Holzapfel, G. A. , 2006, “ Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fiber Orientations,” J. R. Soc. Interface, 3(6), pp. 15–35. [CrossRef] [PubMed]
McClure, M. J. , Sell, S. A. , Simpson, D. G. , Walpoth, B. H. , and Bowlin, G. L. , 2010, “ A Three-Layered Electrospun Matrix to Mimic Native Arterial Architecture Using Polycaprolactone, Elastin, and Collagen: A Preliminary Study,” Acta Biomater., 6(7), pp. 2422–2433. [CrossRef] [PubMed]
Fung, Y. C. , 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York, pp. 321–391.
Hencky, H. , 1928, “ Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen,” Z. Tech. Phys., 9, pp. 215–220.
Chuong, C. J. , and Fung, Y. C. , 1984, “ Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments,” J. Biomech., 17(1), pp. 35–40. [CrossRef] [PubMed]
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “ A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity, 61(1–3), pp. 1–48. [CrossRef]
Migliavacca, F. , Laganà, K. , Pennati, G. , de Leval, M. R. , Bove, E. L. , and Dubini, G. , 2004, “ Global Mathematical Modelling of the Norwood Circulation: A Multiscale Approach for the Study of the Pulmonary and Coronary Arterial Perfusions,” Cardiol. Young, 14(Suppl. 3), pp. 71–76. [PubMed]
Pennati, G. , Migliavacca, F. , Dubini, G. , and Bove, E. L. , 2010, “ Modeling of Systemic-to-Pulmonary Shunts in Newborns With a Univentricular Circulation: State of the Art and Future Directions,” Prog. Pediatr. Cardiol., 30(1), pp. 23–29. [CrossRef]
Arbia, G. , Corsini, C. , Esmaily Moghadam, M. , Marsden, A. L. , Migliavacca, F. , Pennati, G. , Hsia, T.-Y. , Vignon-Clementel, I. E. , and Modeling of Congenital Hearts Alliance (MOCHA) Investigators, 2014, “ Numerical Blood Flow Simulation in Surgical Corrections: What Do We Need for an Accurate Analysis?,” J. Surg. Res., 186(1), pp. 44–55. [CrossRef] [PubMed]
de Leval, M. R. , Dubini, G. , Migliavacca, F. , Jalali, H. , Camporini, G. , Redington, A. , and Pietrabissa, R. , 1996, “ Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections,” J. Thorac. Cardiovasc. Surg., 111(3), pp. 502–513. [CrossRef] [PubMed]
DeCampli, W. M. , Argueta-Morales, I. R. , Divo, E. , and Kassab, A. J. , 2012, “ Computational Fluid Dynamics in Congenital Heart Disease,” Cardiol. Young, 22(6), pp. 800–808. [CrossRef] [PubMed]
Ceballos, A. , Argueta-Morales, I. R. , Divo, E. , Osorio, R. , Caldarone, C. A. , Kassab, A. J. , and Decampli, W. M. , 2012, “ Computational Analysis of Hybrid Norwood Circulation With Distal Aortic Arch Obstruction and Reverse Blalock-Taussig Shunt,” Ann. Thorac. Surg., 94(5), pp. 1540–1550. [CrossRef] [PubMed]
Sturla, F. , Votta, E. , Stevanella, M. , Conti, C. A. , and Redaelli, A. , 2013, “ Impact of Modeling Fluid-Structure Interaction in the Computational Analysis of Aortic Root Biomechanics,” Med. Eng. Phys., 35(12), pp. 1721–1730. [CrossRef] [PubMed]
Long, C. C. , Hsu, M. C. , Bazilevs, Y. , Feinstein, J. A. , and Marsden, A. L. , 2012, “ Fluid–Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties,” Int. J. Numer. Method Biomed. Eng., 28(5), pp. 513–527. [CrossRef] [PubMed]
Matthews, P. B. , Azadani, A. N. , Jhun, C. S. , Ge, L. , Guy, T. S. , Guccione, J. M. , and Tseng, E. E. , 2010, “ Comparison of Porcine Pulmonary and Aortic Root Material Properties,” Ann. Thorac. Surg., 89(6), pp. 1981–1988. [CrossRef] [PubMed]
García-Herrera, C. M. , Celentano, D. J. , Cruchaga, M. A. , Rojo, F. J. , Atienza, J. M. , Guinea, G. V. , and Goicolea, J. M. , 2012, “ Mechanical Characterisation of the Human Thoracic Descending Aorta: Experiments and Modelling,” Comput. Methods Biomech. Biomed. Eng., 15(2), pp. 185–193. [CrossRef]
Haskett, D. , Johnson, G. , Zhou, A. , Utzinger, U. , and Vande Geest, J. , 2010, “ Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location,” Biomech. Model. Mechanobiol., 9(6), pp. 725–736. [CrossRef] [PubMed]
Gozna, E. R. , Marble, A. E. , Shaw, A. , and Holland, J. G. , 1974, “ Age-Related Changes in the Mechanics of the Aorta and Pulmonary Artery of Man,” J. Appl. Physiol., 36(4), pp. 407–411. http://jap.physiology.org/content/36/4/407.full.pdf+html [PubMed]
Brüel, A. , and Oxlund, H. , 1996, “ Changes in Biomechanical Properties, Composition of Collagen and Elastin, and Advanced Glycation Endproducts of the Rat Aorta in Relation to Age,” Atherosclerosis, 127(2), pp. 155–165. [CrossRef] [PubMed]
Gundiah, N. , Kam, K. , Matthews, P. B. , Guccione, J. , Dwyer, H. A. , Saloner, D. , Chuter, T. A. , Guy, T. S. , Ratcliffe, M. B. , and Tseng, E. E. , 2008, “ Asymmetric Mechanical Properties of Porcine Aortic Sinuses,” Ann. Thorac. Surg., 85(5), pp. 1631–1638. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Anterior aspects of aortic and pulmonary artery homografts with a schematic of sampling locations and orientations (sample orientations shown in xy coordinate system). (b) Sample width and (c) sample thickness (same scales for all subfigures). (d) Schematic of sampling orientations for synthetic vascular grafts (sample orientations shown in xy coordinate system). The dotted line denotes midline of the graft where it was extended. (e) SVG-GORE-TEX with reinforcement layer (same scales for all subfigures).

Grahic Jump Location
Fig. 2

Cauchy stress versus true strain curves in different orientations (C, D, and L) and aspects (anterior and posterior) of homografts. (a)–(c) AA, (d)–(f) DA, (g)–(i) Arch, (j)–(l) MPA, (m)–(o) LPA, (p)–(r) RPA, (s) IA, (t) LCCA, and (u) LsCA. Experimental raw data sets (dots) and fitted curves (solid lines) with fitting equations are presented.

Grahic Jump Location
Fig. 3

Cauchy stress versus true strain curves in different orientations of synthetic grafts samples: (a)–(c) SVG-GORE-TEX and (d)–(f) EVG-IMPRA

Grahic Jump Location
Fig. 4

Comparison of Cauchy stress versus true strain curves between Holzapfel–Gasser model (dots) and experimentally fitted data (solid lines) in (a) AA, (b) DA, (c) Arch, (d) MPA, (e) LPA, and (f) RPA. The GRG calibrated Holzapfel–Gasser model parameters are provided. The difference of strain–stress response among orientations is also exhibited. All R2 values ≥0.97.

Grahic Jump Location
Fig. 5

Comparison of stiffnesses (E0=(dσ/dε)|ε=10%,20%,30%) among different samples, orientations, and aspects at the strain level of (a) 10%, (b) 20%, and (c) 30%

Grahic Jump Location
Fig. 6

Stiffness contours superimposed on entire aortic homograft, for different orientations, aspects, and strain levels

Grahic Jump Location
Fig. 7

Stiffness contours superimposed on entire pulmonary artery homograft, for different orientations, aspects, and strain level

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In