Research Papers

Biomechanical Evaluations of Ocular Injury Risk for Blast Loading

[+] Author and Article Information
Bahram Notghi

Department of Mechanical Engineering,
Johns Hopkins University,
Baltimore, MD 21218
e-mail: notghi@jhu.edu

Rajneesh Bhardwaj

Department of Mechanical Engineering,
Indian Institute of Technology Bombay,
Powai, Mumbai 400076, India

Shantanu Bailoor, Thao D. Nguyen

Department of Mechanical Engineering,
Johns Hopkins University,
Baltimore, MD 21218

Kimberly A. Thompson

Weapons and Materials Research Directorate,
Army Research Laboratory,
Aberdeen Proving Ground, MD 21005

Ashley A. Weaver, Joel D. Stitzel

VT-WFU Center for Injury Biomechanics,
Wake Forest University School of Medicine,
Winston-Salem, NC 27101

1Corresponding author.

Manuscript received December 25, 2016; final manuscript received May 20, 2017; published online June 28, 2017. Assoc. Editor: Barclay Morrison.This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government's contributions.

J Biomech Eng 139(8), 081010 (Jun 28, 2017) (9 pages) Paper No: BIO-16-1540; doi: 10.1115/1.4037072 History: Received December 25, 2016; Revised May 20, 2017

Ocular trauma is one of the most common types of combat injuries resulting from the exposure of military personnel with improvised explosive devices. The injury mechanism associated with the primary blast wave is poorly understood. We employed a three-dimensional computational model, which included the main internal ocular structures of the eye, spatially varying thickness of the cornea-scleral shell, and nonlinear tissue properties, to calculate the intraocular pressure and stress state of the eye wall and internal ocular structure caused by the blast. The intraocular pressure and stress magnitudes were applied to estimate the injury risk using existing models for blunt impact and blast loading. The simulation results demonstrated that blast loading can induce significant stresses in the different components of the eyes that correlate with observed primary blast injuries in animal studies. Different injury models produced widely different injury risk predictions, which highlights the need for experimental studies evaluating mechanical and functional damage to the ocular structures caused by the blast loading.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Stone, W. , 1950, “Ocular Injuries in the Armed Forces,” J. Am. Med. Assoc., 142(3), pp. 151–152. [CrossRef] [PubMed]
Weichel, E. D. , Colyer, M. H. , Ludlow, S. E. , Bower, K. S. , and Eiseman, A. S. , 2008, “Combat Ocular Trauma Visual Outcomes During Operations Iraqi and Enduring Freedom,” Ophthalmology, 115(12), pp. 2235–2245. [CrossRef] [PubMed]
Heier, J. S. , Enzenauer, R. W. , Wintermeyer, S. F. , Delaney, M. , and LaPiana, F. P. , 1993, “Ocular Injuries and Diseases at a Combat Support Hospital in Support of Operations Desert Shield and Desert Storm,” Arch. Ophthalmol., 111(6), pp. 795–798. [CrossRef] [PubMed]
Wong, T. Y. , Smith, G. S. , Lincoln, A. E. , and Tielsch, J. M. , 2000, “Ocular Trauma in the United States Army: Hospitalization Records From 1985 Through 1994,” Am. J. Ophthalmol., 129(5), pp. 645–650. [CrossRef] [PubMed]
Weichel, E. D. , Colyer, M. H. , Bautista, C. , Bower, K. S. , and French, L. M. , 2009, “Traumatic Brain Injury Associated With Combat Ocular Trauma,” J. Head Trauma Rehabil., 24(1), pp. 41–50. [CrossRef] [PubMed]
Rossi, T. , Boccassini, B. , Esposito, L. , Clemente, C. , Iossa, M. , Placentino, L. , and Bonora, N. , 2012, “Primary Blast Injury to the Eye and Orbit: Finite Element Modeling,” Invest. Ophthalmol. Visual Sci., 53(13), pp. 8057–8066. [CrossRef]
Thach, A. B. , Johnson, A. J. , Carroll, R. B. , Huchun, A. , Ainbinder, D. J. , Stutzman, R. D. , Blaydon, S. M. , DeMartelaere, S. L. , Mader, T. H. , Slade, C. S. , George, R. K., Ritchey, J. P., Barnes, S. D., and Fannin L. A., 2008, “Severe Eye Injuries in the War in Iraq, 2003–2005,” Ophthalmology, 115(2), pp. 377–382. [CrossRef] [PubMed]
Duke-Elder, S. , 1954, Concussion Injuries. Text-Book of Ophthalmology, Vol. VI: Injuries, Henry Kimptonm, London.
Scott, R. , 2011, “The Injured Eye,” Philos. Trans. R. Soc., B, 366(1562), pp. 251–260. [CrossRef]
Bhardwaj, R. , Ziegler, K. , Seo, J. H. , Ramesh, K. , and Nguyen, T. D. , 2014, “A Computational Model of Blast Loading on the Human Eye,” Biomech. Model. Mechanobiol., 13(1), pp. 123–140. [CrossRef] [PubMed]
Hines-Beard, J. , Marchetta, J. , Gordon, S. , Chaum, E. , Geisert, E. E. , and Rex, T. S. , 2012, “A Mouse Model of Ocular Blast Injury That Induces Closed Globe Anterior and Posterior Pole Damage,” Exp. Eye Res., 99, pp. 63–70. [CrossRef] [PubMed]
Alphonse, V. D. , Kemper, A. R. , Strom, B. T. , Beeman, S. M. , and Duma, S. M. , 2012, “Mechanisms of Eye Injuries From Fireworks,” JAMA, 308(1), pp. 33–34. [CrossRef] [PubMed]
Sherwood, D. , Sponsel, W. E. , Lund, B. J. , Gray, W. , Watson, R. , Groth, S. L. , Thoe, K. , Glickman, R. D. , and Reilly, M. A. , 2014, “Anatomical Manifestations of Primary Blast Ocular Trauma Observed in a Postmortem Porcine Modelprimary Blast Ocular Trauma,” Invest. Ophthalmol. Visual Sci., 55(2), pp. 1124–1132. [CrossRef]
Uchio, E. , Ohno, S. , Kudoh, J. , Aoki, K. , and Kisielewicz, L. T. , 1999, “Simulation Model of an Eyeball Based on Finite Element Analysis on a Supercomputer,” Br. J. Ophthalmol., 83(10), pp. 1106–1111. [CrossRef] [PubMed]
Stitzel, J. D. , Duma, S. M. , Cormier, J. M. , and Herring, I. P. , 2002, “A Nonlinear Finite Element Model of the Eye With Experimental Validation for the Prediction of Globe Rupture,” Stapp Car Crash J., 46, pp. 81–102. https://www.ncbi.nlm.nih.gov/pubmed/17096220
Al-Sukhun, J. , Kontio, R. , and Lindqvist, C. , 2006, “Orbital Stress Analysis—Part I: Simulation of Orbital Deformation Following Blunt Injury by Finite Element Analysis Method,” J. Oral Maxillofac. Surg., 64(3), pp. 434–442. [CrossRef] [PubMed]
Al-Sukhun, J. , Lindqvist, C. , and Kontio, R. , 2006, “Modelling of Orbital Deformation Using Finite-Element Analysis,” J. R. Soc., Interface, 3(7), pp. 255–262. [CrossRef]
Cirovic, S. , Bhola, R. M. , Hose, D. R. , Howard, I. C. , Lawford, P. , Marr, J. E. , and Parsons, M. A. , 2006, “Computer Modelling Study of the Mechanism of Optic Nerve Injury in Blunt Trauma,” Br. J. Ophthalmol., 90(6), pp. 778–783. [CrossRef] [PubMed]
Stitzel, J. D. , and Weaver, A. A. , 2012, “Computational Simulations of Ocular Blast Loading and Prediction of Eye Injury Risk,” ASME Paper No. SBC2012-80792.
Weaver, A. A. , Stitzel, S. M. , and Stitzel, J. D. , 2017, “Injury Risk Prediction From Computational Simulations of Ocular Blast Loading,” Biomech. Model. Mechanobiol., 16(2), pp. 463–477. [CrossRef] [PubMed]
Esposito, L. , Clemente, C. , Bonora, N. , and Rossi, T. , 2015, “Modelling Human Eye Under Blast Loading,” Comput. Methods Biomech. Biomed. Eng., 18(2), pp. 107–115. [CrossRef]
Bailoor, S. , Bhardwaj, R. , and Nguyen, T. , 2015, “Effectiveness of Eye Armor During Blast Loading,” Biomech. Model. Mechanobiol., 14(6), pp. 1227–1237. [CrossRef] [PubMed]
Duma, S. M. , and Crandall, J. R. , 2000, “Eye Injuries From Airbags With Seamless Module Covers,” J. Trauma Acute Care Surg., 48(4), pp. 786–789. [CrossRef]
Kennedy, E. A. , Ng, T. P. , McNally, C. , Stitzel, J. D. , and Duma, S. M. , 2006, “Risk Functions for Human and Porcine Eye Rupture Based on Projectile Characteristics of Blunt Objects,” Stapp Car Crash J., 50, pp. 651–671. https://www.ncbi.nlm.nih.gov/pubmed/17311182 [PubMed]
Scott, W. R. M. , Lloyd, W. C. , Benedict, J. V. , and Meredith, R. , 2000, “Ocular Injuries Due to Projectile Impacts,” Annual Conference for the Association for the Advancement of Automotive Medicine, Chicago, IL, Oct. 2–4, Vol. 44, pp. 205–217. http://www.brconline.com/publications/ocular-injuries-due-to-projectile-impacts/
Duma, S. M. , Ng, T. P. , Kennedy, E. A. , Stitzel, J. D. , Herring, I. P. , and Kuhn, F. , 2005, “Determination of Significant Parameters for Eye Injury Risk From Projectiles,” J. Trauma Acute Care Surg., 59(4), pp. 960–964. [CrossRef]
Weaver, A. A. , Kennedy, E. A. , Duma, S. M. , and Stitzel, J. D. , 2011, “Evaluation of Different Projectiles in Matched Experimental Eye Impact Simulations,” ASME J. Biomech. Eng., 133(3), p. 031002. [CrossRef]
Gayzik, F. , Moreno, D. , Geer, C. , Wuertzer, S. , Martin, R. , and Stitzel, J. , 2011, “Development of a Full Body Cad Dataset for Computational Modeling: A Multi-Modality Approach,” Ann. Biomed. Eng., 39(10), pp. 2568–2583. [CrossRef] [PubMed]
Kuhn, F. , Morris, R. , Witherspoon, C. , and Mester, V. , 2004, “The Birmingham Eye Trauma Terminology System (BETT),” J. Fr. d'Ophtalmologie, 27(2), pp. 206–210. [CrossRef]
Kennedy, E. , Duma, S. , and Street, S. , 2011, “Final Report: Eye Injury Risk Functions for Human and Focus Eyes: Hyphema, Lens Dislocation, and Retinal Damage,” U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, Award No. W81XWH-05-2-0055. http://www.facstaff.bucknell.edu/eak012/Reports_n_Papers/Eye_Injury_Risk_Functions_for_Human_and_FOCUS_Eyes--FinalReport_W81XWH-05-2-0055--July2011Update.pdf
Mittal, R. , Dong, H. , Bozkurttas, M. , Najjar, F. , Vargas, A. , and von Loebbecke, A. , 2008, “A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries,” J. Comput. Phys., 227(10), pp. 4825–4852. [CrossRef] [PubMed]
Bentz, V. , and Grimm, G. , 2013, “Joint Live Fire (JLF) Final Report for Assessment of Ocular Pressure as a Result of Blast for Protected and Unprotected Eyes,” U.S. Army Aberdeen Test Center, Aberdeen Proving Ground, MD, Report No. JLF-TR-13-01.
Weaver, A. A. , Loftis, K. L. , Tan, J. C. , Duma, S. M. , and Stitzel, J. D. , 2010, “CT Based Three-Dimensional Measurement of Orbit and Eye Anthropometry,” Invest. Ophthalmol. Visual Sci., 51(10), pp. 4892–4897. [CrossRef]
Weaver, A. A. , Loftis, K. L. , Duma, S. M. , and Stitzel, J. D. , 2011, “Biomechanical Modeling of Eye Trauma for Different Orbit Anthropometries,” J. Biomech., 44(7), pp. 1296–1303. [CrossRef] [PubMed]
Schutte, S. , van den Bedem, S. P. , van Keulen, F. , van der Helm, F. C. , and Simonsz, H. J. , 2006, “A Finite-Element Analysis Model of Orbital Biomechanics,” Vision Res., 46(11), pp. 1724–1731. [CrossRef] [PubMed]
Norman, R. E. , Flanagan, J. G. , Rausch, S. M. , Sigal, I. A. , Tertinegg, I. , Eilaghi, A. , Portnoy, S. , Sled, J. G. , and Ethier, C. R. , 2010, “Dimensions of the Human Sclera: Thickness Measurement and Regional Changes With Axial Length,” Exp. Eye Res., 90(2), pp. 277–284. [CrossRef] [PubMed]
Wagner-Schuman, M. , Dubis, A. M. , Nordgren, R. N. , Lei, Y. , Odell, D. , Chiao, H. , Weh, E. , Fischer, W. , Sulai, Y. , Dubra, A. , and Carroll, J. , 2011, “Race- and Sex-Related Differences in Retinal Thickness and Foveal Pit Morphology,” Invest. Ophthalmol. Visual Sci., 52(1), pp. 625–634. [CrossRef]
Ikuno, Y. , Kawaguchi, K. , Nouchi, T. , and Yasuno, Y. , 2010, “Choroidal Thickness in Healthy Japanese Subjects,” Invest. Ophthalmol. Visual Sci., 51(4), pp. 2173–2176. [CrossRef]
Burd, H. J. , 2009, “A Structural Constitutive Model for the Human Lens Capsule,” Biomech. Model. Mechanobiol., 8(3), pp. 217–231. [CrossRef] [PubMed]
Schachar, R. A. , Abolmaali, A. , and Le, T. , 2006, “Insights Into the Age-Related Decline in the Amplitude of Accommodation of the Human Lens Using a Non-Linear Finite-Element Model,” Br. J. Ophthalmol., 90(10), pp. 1304–1309. [CrossRef] [PubMed]
Lanchares, E. , Navarro, R. , and Calvo, B. , 2012, “Hyperelastic Modelling of the Crystalline Lens: Accommodation and Presbyopia,” J. Optom., 5(3), pp. 110–120. [CrossRef]
Kao, C.-Y. , Richdale, K. , Sinnott, L. T. , Ernst, L. E. , and Bailey, M. D. , 2011, “Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle,” Optom. Vision Sci., 88(2), pp. 275–289. [CrossRef]
Sigal, I. A. , Flanagan, J. G. , and Ethier, C. R. , 2005, “Factors Influencing Optic Nerve Head Biomechanics,” Invest. Ophthalmol. Visual Sci., 46(11), pp. 4189–4199. [CrossRef]
Jonas, J. B. , Berenshtein, E. , and Holbach, L. , 2004, “Lamina Cribrosa Thickness and Spatial Relationships Between Intraocular Space and Cerebrospinal Fluid Space in Highly Myopic Eyes,” Invest. Ophthalmol. Visual Sci., 45(8), pp. 2660–2665. [CrossRef]
Holzapfel, G. A. , 2000, Nonlinear Solid Mechanics, Vol. 24, Wiley, Chichester, UK.
Duck, F. A. , 2013, Physical Properties of Tissues: A Comprehensive Reference Book, Academic Press, London.
Bereiter-Hahn, J. , 1995, “Probing Biological Cells and Tissues With Acoustic Microscopy,” Advances in Acoustic Microscopy, Springer, New York, pp. 79–115.
Steinert, R. F. , 2010, Cataract Surgery, Elsevier Health Sciences, Irvine, CA.
Bisplinghoff, J. A. , McNally, C. , Manoogian, S. J. , and Duma, S. M. , 2009, “Dynamic Material Properties of the Human Sclera,” J. Biomech., 42(10), pp. 1493–1497. [CrossRef] [PubMed]
Nickerson, C. S. , Park, J. , Kornfield, J. A. , and Karageozian, H. , 2008, “Rheological Properties of the Vitreous and the Role of Hyaluronic Acid,” J. Biomech., 41(9), pp. 1840–1846. [CrossRef] [PubMed]
Mikielewicz, M. , Michael, R. , Montenegro, G. , Pinilla Cortés, L. , and Barraquer, R. , 2013, “Elastic Properties of Human Lens Zonules as a Function of Age in Presbyopes,” Acta Ophthalmol., 53(10), pp. 6109–6114.
Grant, C. A. , Twigg, P. C. , Savage, M. D. , Woon, W. H. , Wilson, M. , and Greig, D. , 2013, “Estimating the Mechanical Properties of Retinal Tissue Using Contact Angle Measurements of a Spreading Droplet,” Langmuir, 29(16), pp. 5080–5084. [CrossRef] [PubMed]
Sigal, I. A. , 2009, “Interactions Between Geometry and Mechanical Properties on the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci., 50(6), pp. 2785–2795. [CrossRef]
Norman, R. E. , Flanagan, J. G. , Sigal, I. A. , Rausch, S. M. , Tertinegg, I. , and Ethier, C. R. , 2011, “Finite Element Modeling of the Human Sclera: Influence on Optic Nerve Head Biomechanics and Connections With Glaucoma,” Exp. Eye Res., 93(1), pp. 4–12. [CrossRef] [PubMed]
Schoemaker, I. , Hoefnagel, P. , Mastenbroek, T. , Kolff, F. , Picken, S. , van der Helm, F. , and Simonsz, H. , 2004, “Elasticity, Viscosity and Deformation of Retrobulbar Fat in Eye Rotation,” Invest. Ophthalmol. Visual Sci., 45(13), pp. 5020–5020. http://iovs.arvojournals.org/article.aspx?articleid=2410534
Duma, S. M. , Bisplinghoff, J. A. , Senge, D. M. , McNally, C. , and Alphonse, V. D. , 2012, “Evaluating the Risk of Eye Injuries: Intraocular Pressure During High Speed Projectile Impacts,” Curr. Eye Res., 37(1), pp. 43–49. [CrossRef] [PubMed]
Cockerham, G. C. , Rice, T. A. , Hewes, E. H. , Cockerham, K. P. , Lemke, S. , Wang, G. , Lin, R. C. , Glynn-Milley, C. , and Zumhagen, L. , 2011, “Closed-Eye Ocular Injuries in the Iraq and Afghanistan Wars,” N. Engl. J. Med., 364(22), pp. 2172–2173. [CrossRef] [PubMed]
Kennedy, E. A. , McNally, C. , and Duma, S. M. , 2007, “Experimental Techniques for Measuring the Biomechanical Response of the Eye During Impact,” Biomed. Sci. Instrum., 43, pp. 7–12. https://www.ncbi.nlm.nih.gov/pubmed/17487049 [PubMed]


Grahic Jump Location
Fig. 1

The computational domain including the fluid domain, rigid skull, and the deformable eye. The fluid domain is discretized by a structured grid. The rigid skull is discretized using bilinear triangular surface elements, and the deformable eye is discretized using trilinear hexahedral elements. Initial boundary conditions representing the charge located in front of the face with Lex = 2.5 m standoff distance (Lin) were applied Lin = 1.8 m from charge.

Grahic Jump Location
Fig. 2

Ocular components in exploded view including sclera, limbus, cornea, aqueous humor, lens, ciliary zonule, ciliary muscles, vitreous humor, retina, choroid, lamina cribrosa (LC), prelaminar neural tissue (PLNT), and the surrounding orbital/fatty tissue. Inset: Assembled view of the eye depicting the cornea, limbus, sclera, intraocular, and extraocular tissues.

Grahic Jump Location
Fig. 3

(a) Reconstructed sclera pseudosurface with contours of thickness in (left) temporal and (right) posterior views. Sectioning planes for the current eye model plotted with the sclera model in (b) nasal view. The units are in millimeter.

Grahic Jump Location
Fig. 4

The geometric features of (a) lens, (b) zonules, ciliary body, and (c) the optic nerve head. (a) A fifth-order polynomial was used to define the lens outline from the central axis. (I) The geometric dimensions of the axisymmetric section of the lens including cortex and nucleus. (II) Top view of the lens. (b) (I) A cross section of the revolved finite element mesh of the lens, zonules, and ciliary body. (II) A section of our model showing the connection of the lens, zonules, and ciliary body. The units are in millimeter. (c) The optic nerve head (ONH) consists of the prelaminar tissue, the lamina cribrosa, and the neural tissue. (I) The geometric dimensions of the tissues that make up the ONH are given in detail in Ref. [43]. (II) Cross section of finite element mesh of the ONH.

Grahic Jump Location
Fig. 5

(a) Maximum principal stress in the transverse plane of the orbit, (b) maximum intraocular pressure in the transverse plane of the orbit, and (c) maximum von Misses stress in the transverse plane of the orbit

Grahic Jump Location
Fig. 6

(a) Time-varying maximum intraocular pressure (IOP), (b) high amplitude time-varying maximum principal stress, (c) low amplitude time-varying maximum principal stress, and (d) time-varying maximum von Mises in different ocular structures

Grahic Jump Location
Fig. 7

The probability of occurrence of injuries based on calculated reflected specific impulse for different levels of CIS score level conditions

Grahic Jump Location
Fig. 8

Comparison of the baseline model and the model with uniform thickness for time-varying maximum (left) intraocular pressure, IOP, and (right) sclera principal stress, s1

Grahic Jump Location
Fig. 9

Comparison of time-varying maximum von Mises stress for the baseline model with the model with uniform thickness in sclera, limbus, choroid, and ciliary muscle




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In