Research Papers

The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress

[+] Author and Article Information
Sergio Ruiz de Galarreta

Department of Mechanical Engineering,
Tecnun, University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: sruiz@tecnun.es

Aitor Cazón

Department of Mechanical Engineering,
Tecnun, University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: acazon@tecnun.es

Raúl Antón

Department of Mechanical Engineering,
Tecnun, University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: ranton@tecnun.es

Ender A. Finol

Department of Mechanical Engineering,
The University of Texas at San Antonio,
One UTSA Circle, EB 3.04.23,
San Antonio, TX 78249-0669
e-mail: ender.finol@utsa.edu

1Corresponding author.

Manuscript received July 26, 2016; final manuscript received April 27, 2017; published online June 16, 2017. Assoc. Editor: C. Alberto Figueroa.

J Biomech Eng 139(8), 081006 (Jun 16, 2017) (7 pages) Paper No: BIO-16-1316; doi: 10.1115/1.4036826 History: Received July 26, 2016; Revised April 27, 2017

The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Sakalihasan, N. , Limet, R. , and Defawe, O. , 2005, “ Abdominal Aortic Aneurysm,” Lancet, 365(9470), pp. 1577–1589. [CrossRef] [PubMed]
Upchurch, G. R. , and Schaub, T. A. , 2006, “ Abdominal Aortic Aneurysm,” Am. Fam. Phys., 73(7), pp. 1198–1206.
Erbel, R. , Aboyans, V. , Boileau, C. , Bossone, E. , Di Bartolomeo, R. , Eggebrecht, H. , Evangelista, A. , Falk, V. , Frank, H. , Gaemperli, O. , Grabenwöger, M. , Haverich, A. , Iung, B. , Manolis, A. J. , Meijboom, F. , Nienaber, C. A. , Roffi, M. , Rousseau, H. , Sechtem, U. , Sirnes, P. A. , Von Allmen, R. S. , Vrints, C. J. M. , Zamorano, J. L. , Achenbach, S. , Baumgartner, H. , Bax, J. J. , Bueno, H. , Dean, V. , Deaton, C. , Erol, Ç. , Fagard, R. , Ferrari, R. , Hasdai, D. , Hoes, A. , Kirchhof, P. , Knuuti, J. , Kolh, P. , Lancellotti, P. , Linhart, A. , Nihoyannopoulos, P. , Piepoli, M. F. , Ponikowski, P. , Tamargo, J. L. , Tendera, M. , Torbicki, A. , Wijns, W. , Windecker, S. , Czerny, M. , Deanfield, J. , Di Mario, C. , Pepi, M. , Taboada, M. J. S. , Van Sambeek, M. R. , and Vlachopoulos, C. , 2014, “ 2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases,” Eur. Heart J., 35(41), pp. 2873–2926. [CrossRef] [PubMed]
Fillinger, M. , 2007, “ Who Should We Operate On and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm,” Semin. Vasc. Surg., 20(2), pp. 121–127. [CrossRef] [PubMed]
Darling, R. , Messina, C. , Brewster, D. , and Ottinger, L. , 1977, “ Autopsy Study of Unoperated Abdominal Aortic Aneurysms,” Circulation, 56(Suppl.3), pp. 161–164.
Fillinger, M. F. , Marra, S. P. , Raghavan, M. L. , and Kennedy, F. E. , 2003, “ Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter,” J. Vasc. Surg., 37(4), pp. 724–732. [CrossRef] [PubMed]
Venkatasubramaniam, A. K. , Fagan, M. J. , Mehta, T. , Mylankal, K. J. , Ray, B. , Kuhan, G. , Chetter, I. C. , and McCollum, P. T. , 2004, “ A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms,” Eur. J. Vasc. Endovasc. Surg., 28(2), pp. 168–176. [PubMed]
Doyle, B. J. , McGloughlin, T. M. , Miller, K. , Powell, J. T. , and Norman, P. E. , 2014, “ Regions of High Wall Stress Can Predict the Future Location of Rupture of Abdominal Aortic Aneurysm,” Cardiovasc. Intervent. Radiol., 37(3), pp. 815–818. [CrossRef] [PubMed]
Vande Geest, J. P. , Wang, D. H. J. , Wisniewski, S. R. , Makaroun, M. S. , and Vorp, D. A. , 2006, “ Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 34(7), pp. 1098–1106. [CrossRef] [PubMed]
Gasser, T. C. , Auer, M. , Labruto, F. , Swedenborg, J. , and Roy, J. , 2010, “ Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations,” Eur. J. Vasc. Endovasc. Surg., 40(2), pp. 176–185. [CrossRef] [PubMed]
Doyle, B. J. , Coyle, P. , Kavanagh, E. G. , Grace, P. A. , and Mcgloughlin, T. M. , 2010, “ A Finite Element Analysis Rupture Index (FEARI) Assessment of Electively Repaired and Symptomatic/Ruptured Abdominal Aortic Aneurysms,” 6th World Congress of Biomechanics (WCB), Singapore, Aug. 1–6, pp. 883–886.
Rodriguez, J. F. , Ruiz, C. , Doblaré, M. , and Holzapfel, G. A. , 2008, “ Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy,” ASME J. Biomech. Eng., 130(2), p. 021023.
Finol, E. A. , Keyhani, K. , Amon, C. H. , and Raymond, J. , 2003, “ The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions,” ASME J. Biomech. Eng., 125(2), pp. 207–217.
Tang, A. , Kauffmann, C. , Tremblay-Paquet, S. , Elkouri, S. , Steinmetz, O. , Morin-Roy, F. , Cloutier-Gill, L. , and Soulez, G. , 2014, “ Morphologic Evaluation of Ruptured and Symptomatic Abdominal Aortic Aneurysm by Three-Dimensional Modeling,” J. Vasc. Surg., 59(4), pp. 894–902. [CrossRef] [PubMed]
Fillinger, M. F. , Racusin, J. , Baker, R. K. , Cronenwett, J. L. , Teutelink, A. , Schermerhorn, M. L. , Zwolak, R. M. , Powell, R. J. , Walsh, D. B. , and Rzucidlo, E. M. , 2004, “ Anatomic Characteristics of Ruptured Abdominal Aortic Aneurysm on Conventional CT Scans: Implications for Rupture Risk,” J. Vasc. Surg., 39(6), pp. 1243–1252. [CrossRef] [PubMed]
Raut, S. S. , Jana, A. , De Oliveira, V. , Muluk, S. C. , and Finol, E. A. , 2013, “ The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics,” ASME J. Biomech. Eng., 135(8), p. 081010.
Mower, W. R. , Baraff, L. J. , and Sneyd, J. , 1993, “ Stress Distributions in Vascular Aneurysms: Factors Affecting Risk of Aneurysm Rupture,” J. Surg. Res., 55(2), pp. 155–161. [CrossRef] [PubMed]
Giannoglou, G. E. , Giannakoulas, G. , Soulis, J. , Chatzizisis, Y. , Perdikides, T. , Melas, N. , Parcharidis, G. , and Louridas, G. , 2006, “ Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion,” Angiology, 57(4), pp. 487–494. [CrossRef] [PubMed]
Nyilas, R. D. , Ng, S. M. L. , Leung, J. , and Xu, X. Y. , 2005, “ Towards a New Geometric Approach to Assess the Risk of Rupture of Abdominal Aortic Aneurysms Using Patient Specific Modelling,” Summer Bioengineering Conference, Vail, CO, June 22–26, pp. 1246–1247.
Wang, D. , Makaroun, M. , Webster, M. , and Vorp, D. A. , 2002, “ Effect of Intraluminal Thrombus on Wall Stress in Patient Specific Models of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 36(3), pp. 598–604. [CrossRef] [PubMed]
Koole, D. , Zandvoort, H. J. A. , Schoneveld, A. , Vink, A. , Vos, J. A. , Van Den Hoogen, L. L. , De Vries, J. P. P. M. , Pasterkamp, G. , Moll, F. L. , and Van Herwaarden, J. A. , 2013, “ Intraluminal Abdominal Aortic Aneurysm Thrombus Is Associated With Disruption of Wall Integrity,” J. Vasc. Surg., 57(1), pp. 77–83. [CrossRef] [PubMed]
Polzer, S. , Gasser, T. C. , Swedenborg, J. , and Bursa, J. , 2011, “ The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms,” Eur. J. Vasc. Endovasc. Surg., 41(4), pp. 467–473. [CrossRef] [PubMed]
Riveros, F. , Martufi, G. , Gasser, T. C. , and Rodriguez-Matas, J. F. , 2015, “ On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics,” Ann. Biomed. Eng., 43(9), pp. 2253–2264. [CrossRef] [PubMed]
Shum, J. , Xu, A. , Chatnuntawech, I. , and Finol, E. A. , 2011, “ A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models,” Ann. Biomed. Eng., 39(1), pp. 249–259. [CrossRef] [PubMed]
Shum, J. , Di Martino, E. S. , Goldhammer, A. , Goldman, D. H. , Acker, L. C. , Patel, G. , Ng, J. H. , Martufi, G. , and Finol, E. A. , 2010, “ Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms,” Med. Phys., 37(2), pp. 638–648. [CrossRef] [PubMed]
Raut, S. S. , Liu, P. , and Finol, E. A. , 2015, “ An Approach for Patient-Specific Multi-Domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling,” J. Biomech., 48(10), pp. 1972–1981. [CrossRef] [PubMed]
Raghavan, M. L. , and Vorp, D. A. , 2000, “ Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Biomech., 33(4), pp. 475–482. [CrossRef] [PubMed]
Kroon, D. J. , 2011, “ Patch Curvature,” MathWorks, Natick, MA, accessed May 13, 2016, http://www.mathworks.com/matlabcentral/fileexchange/32573-patch-curvature
Antiga, L. , 2006, “ VMTK—Vascular Modeling Toolkit,” VMTK, San Francisco, CA, accessed Apr. 27, 2015, http://www.vmtk.org
Antiga, L. , Ene-Iordache, B. , and Remuzzi, A. , 2003, “ Computational Geometry for Patient-Specific Reconstruction and Meshing of Blood Vessels From MR and CT Angiography,” IEEE Trans. Med. Imaging, 22(5), pp. 674–684. [CrossRef] [PubMed]
Raut, S. S. , Chandra, S. , Shum, J. , and Finol, E. A. , 2013, “ The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment,” Ann. Biomed. Eng., 41(7), pp. 1459–1477. [CrossRef] [PubMed]
O'Leary, S. A. , Healey, D. A. , Kavanagh, E. G. , Walsh, M. T. , McGloughlin, T. M. , and Doyle, B. J. , 2014, “ The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue,” Ann. Biomed. Eng., 42(12), pp. 2440–2450. [CrossRef] [PubMed]
Hans, S. S. , Jareunpoon, O. , Balasubramaniam, M. , and Zelenock, G. B. , 2005, “ Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms,” J. Vasc. Surg., 41(4), pp. 584–588. [CrossRef] [PubMed]
Zelaya, J. E. , Goenezen, S. , Dargon, P. T. , Azarbal, A.-F. , and Rugonyi, S. , 2014, “ Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations,” PLoS One, 9(7), p. e101353. [CrossRef] [PubMed]
Barocas, V. H. , 2007, “ Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls,” ASME J. Biomech. Eng., 129(4), pp. 611–618. [CrossRef]


Grahic Jump Location
Fig. 1

Spatial distributions of first principal stress (in kPa) and local mean curvature (LMC, in mm−1) computed on the outer wall surface of three exemplary AAA geometries

Grahic Jump Location
Fig. 2

Graphical representation of the correlation analyses of wall stress with (a) LMC, (b) LGC, (c) LWT, and (d) LD for the outer wall surface nodes of AAA #9. The Pearson's r correlation coefficients were −0.817, −0.437, −0.236, and 0.191, respectively.

Grahic Jump Location
Fig. 3

Graphical representation of the correlation analyses of wall stress with (a) LMC, (b) LGC, (c) LWT, and (d) LD for the inner wall surface nodes of AAA #3. The Pearson's r correlation coefficients were 0.483, 0.182, −0.239, and 0.188, respectively.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In