0
Technical Brief

A Method for In Vitro TCPC Compliance Verification

[+] Author and Article Information
Mike Tree

The George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Zhenglun Alan Wei, Ajit Yoganathan

Wallace H. Coulter Department of
Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30332

Brady Munz

School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Kevin Maher, Shriprasad Deshpande, Timothy Slesnick

Department of Pediatrics,
Emory University School of Medicine and
Children's Healthcare of Atlanta,
Atlanta, GA 30332

Manuscript received November 7, 2016; final manuscript received April 6, 2017; published online April 24, 2017. Assoc. Editor: Keefe B. Manning.

J Biomech Eng 139(6), 064502 (Apr 24, 2017) (5 pages) Paper No: BIO-16-1445; doi: 10.1115/1.4036474 History: Received November 07, 2016; Revised April 06, 2017

The Fontan procedure is a common palliative intervention for sufferers of single ventricle congenital heart defects that results in an anastomosis of the venous return to the pulmonary arteries called the total cavopulmonary connection (TCPC). Local TCPC and global Fontan circulation hemodynamics are studied with in vitro circulatory models because of hemodynamic ties to Fontan patient long-term complications. The majority of in vitro studies, to date, employ a rigid TCPC model. Recently, a few studies have incorporated flexible TCPC models, but provide no justification for the model material properties. The method set forth in this study successfully utilizes patient-specific flow and pressure data from phase contrast magnetic resonance images (PCMRI) (n = 1) and retrospective pulse-pressure data from an age-matched patient cohort (n = 10) to verify the compliance of an in vitro TCPC model. These data were analyzed, and the target compliance was determined as 1.36 ± 0.78 mL/mm Hg. A method of in vitro compliance testing and computational simulations was employed to determine the in vitro flexible TCPC model material properties and then use those material properties to estimate the wall thickness necessary to match the patient-specific target compliance. The resulting in vitro TCPC model compliance was 1.37 ± 0.1 mL/mm Hg—a value within 1% of the patient-specific compliance. The presented method is useful to verify in vitro model accuracy of patient-specific TCPC compliance and thus improve patient-specific hemodynamic modeling.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fontan, F. , and Baudet, E. , 1971, “ Surgical Repair of Tricuspid Atresia,” Thorax, 26(3), pp. 240–248. [CrossRef] [PubMed]
van den Bosch, A. E. , Roos-Hesselink, J. W. , Van Domburg, R. , Bogers, A. J. , Simoons, M. L. , and Meijboom, F. J. , 2004, “ Long-Term Outcome and Quality of Life in Adult Patients After the Fontan Operation,” Am. J. Cardiol., 93(9), pp. 1141–1145. [CrossRef] [PubMed]
Mondésert, B. , Marcotte, F. , Mongeon, F.-P. P. , Dore, A. , Mercier, L.-A. A. , Ibrahim, R. , Asgar, A. , Miro, J. , Poirier, N. , and Khairy, P. , 2013, “ Fontan Circulation: Success or Failure?,” Can. J. Cardiol., 29(7), pp. 811–820. [CrossRef] [PubMed]
Hebson, C. L. , McCabe, N. M. , Elder, R. W. , Mahle, W. T. , McConnell, M. , Kogon, B. E. , Veledar, E. , Jokhadar, M. , Vincent, R. N. , Sahu, A. , and Book, W. M. , 2013, “ Hemodynamic Phenotype of the Failing Fontan in an Adult Population,” Am. J. Cardiol., 112(12), pp. 1943–1947. [CrossRef] [PubMed]
Goldberg, D. J. , and Paridon, S. M. , 2014, “ Fontan Circulation: The Search for Targeted Therapy,” Circulation, 130(23), pp. 1999–2001. [CrossRef] [PubMed]
Prêtre, R. , Häussler, A. , Bettex, D. , and Genoni, M. , 2008, “ Right-Sided Univentricular Cardiac Assistance in a Failing Fontan Circulation,” Ann. Thorac. Surg., 86(3), pp. 1018–1020. [CrossRef] [PubMed]
Watrous, R. L. , and Chin, A. J. , 2014, “ Model-Based Comparison of the Normal and Fontan Circulatory Systems—Part I: Development of a General Purpose, Interactive Cardiovascular Model,” World J. Pediatr. Congenit. Heart Surg., 5(3), pp. 372–384. [CrossRef] [PubMed]
Chin, A. J. , and Watrous, R. L. , 2015, “ Model-Based Comparison of the Normal and Fontan Circulatory Systems—Part II: Major Differences in Performance Characteristics,” World J. Pediatr. Congenit. Heart Surg., 6(3), pp. 360–373. [CrossRef] [PubMed]
Haggerty, C. M. , Kanter, K. R. , Restrepo, M. , De Zélicourt, D. A. , Parks, W. J. , Rossignac, J. , Fogel, M. A. , and Yoganathan, A. P. , 2013, “ Simulating Hemodynamics of the Fontan Y-Graft Based on Patient-Specific In Vivo Connections,” J. Thorac. Cardiovasc. Surg., 145(3), pp. 663–670. [CrossRef] [PubMed]
Kim, Y. H. , Walker, P. G. , Fontaine, A. A. , Panchal, S. , Ensley, A. E. , Oshinski, J. , Sharma, S. , Ha, B. , Lucas, C. L. , and Yoganathan, A. P. , 1995, “ Hemodynamics of the Fontan Connection: An In-Vitro Study,” ASME J. Biomech. Eng., 117(4), pp. 423–428. [CrossRef]
Kerlo, A.-E. M. , Delorme, Y. T. , Xu, D. , Frankel, S. H. , Giridharan, G. A. , Rodefeld, M. D. , and Chen, J. , 2013, “ Experimental Characterization of Powered Fontan Hemodynamics in an Idealized Total Cavopulmonary Connection Model,” Exp. Fluids, 54(8), p. 1581. [CrossRef]
Haggerty, C. M. , Restrepo, M. , Tang, E. , De Zélicourt, D. A. , Sundareswaran, K. S. , Mirabella, L. , Bethel, J. , Whitehead, K. K. , Fogel, M. A. , and Yoganathan, A. P. , 2014, “ Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis,” J. Thorac. Cardiovasc. Surg., 148(4), pp. 1481–1489. [CrossRef] [PubMed]
Khiabani, R. H. , Whitehead, K. K. , Han, D. , Restrepo, M. , Tang, E. , Bethel, J. , Paridon, S. M. , Fogel, M. A. , and Yoganathan, A. P. , 2014, “ Exercise Capacity in Single-Ventricle Patients After Fontan Correlates With Haemodynamic Energy Loss in TCPC,” Heart, 101(2), pp. 139–143. [CrossRef] [PubMed]
Vukicevic, M. , Conover, T. A. , Zhou, J. , Hsia, T.-Y. , and Figliola, R. S. , 2012, “ In Vitro Study of Pulmonary Vascular Resistance in Fontan Circulation With Respiration Effects,” ASME Paper No. SBC2012-80888.
Vukicevic, M. , Chiulli, J. A. , Conover, T. A. , Pennati, G. , Hsia, T.-Y. Y. , and Figliola, R. S. , 2013, “ Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior,” ASAIO J., 59(3), pp. 253–260. [CrossRef] [PubMed]
Figliola, R. S. , Giardini, A. , Conover, T. A. , Camp, T. A. , Biglino, G. , Chiulli, J. A. , and Hsia, T.-Y. , 2010, “ In Vitro Simulation and Validation of the Circulation With Congenital Heart Defects,” Prog. Pediatr. Cardiol., 30(1–2), pp. 71–80. [CrossRef] [PubMed]
Walker, P. G. , Howe, T. T. , Davies, R. L. , Fisher, J. , and Watterson, K. G. , 2000, “ Distribution of Hepatic Venous Blood in the Total Cavo-Pulmonary Connection: An In Vitro Study,” Eur. J. Cardiothorac. Surg., 17(6), pp. 658–665. [CrossRef] [PubMed]
Gerdes, A. , Benthin, U. , and Sievers, H. H. , 2002, “ Influence of Arteriotomy Shape on Power Losses Across In Vitro Cavopulmonary Connections,” J. Cardiovasc. Surg., 43(6), pp. 787–791.
Ensley, A. E. , Lynch, P. , Chatzimavroudis, G. P. , Lucas, C. , Sharma, S. , and Yoganathan, A. P. , 1999, “ Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study,” Ann. Thorac. Surg., 68(4), pp. 1384–1390. [CrossRef] [PubMed]
Liu, J. , Qian, Y. , Sun, Q. , Liu, J. , and Umezu, M. , 2013, “ Use of Computational Fluid Dynamics to Estimate Hemodynamic Effects of Respiration on Hypoplastic Left Heart Syndrome Surgery: Total Cavopulmonary Connection Treatments,” Sci. World J., 2013, p. 131597.
Bossers, S. S. M. , Cibis, M. , Gijsen, F. J. , Schokking, M. , Strengers, J. L. M. , Verhaart, R. F. , Moelker, A. , Wentzel, J. J. , and Helbing, W. A. , 2014, “ Computational Fluid Dynamics in Fontan Patients to Evaluate Power Loss During Simulated Exercise,” Heart, 100(9), pp. 696–701. [CrossRef] [PubMed]
Van De Bruaene, A. , Claessen, G. , La Gerche, A. , Kung, E. , Marsden, A. , De Meester, P. , Devroe, S. , Bogaert, J. , Claus, P. , Heidbuchel, H. , Budts, W. , and Gewillig, M. , 2015, “ Effect of Respiration on Cardiac Filling at Rest and During Exercise in Fontan Patients: A Clinical and Computational Modeling Study,” IJC Heart Vasculature, 9, pp. 100–108. [CrossRef]
Bazilevs, Y. , Hsu, M.-C. , Benson, D. J. , Sankaran, S. , and Marsden, A. L. , 2009, “ Computational Fluid–Structure Interaction: Methods and Application to a Total Cavopulmonary Connection,” Comput. Mech., 45(1), pp. 77–89. [CrossRef]
Masters, J. C. , Ketner, M. , Bleiweis, M. S. , Mill, M. , Yoganathan, A. , and Lucas, C. L. , 2004, “ The Effect of Incorporating Vessel Compliance in a Computational Model of Blood Flow in a Total Cavopulmonary Connection (TCPC) With Caval Centerline Offset,” ASME J. Biomech. Eng., 126(6), pp. 709–713. [CrossRef]
Slesnick, T. C. , and Yoganathan, A. P. , 2014, “ Computational Modeling of Fontan Physiology: At the Crossroads of Pediatric Cardiology and Biomedical Engineering,” Int. J. Cardiovasc. Imaging, 30(6), pp. 1073–1084. [CrossRef] [PubMed]
Kung, E. , Perry, J. C. , Davis, C. , Migliavacca, F. , Pennati, G. , Giardini, A. , Hsia, T.-Y. , and Marsden, A. L. , 2014, “ Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients,” Ann. Biomed. Eng., 43(6), pp. 1335–1347. [CrossRef] [PubMed]
Wei, Z. A. , Trusty, P. M. , Tree, M. , Haggerty, C. M. , Tang, E. , Fogel, M. , and Yoganathan, A. P. , 2016, “ Can Time-Averaged Flow Boundary Conditions Be Used to Meet the Clinical Timeline for Fontan Surgical Planning?,” J. Biomech., 50, pp. 172–179. [CrossRef] [PubMed]
Vukicevic, M. , Conover, T. A. , Jaeggli, M. , Zhou, J. , Pennati, G. , Hsia, T.-Y. , and Figliola, R. S. , 2014, “ Control of Respiration-Driven Retrograde Flow in the Subdiaphragmatic Venous Return of the Fontan Circulation,” ASAIO J., 60(4), pp. 21–23. [CrossRef]
Santhanakrishnan, A. , Maher, K. O. , Tang, E. , Khiabani, R. H. , Johnson, J. , and Yoganathan, A. P. , 2013, “ Hemodynamic Effects of Implanting a Unidirectional Valve in the Inferior Vena Cava of the Fontan Circulation Pathway: An In Vitro Investigation,” Am. J. Physiol.—Heart Circ. Physiol., 305(10), pp. H1538–H1547. [CrossRef] [PubMed]
Long, C. C. , Hsu, M.-C. C. , Bazilevs, Y. , Feinstein, J. A. , and Marsden, A. L. , 2012, “ Fluid—Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties,” Int. J. Numer. Methods Biomed. Eng., 28(5), pp. 513–527. [CrossRef]
Yushkevich, P. A. , Piven, J. , Hazlett, H. C. , Smith, R. G. , Ho, S. , Gee, J. C. , and Gerig, G. , 2006, “ User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage, 31(3), pp. 1116–1128. [CrossRef] [PubMed]
Figliola, R. S. , and Beasley, D. E. , 2011, Theory and Design for Mechanical Measurements, Wiley, Hoboken, NJ.
Papaharilaou, Y. , Doorly, D. J. , and Sherwin, S. J. , 2001, “ Assessing the Accuracy of Two-Dimensional Phase-Contrast MRI Measurements of Complex Unsteady Flows,” J. Magn. Reson. Imaging, 14(6), pp. 714–723. [CrossRef] [PubMed]
Biglino, G. , Verschueren, P. , Zegels, R. , Taylor, A. M. , and Schievano, S. , 2013, “ Rapid Prototyping Compliant Arterial Phantoms for In-Vitro Studies and Device Testing,” J. Cardiovasc. Magn. Reson., 15(1), p. 2. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

In vitro TCPC model suspended in physiological orientation in preparation for compliance testing

Grahic Jump Location
Fig. 2

Flow versus time curves from patient-specific TCPC data (top) and TCPC volume change (bottom) over the cardiac cycle

Grahic Jump Location
Fig. 3

The response of the optimization of seeking the effective Young's modulus for the TCPC with 1 mm thickness

Grahic Jump Location
Fig. 4

The response of the optimization of seeking the TCPC wall thickness for the target compliance of 1.36 mL/mm Hg

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In