Research Papers

Lower Cervical Spine Motion Segment Computational Model Validation: Kinematic and Kinetic Response for Quasi-Static and Dynamic Loading

[+] Author and Article Information
Jeffrey B. Barker

Department of Mechatronics and
Mechanical Engineering,
University of Waterloo,
200 University Avenue West,
Waterloo, ON N2L 3G1, Canada
e-mail: jbarker@uwaterloo.ca

Duane S. Cronin

Department of Mechatronics and
Mechanical Engineering,
University of Waterloo,
200 University Avenue West,
Waterloo, ON N2L 3G1, Canada;
Department of Mechanical Engineering,
University of Waterloo,
200 University Avenue West,
Waterloo, ON N2L 3G1, Canada
e-mails: dscronin@uwaterloo.ca;

Roger W. Nightingale

Division of Orthopaedic Surgery,
Department of Biomedical Engineering,
Duke University,
Box 90281,
Durham, NC 27708-0281
e-mail: rwn@duke.edu

1Corresponding author.

Manuscript received October 31, 2016; final manuscript received March 17, 2017; published online May 2, 2017. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 139(6), 061009 (May 02, 2017) (11 pages) Paper No: BIO-16-1428; doi: 10.1115/1.4036464 History: Received October 31, 2016; Revised March 17, 2017

Advanced computational human body models (HBM) enabling enhanced safety require verification and validation at different levels or scales. Specifically, the motion segments, which are the building blocks of a detailed neck model, must be validated with representative experimental data to have confidence in segment and, ultimately, full neck model response. In this study, we introduce detailed finite element motion segment models and assess the models for quasi-static and dynamic loading scenarios. Finite element segment models at all levels in the lower human cervical spine were developed from scans of a 26-yr old male subject. Material properties were derived from the in vitro experimental data. The segment models were simulated in quasi-static loading in flexion, extension, lateral bending and axial rotation, and at dynamic rates in flexion and extension in comparison to previous experimental studies and new dynamic experimental data introduced in this study. Single-valued experimental data did not provide adequate information to assess the model biofidelity, while application of traditional corridor methods highlighted that data sets with higher variability could lead to an incorrect conclusion of improved model biofidelity. Data sets with continuous or multiple moment–rotation measurements enabled the use of cross-correlation for an objective assessment of the model and highlighted the importance of assessing all motion segments of the lower cervical spine to evaluate the model biofidelity. The presented new segment models of the lower cervical spine, assessed for range of motion and dynamic/traumatic loading scenarios, provide a foundation to construct a biofidelic model of the spine and neck, which can be used to understand and mitigate injury for improved human safety in the future.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Bean, J. D. , Kahane, C. J. , and Mynatt, M. , 2009, “ Fatalities in Frontal Crashes Despite Seat Belts and Air Bags—Review of all NASS/CDS Cases—Model and Calendar Years 2000–2007,” National Highway Traffic Safety Administration, Washington, DC, Report No. DOT HS 811 202.
Hallman, J. J. , Yoganandan, N. , Pintar, F. A. , and Maiman, D. J. , 2011, “ Injury Differences Between Small and Large Overlap Frontal Crashes,” Ann. Adv. Automot. Med., 55, pp. 147–157. [PubMed]
Forman, J. L. , Lopez-Valdes, F. , Lessley, D. J. , Riley, P. , Sochor, M. , Heltzel, S. , Ash, J. , Perz, R. , Kent, R. W. , Seacrist, T. , Arbogast, K. B. , Tanji, H. , and Higuichi, K. , 2013, “ Occupant Kinematics and Shoulder Belt Retention in Far-Side Lateral and Oblique Collisions: A Parametric Study,” 57th Stapp Car Crash Conference Proceedings, Orlando, FL, Nov. 11–13, Vol. 57, pp. 343–385.
Fice, J. B. , Cronin, D. S. , and Panzer, M. B. , 2011, “ Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact,” Ann Biomed. Eng., 39(8), pp. 2152–2162. [CrossRef] [PubMed]
Gaewsky, J. P. , Weaver, A. A. , Koya, B. , and Stitzel, J. D. , 2015, “ Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes,” Traffic Injury Prev., 16(sup2), pp. S124–S131. [CrossRef]
Danelson, K. A. , Golman, A. J. , Kemper, A. R. , Gayzik, F. S. , Gabler, H. C. , Duma, S. M. , and Stitzel, J. D. , 2015, “ Finite Element Comparison of Human and Hybrid III Responses in a Frontal Impact,” Accid. Anal. Prev., 85, pp. 125–156. [CrossRef] [PubMed]
Panzer, M. B. , and Cronin, D. S. , 2009, “ C4-C5 Segment Finite Element Model Development, Validation and Load-Sharing Investigation,” J. Biomech., 42(4), pp. 480–490. [CrossRef] [PubMed]
DeWit, J. A. , and Cronin, D. S. , 2012, “ Cervical Spine Segment Finite Element Model for Traumatic Injury Prediction,” J. Mech. Behav. Biomed. Mater., 10, pp. 138–150. [CrossRef] [PubMed]
Yoganandan, N. , Kumaresan, S. , Voo, L. , and Pintar, F. A. , 1996, “ Finite Element Applications in Cervical Spine Modeling,” Spine, 21(15), pp. 1824–1834. [CrossRef] [PubMed]
Clausen, J. D. , Goel, V. K. , Traynelis, V. C. , and Scifert, J. , 1997, “ Unicinate Process and Luschka Joints Influence the Biomechanics of the Cervical Spine: Quantification Using a Finite Element Model of the C5-C6 Segment,” J. Orthop. Res., 15(3), pp. 342–347. [CrossRef] [PubMed]
Teo, E. C. , and Ng, H. W. , 2001, “ Evaluation of the Role of Ligaments, Facets and Disc Nucleus in Lower Cervical Spine Under Compression and Sagittal Moments Using Finite Element Method,” Med. Eng. Phys., 23(3), pp. 155–164. [CrossRef] [PubMed]
Natarajan, R. N. , Chen, B. H. , An, H. S. , and Andersson, G. B. J. , 2000, “ Anterior Cervical Fusion: A Finite Element Model Study on Motion Segment Stability Including the Effect of Osteoporosis,” Spine, 25(8), pp. 955–961. [CrossRef] [PubMed]
Cronin, D. S. , Singh, D. , Barker, J. , and Fice, J. , 2014, “ Detailed Finite Element Cervical Spine Model Response Evaluation,” World Congress of Biomechanics (WCB), Boston, MA, July 10–16.
Del Palomar, A. P. , Calvo, B. , and Doblare, M. , 2008, “ An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading,” J. Biomech., 41(3), pp. 523–531. [CrossRef] [PubMed]
Wheeldon, J. A. , Stemper, B. D. , Yoganandan, N. , and Pintar, F. A. , 2008, “ Validation of a Finite Element Model of the Young Normal Lower Cervical Spine,” Ann. Biomed. Eng., 36(9), pp. 1458–1469. [CrossRef] [PubMed]
Kallemeyn, N. , Gandhi, A. , Kode, S. , Shivanna, K. , Smucker, J. , and Grosland, N. , 2010, “ Validation of a C2-C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data,” Med. Eng. Phys., 32(5), pp. 482–489. [CrossRef] [PubMed]
Panzer, M. B. , Fice, J. B. , and Cronin, D. S. , 2011, “ Cervical Spine Response in Frontal Crash,” Med. Eng. Phys., 33(9), pp. 1147–1159. [CrossRef] [PubMed]
Erbulut, D. U. , Zafarparandeh, I. , Lazoglu, I. , and Ozer, A. F. , 2014, “ Application of an Asymmetric Finite Element Model of the C2-T1 Cervical Spine for Evaluation the Role of Soft Tissues in Stability,” Med. Eng. Phys., 36(7), pp. 915–921. [CrossRef] [PubMed]
Gehre, C. , Gades, H. , and Wernicke, P. , 2009, “ Objective Rating of Signals Using Test and Simulation Response,” International Technical Conference on the Enhanced Safety of Vehicles (ESV), Stuttgart, Germany, June 15–18.
Barker, J. B. , Cronin, D. S. , and Chandrashekar, N. , 2014, “ High Rotation Rate Behaviour of Cervical Spine Segment in Flexion and Extension,” ASME J. Biomech. Eng., 136(12), p. 121004. [CrossRef]
Vavalle, N. A. , Jelen, B. C. , Moreno, D. P. , Stitzel, J. D. , and Gayzik, F. S. , 2013, “ An Evaluation of Objective Rating Methods for Full-Body Finite Element Model Comparison to PMHS Tests,” Traffic Injury Prev., 14(sup1), pp. S87–S94. [CrossRef]
Miller, L. E. , Urban, J. E. , and Stitzel, J. D. , 2016, “ Development and Validation of an Atlas-Based Finite Element Brain Model,” Biomech. Model. Mechanobiol., 15(5), pp. 1201–1214. [CrossRef] [PubMed]
Park, G. , Kim, T. , Crandall, J. R. , Dalmases, C. A. , and Narro, L. , 2013, “ Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition,” International Research Council on Biomechanics of Injury (IRCOBI), Gothenburg, Sweden, Sept. 11–13, pp. 368–379.
Wheeldon, J. A. , Pintar, F. A. , Knowles, S. , and Yoganandan, N. , 2006, “ Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine,” J. Biomech., 39(2), pp. 375–380. [CrossRef] [PubMed]
Nightingale, R. W. , Winkelstein, B. A. , Knaub, K. E. , Richardson, W. J. , Luck, J. F. , and Myers, B. S. , 2002, “ Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension,” J. Biomech., 35(6), pp. 725–732. [CrossRef] [PubMed]
Nightingale, R. W. , Carol Chancey, V. , Ottaviano, D. , Luck, J. F. , Tran, L. , Prange, M. , and Myers, B. S. , 2007, “ Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments,” J. Biomech., 40(3), pp. 535–542. [CrossRef] [PubMed]
Camacho, D. L. A. , Nightingale, R. W. , Robinette, J. J. , Vanguri, S. K. , Coates, D. J. , and Myers, B. S. , 1997, “ Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact,” SAE Paper No. 973345.
Moroney, S. P. , Schultz, A. B. , Miller, J. A. A. , and Andersson, G. B. J. , 1988, “ Load-Displacement Properties of Lower Cervical Spine Motion Segments,” J. Biomech., 21(9), pp. 769–779. [CrossRef] [PubMed]
Panjabi, M. M. , Crisco, J. J. , Vasavada, A. , Oda, T. , Cholewicki, J. , Nibu, K. , and Shin, E. , 2001, “ Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves,” Spine, 26(24), pp. 2692–2700. [CrossRef] [PubMed]
Gayzik, F. S. , Moreno, D. M. , Geer, C. P. , Wuertzer, S. D. , Martin, R. S. , and Stitzel, J. D. , 2011, “ Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach,” Ann. Biomed. Eng., 39(10), pp. 2568–2583. [CrossRef] [PubMed]
Hallquist, J. O. , 2016, “ LS-DYNA Keyword Users' Manual Volume I Version R8.0,” Livermore Software Technology, Livermore, CA.
Gilad, I. , and Nissan, M. , 1985, “ Sagittal Evaluation of Elemental Geometrical Dimensions of Human Vertebrae,” J. Anat., 143, pp. 115–120. [PubMed]
Pooni, J. S. , Hukins, D. W. , Harris, P. F. , Hilton, R. C. , and Davies, K. E. , 1986, “ Comparison of the Structure of Human Intervertebral Discs in the Cervical, Thoracic and Lumbar Regions of the Spine,” Surg. Radiol. Anat., 8(3), pp. 175–182. [CrossRef] [PubMed]
Reilly, D. T. , Burstein, A. H. , and Frankel, V. H. , 1974, “ The Elastic Modulus for Bone,” J. Biomech., 7(3), pp. 271–275. [CrossRef] [PubMed]
McElhaney, J. H. , 1966, “ Dynamic Response of Bone and Muscle Tissue,” J. Appl. Physiol., 21(4), pp. 1231–1236. [PubMed]
Keaveny, T. M. , Morgan, E. F. , Niebur, G. L. , and Yeh, O. C. , 2001, “ Biomechanics of Trabecular Bone,” Ann. Rev. Biomed. Eng., 3(1), pp. 307–333. [CrossRef]
Lindahl, O. , 1976, “ Mechanical Properties of Dried Defatted Spongy Bone,” Acta Orthop. Scand., 47(1), pp. 11–19. [CrossRef] [PubMed]
Denozier, G., and Ku, D. N., 2006, “Biomechanical Comparison between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc,” J. Biomech., 39(4), pp. 766–775.
DiSilvestro, M. R., and Suh, J. K. F., 2001, “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression,” J. Biomech., 34(4), pp. 519–525.
Yang, K. H. , and Kish, V. L. , 1988, “ Compressibility Measurement of Human Intervertebral Nucleus Pulposus,” J. Biomech., 21(10), p. 865. [CrossRef]
Fujita, Y. , Duncan, N. A. , and Lotz, J. C. , 1997, “ Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent,” J. Orthop. Res., 15(6), pp. 814–819. [CrossRef] [PubMed]
Skaggs, D. L. , Weidenbaum, M. , Iatridis, J. C. , Ratcliffe, A. , and Mow, V. C. , 1994, “ Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus,” Spine, 19(12), pp. 1310–1319. [CrossRef] [PubMed]
Ebara, S. , Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Mow, V. C. , and Weidenbaum, M. , 1996, “ Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus,” Spine, 21(4), pp. 452–461. [CrossRef] [PubMed]
Holzapfel, G. A. , Schulze-Bauer, C. A. , Feigl, G. , and Regitnig, P. , 2005, “ Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus,” Biomech. Modell. Mechanobiol., 3(3), pp. 125–140. [CrossRef]
Mattucci, S. F. E. , Moulton, J. A. , Chandrashekar, N. , and Cronin, D. S. , 2012, “ Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments,” J. Mech. Behav. Biomed. Mater., 10, pp. 216–226. [CrossRef] [PubMed]
Mattucci, S. F. E. , and Cronin, D. S. , 2015, “ A Method to Characterize Average Cervical Spine Ligament Response Based on Raw Data Sets for Implementation Into Injury Biomechanics Models,” J. Mech. Behav. Biomed. Mater., 41, pp. 251–260. [CrossRef] [PubMed]
Hallquist, J. O. , 2016, “ LS-DYNA Keyword Users' Manual Volume 2 Version R8.0,” Livermore Software Technology, Livermore, CA.
Acaraglu, E. R. , Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Mow, V. C. , and Weidenbaum, M. , 1995, “ Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus,” Spine, 20(14), pp. 2690–2701. [CrossRef] [PubMed]
Kasra, M. , Parnianpour, M. , Shirazi-Ald, A. , Wang, J. L. , and Grynpas, M. D. , 2004, “ Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus,” Technol. Health Care, 12(4), pp. 333–342. [PubMed]
Cesari, D. , Compigne, S. , Scherer, R. , Xu, L. , Takahasi, N. , Page, M. , Asakawa, K. , Hautmann, E. , Bortenschlager, K. , Sakurai, M. , and Harigae, T. , 2001, “ WorldSID Prototype Dummy Biomechanical Responses,” 45th Stapp Car Crash Conference Proceedings, San Antonio, TX, Vol. 45, pp. 285–318.
Kumaresan, S. , Yoganandan, N. , and Pintar, F. A. , 1999, “ Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study,” Clin. Biomech., 14(1), pp. 41–53. [CrossRef]
Mustafy, T. , El-Rich, M. , Mesfar, W. , and Moglo, K. , 2014, “ Investigation of Impact Loading Rate Effects on the Ligamentous Cervical Spinal Load-Partitioning Using Finite Element Model of Functional Spine Unit C2-C3,” J. Biomech., 47(12), pp. 2891–2903. [CrossRef] [PubMed]
De Santis Klinich, K. , Ebert, S. M. , Van Ee, C. A. , Flannagan, C. A. C. , Prasad, M. , Reed, M. P. , and Schneider, L. W. , 2004, “ Cervical Spine Geometry in the Automotive Seated Posture: Variations With Age, Stature, and Gender,” Stapp Car Crash J., 48, pp. 301–330. [PubMed]
Reed, M. P. , Manary, M. A. , Flannagan, C. A. C. , and Schneider, L. W. , 2002, “ A Statistical Method for Predicting Automobile Driving Posture,” Hum. Factors, 44(4), pp. 557–568. [CrossRef] [PubMed]
Gilad, I. , and Nissan, M. , 1986, “ A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine,” Spine, 11(2), pp. 154–157. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Motion segment finite element model, with rigidized endplates for applying boundary conditions (C4–C5 segment shown)

Grahic Jump Location
Fig. 4

High rate C4–C5 model comparison with Nightingale et al. [26]

Grahic Jump Location
Fig. 3

C4–C5 model extension (left) and flexion (right) comparison with Wheeldon et al. [24], Nightingale et al. [26], and Camacho et al. [27]

Grahic Jump Location
Fig. 2

C4–C5 segment model range of motion comparison with Panjabi et al. [30] (1.0 N⋅m) and Moroney et al. [28] (1.8 N⋅m)

Grahic Jump Location
Fig. 5

Flexion loading just before (left) and just after (right) onset of failure due to ISL/CL rupture and C5 compressive bone fracture; moment = 17.5 N⋅m and angle = 20.4 deg

Grahic Jump Location
Fig. 6

Extension loading just before (left) and just after (right) onset of failure due to ALL rupture and disk avulsion; moment = 13.8 N⋅m and angle = 13.1 deg



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In