0
Research Papers

Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function

[+] Author and Article Information
Zaw Win

Department of Biomedical Engineering,
University of Minnesota-Twin Cities,
312 Church Street SE NHH 7-105,
Minneapolis, MN 55455
e-mail: winxx005@umn.edu

Justin M. Buksa

Department of Biomedical Engineering,
University of Minnesota-Twin Cities,
312 Church Street SE NHH 7-105,
Minneapolis, MN 55455
e-mail: buksa002@umn.edu

Kerianne E. Steucke

Department of Biomedical Engineering,
University of Minnesota-Twin Cities,
312 Church Street SE NHH 7-105,
Minneapolis, MN 55455
e-mail: steu0057@umn.edu

G. W. Gant Luxton

Department of Genetics,
Cell Biology, and Development,
University of Minnesota-Twin Cities,
420 Washington Avenue SE MCB 4-128,
Minneapolis, MN 55455
e-mail: gwgl@umn.edu

Victor H. Barocas

Department of Biomedical Engineering,
University of Minnesota-Twin Cities,
312 Church Street SE NHH 7-105,
Minneapolis, MN 55455
e-mail: baroc001@umn.edu

Patrick W. Alford

Department of Biomedical Engineering,
University of Minnesota-Twin Cities,
312 Church Street SE NHH 7-105,
Minneapolis, MN 55455
e-mail: pwalford@umn.edu

1Corresponding author.

Manuscript received November 9, 2016; final manuscript received March 29, 2017; published online June 6, 2017. Assoc. Editor: Kristen Billiar.

J Biomech Eng 139(7), 071006 (Jun 06, 2017) (10 pages) Paper No: BIO-16-1446; doi: 10.1115/1.4036440 History: Received November 09, 2016; Revised March 29, 2017

The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel–Gasser–Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Engler, A. J. , Sen, S. , Sweeney, H. L. , and Discher, D. E. , 2006, “ Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–689. [CrossRef] [PubMed]
Trepat, X. , Wasserman, M. R. , Angelini, T. E. , Millet, E. , Weitz, D. A. , Butler, J. P. , and Fredberg, J. J. , 2009, “ Physical Forces During Collective Cell Migration,” Nat. Phys., 5(6), pp. 426–430. [CrossRef]
Shyer, A. E. , Tallinen, T. , Nerurkar, N. L. , Wei, Z. Y. , Gil, E. S. , Kaplan, D. L. , Tabin, C. J. , and Mahadevan, L. , 2013, “ Vilification: How the Gut Gets Its Villi,” Science, 342(6155), pp. 212–218. [CrossRef] [PubMed]
Humphrey, J. D. , Eberth, J. F. , Dye, W. W. , and Gleason, R. L. , 2009, “ Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries,” J. Biomech., 42(1), pp. 1–8. [CrossRef] [PubMed]
Alford, P. W. , Dabiri, B. E. , Goss, J. A. , Hemphill, M. A. , Brigham, M. D. , and Parker, K. K. , 2011, “ Blast-Induced Phenotypic Switching in Cerebral Vasospasm,” Proc. Natl. Acad. Sci. U.S.A., 108(31), pp. 12705–12710. [CrossRef] [PubMed]
Sacks, M. S. , and Sun, W. , 2003, “ Multiaxial Mechanical Behavior of Biological Materials,” Annu. Rev. Biomed. Eng., 5(1), pp. 251–284. [CrossRef] [PubMed]
Humphrey, J. D. , Strumpf, R. K. , and Yin, F. C. , 1990, “ Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form,” ASME J. Biomech. Eng., 112(3), pp. 333–339. [CrossRef]
Kim, D. H. , Lipke, E. A. , Kim, P. , Cheong, R. , Thompson, S. , Delannoy, M. , Suh, K. Y. , Tung, L. , and Levchenko, A. , 2010, “ Nanoscale Cues Regulate the Structure and Function of Macroscopic Cardiac Tissue Constructs,” Proc. Natl. Acad. Sci. U.S.A., 107(2), pp. 565–570. [CrossRef] [PubMed]
Gerdes, A. M. , Kellerman, S. E. , Moore, J. A. , Muffly, K. E. , Clark, L. C. , Reaves, P. Y. , Malec, K. B. , McKeown, P. P. , and Schocken, D. D. , 1992, “ Structural Remodeling of Cardiac Myocytes in Patients With Ischemic Cardiomyopathy,” Circulation, 86(2), pp. 426–430. [CrossRef] [PubMed]
Ushiwata, I. , and Ushiki, T. , 1990, “ Cytoarchitecture of the Smooth Muscles and Pericytes of Rat Cerebral Blood Vessels. A Scanning Electron Microscopic Study,” J. Neurosurg., 73(1), pp. 82–90. [CrossRef] [PubMed]
Makhija, E. , Jokhun, D. S. , and Shivashankar, G. V. , 2016, “ Nuclear Deformability and Telomere Dynamics Are Regulated by Cell Geometric Constraints,” Proc. Natl. Acad. Sci. U.S.A., 113(1), pp. E32–40. [CrossRef] [PubMed]
Rothenberg, K. E. , Neibart, S. S. , LaCroix, A. S. , and Hoffman, B. D. , 2015, “ Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin,” Cell. Mol. Bioeng., 8(3), pp. 364–382. [CrossRef]
Versaevel, M. , Grevesse, T. , and Gabriele, S. , 2012, “ Spatial Coordination Between Cell and Nuclear Shape Within Micropatterned Endothelial Cells,” Nat. Commun., 3, p. 671.
Versaevel, M. , Braquenier, J. B. , Riaz, M. , Grevesse, T. , Lantoine, J. , and Gabriele, S. , 2014, “ Super-Resolution Microscopy Reveals LINC Complex Recruitment at Nuclear Indentation Sites,” Sci. Rep., 4, p. 7362.
Wang, N. , Naruse, K. , Stamenovic, D. , Fredberg, J. J. , Mijailovich, S. M. , Toric-Norrelykke, I. M. , Polte, T. , Mannix, R. , and Ingber, D. E. , 2001, “ Mechanical Behavior in Living Cells Consistent With the Tensegrity Model,” Proc. Natl. Acad. Sci. U.S.A., 98(14), pp. 7765–7770. [CrossRef] [PubMed]
Diez-Silva, M. , Dao, M. , Han, J. Y. , Lim, C. T. , and Suresh, S. , 2010, “ Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease,” MRS Bull., 35(5), pp. 382–388. [CrossRef] [PubMed]
Kuznetsova, T. G. , Starodubtseva, M. N. , Yegorenkov, N. I. , Chizhik, S. A. , and Zhdanov, R. I. , 2007, “ Atomic Force Microscopy Probing of Cell Elasticity,” Micron, 38(8), pp. 824–833. [CrossRef] [PubMed]
Janmey, P. A. , and McCulloch, C. A. , 2007, “ Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli,” Annu. Rev. Biomed. Eng., 9(1), pp. 1–34. [CrossRef] [PubMed]
Rodriguez, M. L. , McGarry, P. J. , and Sniadecki, N. J. , 2013, “ Review on Cell Mechanics: Experimental and Modeling Approaches,” ASME Appl. Mech. Rev., 65(6), p. 060801.
Taber, L. A. , 1995, “ Biomechanics of Growth, Remodeling, and Morphogenesis,” ASME Appl. Mech. Rev., 48(8), pp. 487–545. [CrossRef]
Taber, L. A. , 1998, “ Biomechanical Growth Laws for Muscle Tissue,” J. Theor. Biol., 193(2), pp. 201–213. [CrossRef] [PubMed]
Malkawi, A. H. , Hinchliffe, R. J. , Xu, Y. , Holt, P. J. , Loftus, I. M. , and Thompson, M. M. , 2010, “ Patient-Specific Biomechanical Profiling in Abdominal Aortic Aneurysm Development and Rupture,” J. Vasc. Surg., 52(2), pp. 480–488. [CrossRef] [PubMed]
Doyle, B. J. , Cloonan, A. J. , Walsh, M. T. , Vorp, D. A. , and McGloughlin, T. M. , 2010, “ Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques,” J. Biomech., 43(7), pp. 1408–1416. [CrossRef] [PubMed]
Humphrey, J. D. , and Rajagopal, K. R. , 2003, “ A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow,” Biomech. Model. Mechanobiol., 2(2), pp. 109–126. [CrossRef] [PubMed]
Gleason, R. L. , and Humphrey, J. D. , 2004, “ A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover,” J. Vasc. Res., 41(4), pp. 352–363. [CrossRef] [PubMed]
Wagenseil, J. E. , 2011, “ A Constrained Mixture Model for Developing Mouse Aorta,” Biomech. Model. Mechanobiol., 10(5), pp. 671–687. [CrossRef] [PubMed]
Alford, P. W. , Humphrey, J. D. , and Taber, L. A. , 2008, “ Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents,” Biomech. Model. Mechanobiol., 7(4), pp. 245–262. [CrossRef] [PubMed]
Soares, J. S. , and Sacks, M. S. , 2016, “ A Triphasic Constrained Mixture Model of Engineered Tissue Formation Under In Vitro Dynamic Mechanical Conditioning,” Biomech. Model. Mechanobiol., 15(2), pp. 293–316. [CrossRef] [PubMed]
Sander, E. A. , Stylianopoulos, T. , Tranquillo, R. T. , and Barocas, V. H. , 2009, “ Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels,” Proc. Natl. Acad. Sci. U.S.A., 106(42), pp. 17675–17680. [CrossRef] [PubMed]
Shah, S. B. , Witzenburg, C. , Hadi, M. F. , Wagner, H. P. , Goodrich, J. M. , Alford, P. W. , and Barocas, V. H. , 2014, “ Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model,” ASME J. Biomech. Eng., 136(2), p. 021028.
Edgar, L. T. , Maas, S. A. , Guilkey, J. E. , and Weiss, J. A. , 2015, “ A Coupled Model of Neovessel Growth and Matrix Mechanics Describes and Predicts Angiogenesis In Vitro,” Biomech. Model. Mechanobiol., 14(4)(4), pp. 767–782. [CrossRef] [PubMed]
Taber, L. A. , 2004, Nonlinear Theory of Elasticity: Applications in Biomechanics, World Scientific Publishing, Singapore.
Butler, J. P. , Tolic-Norrelykke, I. M. , Fabry, B. , and Fredberg, J. J. , 2002, “ Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings,” Am. J. Physiol.: Cell Physiol., 282(3), pp. C595–605. [CrossRef] [PubMed]
Simmons, C. S. , Ribeiro, A. J. , and Pruitt, B. L. , 2013, “ Formation of Composite Polyacrylamide and Silicone Substrates for Independent Control of Stiffness and Strain,” Lab Chip, 13(4), pp. 646–649. [CrossRef] [PubMed]
Polio, S. R. , Rothenberg, K. E. , Stamenovic, D. , and Smith, M. L. , 2012, “ A Micropatterning and Image Processing Approach to Simplify Measurement of Cellular Traction Forces,” Acta Biomater., 8(1), pp. 82–88. [CrossRef] [PubMed]
Vande Geest, J. P. , Sacks, M. S. , and Vorp, D. A. , 2006, “ The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta,” J. Biomech., 39(7), pp. 1324–1334. [CrossRef] [PubMed]
Kaunas, R. , and Hsu, H. J. , 2009, “ A Kinematic Model of Stretch-Induced Stress Fiber Turnover and Reorientation,” J. Theor. Biol., 257(2), pp. 320–330. [CrossRef] [PubMed]
Ye, G. J. C. , Aratyn-Schaus, Y. , Nesmith, A. P. , Pasqualini, F. S. , Alford, P. W. , and Parker, K. K. , 2014, “ The Contractile Strength of Vascular Smooth Muscle Myocytes Is Shape Dependent,” Integr. Biol., 6(2), pp. 152–163. [CrossRef]
Han, M. , Wen, J.-K. , Zheng, B. , Cheng, Y. , and Zhang, C. , 2006, “ Serum Deprivation Results in Redifferentiation of Human Umbilical Vascular Smooth Muscle Cells,” Am. J. Physiol.: Cell Physiol., 291(1), pp. C50–58. [CrossRef] [PubMed]
Feinberg, A. W. , Alford, P. W. , Jin, H. , Ripplinger, C. M. , Werdich, A. A. , Sheehy, S. P. , Grosberg, A. , and Parker, K. K. , 2012, “ Controlling the Contractile Strength of Engineered Cardiac Muscle by Hierarchal Tissue Architecture,” Biomaterials, 33(23), pp. 5732–5741. [CrossRef] [PubMed]
Alford, P. W. , Nesmith, A. P. , Seywerd, J. N. , Grosberg, A. , and Parker, K. K. , 2011, “ Vascular Smooth Muscle Contractility Depends on Cell Shape,” Integr. Biol. (Cambridge), 3(11), pp. 1063–1070. [CrossRef]
Ingber, D. E. , Prusty, D. , Sun, Z. Q. , Betensky, H. , and Wang, N. , 1995, “ Cell Shape, Cytoskeletal Mechanics, and Cell Cycle Control in Angiogenesis,” J. Biomech., 28(12), pp. 1471–1484. [CrossRef] [PubMed]
Luxton, G. W. , Lee, J. I. , Haverlock-Moyns, S. , Schober, J. M. , and Smith, G. A. , 2006, “ The Pseudorabies Virus VP1/2 Tegument Protein Is Required for Intracellular Capsid Transport,” J. Virol., 80(1), pp. 201–209. [CrossRef] [PubMed]
Fletcher, D. A. , and Mullins, R. D. , 2010, “ Cell Mechanics and the Cytoskeleton,” Nature, 463(7280), pp. 485–492. [CrossRef] [PubMed]
Tseng, Q. , Duchemin-Pelletier, E. , Deshiere, A. , Balland, M. , Guillou, H. , Filhol, O. , and Thery, M. , 2012, “ Spatial Organization of the Extracellular Matrix Regulates Cell-Cell Junction Positioning,” Proc. Natl. Acad. Sci. U.S.A., 109(5), pp. 1506–1511. [CrossRef] [PubMed]
Gasser, T. C. , Ogden, R. W. , and Holzapfel, G. A. , 2006, “ Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc., Interface, 3(6), pp. 15–35. [CrossRef]
Steucke, K. E. , Tracy, P. V. , Hald, E. S. , Hall, J. L. , and Alford, P. W. , 2015, “ Vascular Smooth Muscle Cell Functional Contractility Depends on Extracellular Mechanical Properties,” J. Biomech., 48(12), pp. 3044–3051. [CrossRef] [PubMed]
Palchesko, R. N. , Zhang, L. , Sun, Y. , and Feinberg, A. W. , 2012, “ Development of Polydimethylsiloxane Substrates With Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS One, 7(12), p. e51499. [CrossRef] [PubMed]
Puig-de-Morales-Marinkovic, M. , Turner, K. T. , Butler, J. P. , Fredberg, J. J. , and Suresh, S. , 2007, “ Viscoelasticity of the Human Red Blood Cell,” Am. J. Physiol.: Cell Physiol., 293(2), pp. C597–C605. [CrossRef] [PubMed]
Bausch, A. R. , Ziemann, F. , Boulbitch, A. A. , Jacobson, K. , and Sackmann, E. , 1998, “ Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry,” Biophys. J., 75(4), pp. 2038–2049. [CrossRef] [PubMed]
Bausch, A. R. , Moller, W. , and Sackmann, E. , 1999, “ Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers,” Biophys. J., 76(1 Pt 1), pp. 573–579. [CrossRef] [PubMed]
Putman, C. A. , van der Werf, K. O. , de Grooth, B. G. , van Hulst, N. F. , and Greve, J. , 1994, “ Viscoelasticity of Living Cells Allows High Resolution Imaging by Tapping Mode Atomic Force Microscopy,” Biophys. J., 67(4), pp. 1749–1753. [CrossRef] [PubMed]
Trepat, X. , Grabulosa, M. , Puig, F. , Maksym, G. N. , Navajas, D. , and Farre, R. , 2004, “ Viscoelasticity of Human Alveolar Epithelial Cells Subjected to Stretch,” Am. J. Physiol.: Lung Cell. Mol. Physiol., 287(5), pp. L1025–1034. [CrossRef] [PubMed]
Trepat, X. , Deng, L. , An, S. S. , Navajas, D. , Tschumperlin, D. J. , Gerthoffer, W. T. , Butler, J. P. , and Fredberg, J. J. , 2007, “ Universal Physical Responses to Stretch in the Living Cell,” Nature, 447(7144), pp. 592–595. [CrossRef] [PubMed]
Bonakdar, N. , Gerum, R. , Kuhn, M. , Sporrer, M. , Lippert, A. , Schneider, W. , Aifantis, K. E. , and Fabry, B. , 2016, “ Mechanical Plasticity of Cells,” Nat. Mater., 15(10), pp. 1090–1094. [CrossRef] [PubMed]
Weng, S. , Shao, Y. , Chen, W. , and Fu, J. , 2016, “ Mechanosensitive Subcellular Rheostasis Drives Emergent Single-Cell Mechanical Homeostasis,” Nat. Mater., 15(9), pp. 961–967. [CrossRef] [PubMed]
Hu, S. , Eberhard, L. , Chen, J. , Love, J. C. , Butler, J. P. , Fredberg, J. J. , Whitesides, G. M. , and Wang, N. , 2004, “ Mechanical Anisotropy of Adherent Cells Probed by a Three-Dimensional Magnetic Twisting Device,” Am. J. Physiol.: Cell Physiol., 287(5), pp. C1184–1191. [CrossRef] [PubMed]
Schievink, W. I. , 1997, “ Intracranial Aneurysms,” N. Engl. J. Med., 336(1), pp. 28–40. [CrossRef] [PubMed]
Radmacher, M. , Tillmann, R. W. , Fritz, M. , and Gaub, H. E. , 1992, “ From Molecules to Cells—Imaging Soft Samples With the Atomic Force Microscope,” Science, 257(5078), pp. 1900–1905. [CrossRef] [PubMed]
Schmidschonbein, G. W. , Sung, K. L. P. , Tozeren, H. , Skalak, R. , and Chien, S. , 1981, “ Passive Mechanical-Properties of Human-Leukocytes,” Biophys. J., 36(1), pp. 243–256. [CrossRef] [PubMed]
Wang, N. , and Ingber, D. E. , 1995, “ Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry,” Biochem. Cell Biol., 73(7–8), pp. 327–335. [CrossRef] [PubMed]
Qiu, H. , Zhu, Y. , Sun, Z. , Trzeciakowski, J. P. , Gansner, M. , Depre, C. , Resuello, R. R. , Natividad, F. F. , Hunter, W. C. , Genin, G. M. , Elson, E. L. , Vatner, D. E. , Meininger, G. A. , and Vatner, S. F. , 2010, “ Short Communication: Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness With Aging,” Circ. Res., 107(5), pp. 615–619. [CrossRef] [PubMed]
Matsumoto, T. , and Hayashi, K. , 1996, “ Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain,” ASME J. Biomech. Eng., 118(1), pp. 62–73. [CrossRef]
Zhou, J. , and Fung, Y. C. , 1997, “ The Degree of Nonlinearity and Anisotropy of Blood Vessel Elasticity,” Proc. Natl. Acad. Sci. U.S.A., 94(26), pp. 14255–14260. [CrossRef] [PubMed]
Bell, V. , Mitchell, W. A. , Sigurethsson, S. , Westenberg, J. J. , Gotal, J. D. , Torjesen, A. A. , Aspelund, T. , Launer, L. J. , de Roos, A. , Gudnason, V. , Harris, T. B. , and Mitchell, G. F. , 2014, “ Longitudinal and Circumferential Strain of the Proximal Aorta,” J. Am. Heart Assoc., 3(6), p. e001536. [CrossRef] [PubMed]
Bonifasi-Lista, C. , Lake, S. P. , Small, M. S. , and Weiss, J. A. , 2005, “ Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading,” J. Orthop. Res., 23(1), pp. 67–76. [CrossRef] [PubMed]
Lai, V. K. , Hadi, M. F. , Tranquillo, R. T. , and Barocas, V. H. , 2013, “ A Multiscale Approach to Modeling the Passive Mechanical Contribution of Cells in Tissues,” ASME J. Biomech. Eng., 135(7), p. 071007.
Kollmannsberger, P. , and Fabry, B. , 2011, “ Linear and Nonlinear Rheology of Living Cells,” Annu. Rev. Mater. Res., 41(1), pp. 75–97. [CrossRef]
Win, Z. , Vrla, G. D. , Steucke, K. E. , Sevcik, E. N. , Hald, E. S. , and Alford, P. W. , 2014, “ Smooth Muscle Architecture Within Cell-Dense Vascular Tissues Influences Functional Contractility,” Integr. Biol. (Cambridge), 6(12), pp. 1201–1210. [CrossRef]
Caille, N. , Thoumine, O. , Tardy, Y. , and Meister, J. J. , 2002, “ Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells,” J. Biomech., 35(2), pp. 177–187. [CrossRef] [PubMed]
Isermann, P. , and Lammerding, J. , 2013, “ Nuclear Mechanics and Mechanotransduction in Health and Disease,” Curr. Biol., 23(24), pp. R1113–R1121. [CrossRef] [PubMed]
Maskarinec, S. A. , Franck, C. , Tirrell, D. A. , and Ravichandran, G. , 2009, “ Quantifying Cellular Traction Forces in Three Dimensions,” Proc. Natl. Acad. Sci. U.S.A., 106(52), pp. 22108–22113. [CrossRef] [PubMed]
Legant, W. R. , Choi, C. K. , Miller, J. S. , Shao, L. , Gao, L. , Betzig, E. , and Chen, C. S. , 2013, “ Multidimensional Traction Force Microscopy Reveals Out-of-Plane Rotational Moments About Focal Adhesions,” Proc. Natl. Acad. Sci. U.S.A., 110(3), pp. 881–886. [CrossRef] [PubMed]
Harris, A. R. , Peter, L. , Bellis, J. , Baum, B. , Kabla, A. J. , and Charras, G. T. , 2012, “ Characterizing the Mechanics of Cultured Cell Monolayers,” Proc. Natl. Acad. Sci. U.S.A., 109(41), pp. 16449–16454. [CrossRef] [PubMed]
Tong, P. , and Fung, Y. C. , 1976, “ The Stress-Strain Relationship for the Skin,” J. Biomech., 9(10), pp. 649–657. [CrossRef] [PubMed]
Choi, H. S. , and Vito, R. P. , 1990, “ Two-Dimensional Stress-Strain Relationship for Canine Pericardium,” ASME J. Biomech. Eng., 112(2), pp. 153–159. [CrossRef]
Billiar, K. L. , and Sacks, M. S. , 2000, “ Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results,” ASME J. Biomech. Eng., 122(1), pp. 23–30. [CrossRef]
Fung, Y. C. , 1991, “ What Are the Residual Stresses Doing in Our Blood Vessels?,” Ann. Biomed. Eng., 19(3), pp. 237–249. [CrossRef] [PubMed]
Taber, L. A. , 1998, “ A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses,” ASME J. Biomech. Eng., 120(3), pp. 348–354. [CrossRef]
Chan, C. E. , and Odde, D. J. , 2008, “ Traction Dynamics of Filopodia on Compliant Substrates,” Science, 322(5908), pp. 1687–1691. [CrossRef] [PubMed]
Dupont, S. , Morsut, L. , Aragona, M. , Enzo, E. , Giulitti, S. , Cordenonsi, M. , Zanconato, F. , Le Digabel, J. , Forcato, M. , Bicciato, S. , Elvassore, N. , and Piccolo, S. , 2011, “ Role of YAP/TAZ in Mechanotransduction,” Nature, 474(7350), pp. 179–183. [CrossRef] [PubMed]
Guilluy, C. , Osborne, L. D. , Van Landeghem, L. , Sharek, L. , Superfine, R. , Garcia-Mata, R. , and Burridge, K. , 2014, “ Isolated Nuclei Adapt to Force and Reveal a Mechanotransduction Pathway in the Nucleus,” Nat. Cell Biol., 16(4), pp. 376–381. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Fabrication of substrate and cellular microbiaxial stretching device: (a) schematic representation of substrate fabrication process, (b) schematic representation of the CμBS device. Inset: cell substrate, (c) grip strain versus measured substrate strain under applied uniaxial grip strain (n = 10), and (d) grip strain versus measured substrate strain under equibiaxial grip strain. Error bars: standard deviation (n = 10).

Grahic Jump Location
Fig. 2

Cell stretching and stress measurement: (a) uniaxial and biaxial stretching protocols, (b) protocol to determine substrate displacements used to calculate cell-induced substrate traction force, (c) schematic for calculating first Piola–Kirchhoff stress from measured substrate traction force, and (d) flowchart describing CμBS microscopy technique and cell stress calculation

Grahic Jump Location
Fig. 3

Repeated cell stretching and hysteresis: (a) representative images of a single AR4 VSMC during one cycle of loading and unloading. Left columns: brightfield image of cell. Right columns: cell-induced bead displacement field. (b) Total traction force generated by AR4 cells undergoing loading and unloading cycles during repeated uniaxial-A stretch (n = 9). (c) Total traction force exerted by AR4 cells during cyclic loading over four sequential stretches (n = 5). (d) Normalized cycle-to-cycle total traction force relative to the first stretching cycle for cells exposed to four sequential uniaxial-A stretches. All error bars: standard deviation.

Grahic Jump Location
Fig. 4

Mechanical anisotropy in biaxially stretched micropatterned VSMCs. (a), (c), and (e) Representative cell-induced displacement fields for unstretched and 16% strain AR4 VSMCs undergoing (a) uniaxial-A (n = 10), (c) uniaxial-T (n = 13), and (e) equibiaxial stretch (n = 9). (b), (d), and (f) First Piola–Kirchhoff stresses in AR4 cells during (b) uniaxial-A (*, * = significant from 0%, p < 0.05), (d) uniaxial-T (* = significant from 0%, 4%, 8%, p < 0.05), and (f) equibiaxial stretching (* = significant from 0%, p < 0.05). All error bars: standard deviation.

Grahic Jump Location
Fig. 5

Cell shape influences mechanical properties. (a) Brightfield images of micropatterned cells with identical adhesive area, but varied aspect ratios (1:1 (AR1), 2:1 (AR2), 4:1 (AR4), 8:1 (AR8)). Scale bar: 20 μm. (b) Measured cell cross-sectional areas from average cell thickness maps. (c) First Piola–Kirchhoff stresses for all active cells during uniaxial-A, uniaxial-T, and equibiaxial stretching. Error bars: standard deviation. Uniaxial-A: AR1 (n = 10), AR2 (n = 10), AR4 (n = 10), AR8 (n = 9). Uniaxial-T: AR1 (n = 10), AR2 (n = 11), AR4 (n = 13), AR8 (n = 9). Equibiaxial: AR1 (n = 10), AR2 (n = 10), AR4 (n = 9), AR8 (n = 10). (* = Px significant from Py at same strain, p < 0.05).

Grahic Jump Location
Fig. 6

Cytoskeletal structure influences mechanical properties. (a) Representative immunofluorescent images of F-actin and microtubules in representative micropatterned cells for each aspect ratio. Top: dimethyl sulfoxide control. Middle: nocodazole treated. Bottom: cytochalasin D treated. (b) Microtubule filament orientation. Measured from n = 10 cells. (c) Actin filament orientation. Measured from n = 10 cells. (d), (f), and (h) Axial first Piola–Kirchhoff stress (Px) in VSMCs during uniaxial stretch in axial direction (d) control cells (n = 10). (f) Nocodazole treated (n = 10). (h) Cytochalasin D treated (n = 6). (e), (g), and (i) Transverse first Piola–Kirchhoff stress (Py) in VSMCs during uniaxial stretch in the transverse direction (e) control cells (n = 13). (g) Nocodazole treated (n = 4). (i) Cytochalasin D treated (n = 6). All error bars: standard deviation. Note: data staggered about strain values to prevent overlapping data. (d), (f), and (h) Y-axis scaled to maximum of Px. (e), (g), and (i) Y-axis scaled to maximum of Py. (*, *, *, * = significant from control at same strain with same AR p < 0.05 for respective aspect ratios).

Grahic Jump Location
Fig. 7

Mechanical models using actin organization-based SED recapitulate experimental results. (a) AR4 experimental data used to determine SED parameters and planar biaxial model fit. (b) AR1, AR2, and AR8 experimental data and planar biaxial model prediction. Error bars: standard deviation.

Grahic Jump Location
Fig. 8

FE model for validating cell stretching experiment. (a) Quarter symmetry cell and substrate model generated in COMSOL of AR4 cell undergoing prescribed uniaxial-axial, uniaxial-transverse, and equibiaxial stretch. (b) and (c) Comparison of model and experimental cell induced substrate displacements during (b) uniaxial-axial, (c) uniaxial-transverse, and (d) equibiaxial stretch.

Grahic Jump Location
Fig. 9

Quarter-symmetry FE model-predicted substrate displacement compared to the mean experimental substrate displacements. All stretched images represent 16% strain cases.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In