Research Papers

Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues

[+] Author and Article Information
Christopher E. Korenczuk

Department of Biomedical Engineering,
University of Minnesota,
7-105 Nils Hasselmo Hall,
312 Church Street SE,
Minneapolis, MN 55455
e-mail: koren046@umn.edu

Lauren E. Votava

Department of Biomedical Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: vota0017@umn.edu

Rohit Y. Dhume

Department of Mechanical Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: dhume001@umn.edu

Shannen B. Kizilski

Department of Mechanical Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: kizil015@umn.edu

George E. Brown

Department of Computer
Science and Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: brow2327@umn.edu

Rahul Narain

Department of Computer Science
and Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: narain@umn.edu

Victor H. Barocas

Department of Biomedical Engineering,
University of Minnesota,
Minneapolis, MN 55455
e-mail: baroc001@umn.edu

1Corresponding author.

Manuscript received December 15, 2016; final manuscript received March 9, 2017; published online June 6, 2017. Assoc. Editor: Kristen Billiar.

J Biomech Eng 139(7), 071008 (Jun 06, 2017) (10 pages) Paper No: BIO-16-1518; doi: 10.1115/1.4036316 History: Received December 15, 2016; Revised March 09, 2017

The von Mises (VM) stress is a common stress measure for finite element models of tissue mechanics. The VM failure criterion, however, is inherently isotropic, and therefore may yield incorrect results for anisotropic tissues, and the relevance of the VM stress to anisotropic materials is not clear. We explored the application of a well-studied anisotropic failure criterion, the Tsai–Hill (TH) theory, to the mechanically anisotropic porcine aorta. Uniaxial dogbones were cut at different angles and stretched to failure. The tissue was anisotropic, with the circumferential failure stress nearly twice the axial (2.67 ± 0.67 MPa compared to 1.46 ± 0.59 MPa). The VM failure criterion did not capture the anisotropic tissue response, but the TH criterion fit the data well (R2 = 0.986). Shear lap samples were also tested to study the efficacy of each criterion in predicting tissue failure. Two-dimensional failure propagation simulations showed that the VM failure criterion did not capture the failure type, location, or propagation direction nearly as well as the TH criterion. Over the range of loading conditions and tissue geometries studied, we found that problematic results that arise when applying the VM failure criterion to an anisotropic tissue. In contrast, the TH failure criterion, though simplistic and clearly unable to capture all aspects of tissue failure, performed much better. Ultimately, isotropic failure criteria are not appropriate for anisotropic tissues, and the use of the VM stress as a metric of mechanical state should be reconsidered when dealing with anisotropic tissues.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Grosse, I. , Huang, L. , Davis, J. , and Cullinane, D. , 2014, “ A Multi-Level Hierarchical Finite Element Model for Capillary Failure in Soft Tissue,” ASME J. Biomech. Eng., 136(8), p. 081010. [CrossRef]
Sanyal, A. , Scheffelin, J. , and Keaveny, T. M. , 2015, “ The Quartic Piecewise-Linear Criterion for the Multiaxial Yield Behavior of Human Trabecular Bone,” ASME J. Biomech. Eng., 137(1), p. 011009. [CrossRef]
Zwahlen, A. , Christen, D. , Ruffoni, D. , Schneider, P. , Schmölz, W. , and Müller, R. , 2015, “ Inverse Finite Element Modeling for Characterization of Local Elastic Properties in Image-Guided Failure Assessment of Human Trabecular Bone,” ASME J. Biomech. Eng., 137(1), p. 11012. [CrossRef]
Clouthier, A. L. , Hosseini, H. S. , Maquer, G. , and Zysset, P. K. , 2015, “ Finite Element Analysis Predicts Experimental Failure Patterns in Vertebral Bodies Loaded Via Intervertebral Discs up to Large Deformation,” Med. Eng. Phys., 37(6), pp. 599–604. [CrossRef] [PubMed]
Holzapfel, G. A. , Sommer, G. , Gasser, C. T. , and Regitnig, P. , 2005, “ Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Am. J. Physiol. Hear. Circ. Physiol., 289(5), pp. 2048–2058.
Vorp, D. A. , Schiro, B. J. , Ehrlich, M. P. , Juvonen, T. S. , Ergin, M. A. , and Griffith, B. P. , 2003, “ Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta,” Ann. Thorac. Surg., 75(4), pp. 1210–1214. [CrossRef] [PubMed]
Duprey, A. , Trabelsi, O. , Vola, M. , Favre, J. P. , and Avril, S. , 2016, “ Biaxial Rupture Properties of Ascending Thoracic Aortic Aneurysms,” Acta Biomater., 42, pp. 273–285. [CrossRef] [PubMed]
Luo, Y. , Duprey, A. , Avril, S. , and Lu, J. , 2016, “ Characteristics of Thoracic Aortic Aneurysm Rupture in vitro,” Acta Biomater., 42, pp. 286–295. [CrossRef] [PubMed]
Woo, S. L. , Gomez, M. A. , Seguchi, Y. , Endo, C. M. , and Akeson, W. H. , 1983, “ Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation,” J. Orthop. Res., 1(1), pp. 22–29. [CrossRef] [PubMed]
Woo, S. L. , Hollis, J. M. , Adams, D. J. , Lyon, R. M. , and Takai, S. , 1991, “ Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]
Little, J. S. , and Khalsa, P. S. , 2005, “ Material Properties of the Human Lumbar Facet Joint Capsule,” ASME J. Biomech. Eng., 127(1), pp. 15–24. [CrossRef]
Claeson, A. A. , and Barocas, V. H. , 2017, “ Planar Biaxial Extension of the Lumbar Facet Capsular Ligament Reveals Significant In-Plane Shear Forces,” J. Mech. Behav. Biomed. Mater., 65, pp. 127–136. [CrossRef] [PubMed]
Nicholls, S. P. , Gathereole, L. J. , Keller, A. , and Shah, J. S. , 1983, “ Crimping in Rat Tail Tendon Collagen: Morphology and Transverse Mechanical Anisotropy,” Int. J. Biol. Macromol., 5(5), pp. 283–288. [CrossRef]
Natali, A. N. , Pavan, P. G. , Carniel, E. L. , Lucisano, M. E. , and Taglialavoro, G. , 2005, “ Anisotropic Elasto-Damage Constitutive Model for the Biomechanical Analysis of Tendons,” Med. Eng. Phys., 27(3), pp. 209–214. [CrossRef] [PubMed]
Takaza, M. , Moerman, K. M. , Gindre, J. , Lyons, G. , and Simms, C. K. , 2012, “ The Anisotropic Mechanical Behaviour of Passive Skeletal Muscle Tissue Subjected to Large Tensile Strain,” J. Mech. Behav. Biomed. Mater., 17, pp. 209–220. [CrossRef] [PubMed]
Gennisson, J. L. , Deffieux, T. , Macé, E. , Montaldo, G. , Fink, M. , and Tanter, M. , 2010, “ Viscoelastic and Anisotropic Mechanical Properties of In Vivo Muscle Tissue Assessed by Supersonic Shear Imaging,” Ultrasound Med. Biol., 36(5), pp. 789–801. [CrossRef] [PubMed]
Duthon, V. B. , Barea, C. , Abrassart, S. , Fasel, J. H. , Fritschy, D. , and Ménétrey, J. , 2006, “ Anatomy of the Anterior Cruciate Ligament,” Knee Surg., Sports Traumatol. Arthroscopy, 14(3), pp. 204–213. [CrossRef]
Volokh, K. Y. , 2011, “ Modeling Failure of Soft Anisotropic Materials With Application to Arteries,” J. Mech. Behav. Biomed. Mater., 4(8), pp. 1582–1594. [CrossRef] [PubMed]
Karimi, A. , Navidbakhsh, M. , and Razaghi, R. , 2014, “ Plaque and Arterial Vulnerability Investigation in a Three-Layer Atherosclerotic Human Coronary Artery Using Computational Fluid-Structure Interaction Method,” J. Appl. Phys., 116(6), p. 064701.
Wood, S. A. , Strait, D. S. , Dumont, E. R. , Ross, C. F. , and Grosse, I. R. , 2011, “ The Effects of Modeling Simplifications on Craniofacial Finite Element Models: The Alveoli (Tooth Sockets) and Periodontal Ligaments,” J. Biomech., 44(10), pp. 1831–1838. [CrossRef] [PubMed]
Phillippi, J. A. , Pasta, S. , and Vorp, D. A. , 2011, “ Biomechanics and Pathobiology of Aortic Aneurysms,” Biomechanics and Mechanobiology of Aneurysms, Springer, Berlin, pp. 67–118.
Nathan, D. P. , Xu, C. , Gorman, J. H. , Fairman, R. M. , Bavaria, J. E. , Gorman, R. C. , Chandran, K. B. , and Jackson, B. M. , 2011, “ Pathogenesis of Acute Aortic Dissection: A Finite Element Stress Analysis,” Ann. Thorac. Surg., 91(2), pp. 458–463. [CrossRef] [PubMed]
Humphrey, J. D. , and Holzapfel, G. A. , 2012, “ Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms,” J. Biomech., 45(5), pp. 805–814. [CrossRef] [PubMed]
Hwang, E. , Hughes, R. E. , Palmer, M. L. , and Carpenter, J. E. , 2015, “ Effects of Biceps Tension on the Torn Superior Glenoid Labrum,” J. Orthop. Res., 33(10), pp. 1545–1551. [CrossRef] [PubMed]
Quental, C. , Folgado, J. , Monteiro, J. , and Sarmento, M. , 2016, “ Full-Thickness Tears of the Supraspinatus Tendon: A Three-Dimensional Finite Element Analysis,” J. Biomech., 49(16), pp. 3962–3970. [CrossRef] [PubMed]
Agarwal, B. , Broutman, L. , and Chandrashekhara, K. , 2006, Analysis and Performance of Fiber Composites, Wiley, Hoboken, NJ.
Matzenmiller, A. , Lubliner, J. , and Taylor, R. L. , 1995, “ A Constitutive Model for Anisotropic Damage in Fiber-Composites,” Mech. Mater., 20(2), pp. 125–152. [CrossRef]
Derrien, K. , Fitoussi, J. , Guo, G. , and Baptiste, D. , 2000, “ Prediction of the Effective Damage Properties and Failure Properties of Nonlinear Anisotropic Discontinuous Reinforced Composites,” Comput. Methods Appl. Mech. Eng., 185(2–4), pp. 93–107. [CrossRef]
Nuismer, R. J. , and Whitney, J. M. , 1975, “ Uniaxial Failure of Composite Laminates Containing Stress Concentrations,” Fract. Mech. Compos., 593, pp. 117–142.
Fuchs, C. , Bhattacharyya, D. , and Fakirov, S. , 2006, “ Microfibril Reinforced Polymer–Polymer Composites: Application of Tsai-Hill Equation to PP/PET Composites,” Compos. Sci. Technol., 66(16), pp. 3161–3171. [CrossRef]
Aktas, A. , and Karakuzu, R. , 1999, “ Failure Analysis of Two-Dimensional Carbon-Epoxy Composite Plate Pinned Joint,” Mech. Compos. Mater. Struct., 6(4), pp. 347–361. [CrossRef]
Tsai, S. W. , 1968, Fundamental Aspects of Fiber Reinforced Plastic Composites, Interscience, New York.
Hill, R. , 1950, The Mathematical Theory of Plasticity, Oxford University Press, New York.
Arola, D. , and Ramulu, M. , 1997, “ Orthogonal Cutting of Fiber-Reinforced Composites: A Finite Element Analysis,” Int. J. Mech. Sci., 39(5), pp. 597–613. [CrossRef]
Liu, J. Y. , 2007, “ Analysis of Off-Axis Tension Test of Wood Specimens,” Wood Fiber Sci., 34(2), pp. 205–211.
Woo, K. , and Whitcomb, J. , 1996, “ Three-Dimensional Failure Analysis of Plain Weave Textile Composites Using a Global/Local Finite Element Method,” J. Compos. Mater., 30(9), pp. 984–1003. [CrossRef]
Wagenseil, J. , and Mecham, R. , 2009, “ Vascular Extracellular Matrix and Arterial Mechanics,” Am. Physiol. Soc., 89(3), pp. 957–989.
Gasser, T. C. , Ogden, R. W. , and Holzapfel, G. A. , 2006, “ Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc., Interface, 3(6), pp. 15–35. [CrossRef]
Raghupathy, R. , Witzenburg, C. , Lake, S. P. , Sander, E. A. , and Barocas, V. H. , 2011, “ Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs,” ASME J. Biomech. Eng., 133(9), p. 91011. [CrossRef]
Witzenburg, C. M. , Dhume, R. Y. , Shah, S. B. , Korenczuk, C. E. , Wagner, H. P. , Alford, P. W. , and Barocas, V. H. , 2017, “ Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model,” ASME J. Biomech. Eng., 139(3), p. 31005. [CrossRef]
Gregory, D. E. , Veldhuis, J. H. , Horst, C. , Brodland, G. W. , and Callaghan, J. P. , 2011, “ Novel Lap Test Determines the Mechanics of Delamination Between Annular Lamellae of the Intervertebral Disc,” J. Biomech., 44(1), pp. 97–102. [CrossRef] [PubMed]
García-Herrera, C. M. , Atienza, J. M. , Rojo, F. J. , Claes, E. , Guinea, G. V. , Celentano, D. J. , García-Montero, C. , and Burgos, R. L. , 2012, “ Mechanical Behaviour and Rupture of Normal and Pathological Human Ascending Aortic Wall,” Med. Biol. Eng. Comput., 50(6), pp. 559–566. [CrossRef] [PubMed]
Iliopoulos, D. C. , Deveja, R. P. , Kritharis, E. P. , Perrea, D. , Sionis, G. D. , Toutouzas, K. , Stefanadis, C. , and Sokolis, D. P. , 2009, “ Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms,” Med. Eng. Phys., 31(1), pp. 1–9. [CrossRef] [PubMed]
Sokolis, D. P. , Kritharis, E. P. , and Iliopoulos, D. C. , 2012, “ Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms,” Med. Biol. Eng. Comput., 50(12), pp. 1227–1237. [CrossRef] [PubMed]
Maas, S. A. , Ellis, B. J. , Ateshian, G. A. , and Weiss, J. A. , 2012, “ FEBio: Finite Elements for Biomechanics,” ASME J. Biomech. Eng., 134(1), p. 11005. [CrossRef]
Narain, R. , Samii, A. , Pfaff, T. , and O'Brien, J. , 2014, “ ARCSim: Adaptive Refining and Coarsening Simulator,” University of California–Berkley, Berkley, CA, accessed Oct. 1, 2016, http://graphics.berkeley.edu/resources/ARCSim/
Narain, R. , Samii, A. , and O'Brien, J. F. , 2012, “ Adaptive Anisotropic Remeshing for Cloth Simulation,” ACM Trans. Graphics, 31(6), p. 147. [CrossRef]
Pfaff, T. , Narain, R. , De Joya, J. M. , and O'Brien, J. F. , 2014, “ Adaptive Tearing and Cracking of Thin Sheets,” ACM Trans. Graphics, 33(4), pp. 1–9. [CrossRef]
Mohan, D. , and Melvin, J. W. , 1983, “ Failure Properties of Passive Human Aortic Tissue. II—Biaxial Tension Tests,” J. Biomech., 16(1), pp. 31–44. [CrossRef] [PubMed]
Kim, J.-H. , Avril, S. , Duprey, A. , and Favre, J.-P. , 2012, “ Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique,” Biomech. Model. Mechanobiol., 11(6), pp. 841–853. [CrossRef] [PubMed]
Teng, Z. , Feng, J. , Zhang, Y. , Huang, Y. , Sutcliffe, M. P. F. , Brown, A. J. , Jing, Z. , Gillard, J. H. , and Lu, Q. , 2015, “ Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study,” Ann. Biomed. Eng., 43(11), pp. 2745–2759. [CrossRef] [PubMed]
Shah, S. , Witzenburg, C. , Hadi, M. F. , Wagner, H. , Goodrich, J. , Alford, P. , and Barocas, V. H. , 2014, “ Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model,” ASME J. Biomech. Eng., 136(2), pp. 4–10. [CrossRef]
Gómez-Benito, M. J. , García-Aznar, J. M. , and Doblaré, M. , 2005, “ Finite Element Prediction of Proximal Femoral Fracture Patterns Under Different Loads,” ASME J. Biomech. Eng., 127(1), pp. 9–14. [CrossRef]
Pietruszczak, S. , Inglis, D. , and Pande, G. N. , 1999, “ A Fabric-Dependent Fracture Criterion for Bone,” J. Biomech., 32(10), pp. 1071–1079. [CrossRef] [PubMed]
Cezayirlioglu, H. , Bahniuk, E. , Davy, D. T. , and Heiple, K. G. , 1985, “ Anisotropic Yield Behavior of Bone Under Combined Axial Force and Torque,” J. Biomech., 18(1), pp. 61–69. [CrossRef] [PubMed]
Feerick, E. M. , Liu, X. C. , and McGarry, P. , 2013, “ Anisotropic Mode-Dependent Damage of Cortical Bone Using the Extended Finite Element Method (XFEM),” J. Mech. Behav. Biomed. Mater., 20, pp. 77–89. [CrossRef] [PubMed]
Cowin, S. C. , 1986, “ Fabric Dependence of an Anisotropic Strength Criterion,” Mech. Mater., 5(3), pp. 251–260. [CrossRef]
Tsai, S. W. , and Wu, E. M. , 1971, “ A General Theory of Strength for Anisotropic Materials,” J. Compos. Mater., 5(1), pp. 58–80. [CrossRef]
Humphrey, J. D. , and Yin, F. C. P. , 1987, “ On Constitutive Relations and Finite Deformations of Passive Cardiac Tissue—I. A Pseudostrain-Energy Function,” ASME J. Biomech. Eng., 109(4), pp. 298–304. [CrossRef]
Cortes, D. H. , Lake, S. P. , Kadlowec, J. A. , Soslowsky, L. J. , and Elliott, D. M. , 2010, “ Characterizing the Mechanical Contribution of Fiber Angular Distribution in Connective Tissue: Comparison of Two Modeling Approaches,” Biomech. Model. Mechanobiol., 9(5), pp. 651–658. [CrossRef] [PubMed]
Sacks, M. S. , 2003, “ Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues,” ASME J. Biomech. Eng., 125(2), pp. 280–287. [CrossRef]
Pal, S. , Tsamis, A. , Pasta, S. , D'Amore, A. , Gleason, T. G. , Vorp, D. A. , and Maiti, S. , 2014, “ A Mechanistic Model on the Role of ‘Radially-Running’ Collagen Fibers on Dissection Properties of Human Ascending Thoracic Aorta,” J. Biomech., 47(5), pp. 981–988. [CrossRef] [PubMed]
Sommer, G. , Gasser, T. C. , Regitnig, P. , Auer, M. , and Holzapfel, G. A. , 2008, “ Dissection Properties of the Human Aortic Media: An Experimental Study,” ASME J. Biomech. Eng., 130(2), p. 21007. [CrossRef]
Nagel, T. M. , Hadi, M. F. , Claeson, A. A. , Nuckley, D. J. , and Barocas, V. H. , 2014, “ Combining Displacement Field and Grip Force Information to Determine Mechanical Properties of Planar Tissue With Complicated Geometry,” ASME J. Biomech. Eng., 136(11), p. 114501. [CrossRef]
Baek, S. , Gleason, R. L. , Rajagopal, K. R. , and Humphrey, J. D. , 2007, “ Theory of Small on Large: Potential Utility in Computations of Fluid–Solid Interactions in Arteries,” Comput. Methods Appl. Mech. Eng., 196(31–32), pp. 3070–3078. [CrossRef]
Tong, J. , Cheng, Y. , and Holzapfel, G. A. , 2016, “ Mechanical Assessment of Arterial Dissection in Health and Disease: Advancements and Challenges,” J. Biomech., 49(12), pp. 2366–2373. [CrossRef] [PubMed]
Balakhovsky, K. , Jabareen, M. , and Volokh, K. Y. , 2014, “ Modeling Rupture of Growing Aneurysms,” J. Biomech., 47(3), pp. 653–658. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Outlines of dogbone sample geometries are shown along the axial length of the vessel (not drawn to scale). Angles were taken to be relative to the circumferential orientation (0 deg). Scale bar shown in white. (b) A representative stress–stretch curve for one uniaxial sample, with corresponding tissue images during testing. (c) Outline of the shear lap sample geometry (not drawn to scale). (d) A representative force–displacement curve for one shear lap sample. Failure initiated near the overlap region of the sample and propagated across the overlap region (lap across failure).

Grahic Jump Location
Fig. 2

Finite element mesh for one shear lap sample with applied boundary conditions. The nodes on the right face were fixed in all directions, while the nodes on the left face were fixed in the vertical and out of plane directions, and given prescribed displacements based on the experiment.

Grahic Jump Location
Fig. 3

Failure stresses at each sample angle (n > 9 for each angle). ANOVA showed that change in sample angle had a statistically significant effect on failure stress (p = 0.0003). Error bars show 95%CI's.

Grahic Jump Location
Fig. 4

Experiment (points) and failure criteria fits. (a) The von Mises failure criterion (solid green line, 95%CI shaded) fit to the mean peak stresses does not capture the anisotropic response of the tissue. (b) Tsai–Hill maximum-work theory model (solid line, 95%CI shaded). Black error bars indicate 95%CI's on experimental points.

Grahic Jump Location
Fig. 5

Strain tracking results from one shear lap sample. Large shear strains (∼40%) were exhibited in the overlap region of the sample.

Grahic Jump Location
Fig. 6

(a) Representative force–displacement curve for one shear lap sample (black dots), with a simulation force–displacement curve (red line) using optimized parameters. (b) Failure propagation for one shear lap sample, shown at three different displacements. The onset of failure began near the overlap region of the sample (indicated by the arrow) and propagated across the center (lap across failure). (c) Failure simulation using the Tsai–Hill criterion. Propagation occurred through the overlap region of the sample and eventually tore in the overlap region (lap across failure). (d) Failure simulation using the von Mises criterion, where σyield=σavg. Failure propagated across the sample arm and tore the arm off (arm failure). Failure simulations are shown at similar failure points to the experiment but not at the same displacement as the experiment. (See supplementary videos, which are available under the “Supplemental Materials” tab for this paper on the ASME Digital Collection.)

Grahic Jump Location
Fig. 7

Area fraction for the experimental shear lap samples, along with the Tsai–Hill and von Mises (avg) failure cases. Averages shown with 95%CI bars.

Grahic Jump Location
Fig. 8

(a) One experimental sample immediately prior to total failure. (b) Sample in the undeformed domain. White dotted line indicates calculated crack propagation location and direction in undeformed domain. Lap arm failure occurred in the experimental sample. (c) and (d) Typical failure comparison between the Tsai–Hill and von Mises failure criteria in the undeformed domain. The Tsai–Hill failure criterion predicted lap arm failure, while the von Mises failure criterion predicted arm failure.

Grahic Jump Location
Fig. 9

Average failure location (dots) and crack propagation angle (solid line) with 95%CI (dotted lines and shaded region) for experimental samples, Tsai–Hill, and von Mises (avg) failure simulations. Shown in black is the average shear lap sample geometry calculated using radius-based averaging from sample outlines (linear approximation was used for noisy regions of the average sample outline). Samples were rotated (if needed) so that failure occurred in the left arm for comparison purposes.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In