Research Papers

Modeling of Stiffness and Strength of Bone at Nanoscale

[+] Author and Article Information
Diab W. Abueidda

Department of Mechanical
Science and Engineering,
University of Illinois at Urbana-Champaign,
Mechanical Engineering Building,
1206 W Green Street,
Urbana, IL 61801
e-mail: diababueidda@gmail.com

Fereshteh A. Sabet

Department of Mechanical
Science and Engineering,
University of Illinois at Urbana-Champaign,
Mechanical Engineering Building,
1206 W Green Street,
Urbana, IL 61801
e-mail: fereshteh.sabet@gmail.com

Iwona M. Jasiuk

Department of Mechanical
Science and Engineering,
University of Illinois at Urbana-Champaign,
Mechanical Engineering Building,
1206 W Green Street,
Urbana, IL 61801
e-mail: ijasiuk@illinois.edu

1Corresponding author.

Manuscript received December 5, 2016; final manuscript received March 16, 2017; published online April 6, 2017. Assoc. Editor: David Corr.

J Biomech Eng 139(5), 051006 (Apr 06, 2017) (10 pages) Paper No: BIO-16-1496; doi: 10.1115/1.4036314 History: Received December 05, 2016; Revised March 16, 2017

Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen–mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Rho, J.-Y. , Kuhn-Spearing, L. , and Zioupos, P. , 1998, “ Mechanical Properties and the Hierarchical Structure of Bone,” Med. Eng. Phys., 20(2), pp. 92–102. [CrossRef] [PubMed]
Sabet, F. A. , Najafi, A. R. , Hamed, E. , and Jasiuk, I. , 2016, “ Modelling of Bone Fracture and Strength at Different Length Scales: A Review,” Interface Focus, 6(1), p. 20150055. [CrossRef] [PubMed]
Weiner, S. , and Traub, W. , 1992, “ Bone Structure—From Angstroms to Microns,” Faseb J., 6(3), pp. 879–885. [PubMed]
Olszta, M. J. , Cheng, X. , Jee, S. S. , Kumar, R. , Kim, Y.-Y. , Kaufman, M. J. , Douglas, E. P. , and Gower, L. B. , 2007, “ Bone Structure and Formation: A New Perspective,” Mater. Sci. Eng. R: Rep., 58(3–5), pp. 77–116. [CrossRef]
Fratzl, P. , 2008, Collagen: Structure and Mechanics, Springer Science & Business Media, New York.
Hamed, E. , and Jasiuk, I. , 2013, “ Multiscale Damage and Strength of Lamellar Bone Modeled by Cohesive Finite Elements,” J. Mech. Behav. Biomed. Mater., 28, pp. 94–110. [CrossRef] [PubMed]
Buehler, M. J. , 2008, “ Nanomechanics of Collagen Fibrils Under Varying Cross-Link Densities: Atomistic and Continuum Studies,” J. Mech. Behav. Biomed. Mater., 1(1), pp. 59–67. [CrossRef] [PubMed]
Weiner, S. , and Wagner, H. D. , 1998, “ The Material Bone: Structure Mechanical Function Relations,” Annu. Rev. Mater. Sci., 28(1), pp. 271–298. [CrossRef]
Buehler, M. J. , 2007, “ Molecular Nanomechanics of Nascent Bone: Fibrillar Toughening by Mineralization,” Nanotechnology, 18(29), p. 295102. [CrossRef]
Ritchie, R. O. , Buehler, M. J. , and Hansma, P. , 2009, “ Plasticity and Toughness in Bone,” Phys. Today, 62(6), pp. 41–47. [CrossRef]
Hamed, E. , and Jasiuk, I. , 2012, “ Elastic Modeling of Bone at Nanostructural Level,” Mater. Sci. Eng. R-Rep., 73(3–4), pp. 27–49. [CrossRef]
Tao, J. , Battle, K. C. , Pan, H. , Salter, E. A. , Chien, Y.-C. , Wierzbicki, A. , and De Yoreo, J. J. , 2015, “ Energetic Basis for the Molecular-Scale Organization of Bone,” Proc. Natl. Acad. Sci., 112(2), pp. 326–331. [CrossRef]
Schwarcz, H. P. , 2015, “ The Ultrastructure of Bone as Revealed in Electron Microscopy of Ion-Milled Sections,” Semin. Cell Dev. Biol., 46, pp. 44–50. [CrossRef] [PubMed]
Eppell, S. J. , Tong, W. , Katz, J. L. , Kuhn, L. , and Glimcher, M. J. , 2001, “ Shape and Size of Isolated Bone Mineralites Measured Using Atomic Force Microscopy,” J. Orthop. Res., 19(6), pp. 1027–1034. [CrossRef] [PubMed]
Rinnerthaler, S. , Roschger, P. , Jakob, H. F. , Nader, A. , Klaushofer, K. , and Fratzl, P. , 1999, “ Scanning Small Angle X-Ray Scattering Analysis of Human Bone Sections,” Calcif. Tissue Int., 64(5), pp. 422–429. [CrossRef] [PubMed]
McNally, E. A. , Schwarcz, H. P. , Botton, G. A. , and Arsenault, A. L. , 2012, “ A Model for the Ultrastructure of Bone Based on Electron Microscopy of Ion-Milled Sections,” PLoS One, 7(1), p. e29258. [CrossRef] [PubMed]
Schwarcz, H. P. , McNally, E. A. , and Botton, G. A. , 2014, “ Dark-Field Transmission Electron Microscopy of Cortical Bone Reveals Details of Extrafibrillar Crystals,” J. Struct. Biol., 188(3), pp. 240–248. [CrossRef] [PubMed]
Siperko, L. M. , and Landis, W. J. , 2001, “ Aspects of Mineral Structure in Normally Calcifying Avian Tendon,” J. Struct. Biol., 135(3), pp. 313–320. [CrossRef] [PubMed]
Weiner, S. , Arad, T. , and Traub, W. , 1991, “ Crystal Organization in Rat Bone Lamellae,” FEBS Lett., 285(1), pp. 49–54. [CrossRef] [PubMed]
Arsenault, A. L. , 1989, “ A Comparative Electron Microscopic Study of Apatite Crystals in Collagen Fibrils of Rat Bone, Dentin and Calcified Turkey Leg Tendons,” Bone Mineral, 6(2), pp. 165–177. [CrossRef] [PubMed]
Robinson, R. A. , 1952, “ An Electron-Microscopic Study of the Crystalline Inorganic Component of Bone and Its Relationship to the Organic Matrix,” J. Bone Joint Surg., 34(2), pp. 389–476. [CrossRef]
Rubin, M. A. , Jasiuk, I. , Taylor, J. , Rubin, J. , Ganey, T. , and Apkarian, R. P. , 2003, “ TEM Analysis of the Nanostructure of Normal and Osteoporotic Human Trabecular Bone,” Bone, 33(3), pp. 270–282. [CrossRef] [PubMed]
McEwen, B. F. , Song, M. J. , and Landis, W. J. , 1991, “ Quantitative Determination of the Mineral Distribution in Different Collagen Zones of Calcifying Tendon Using High Voltage Electron Microscopic Tomography,” J. Comput.-Assisted Microsc., 3(4), pp. 201–210.
Bonar, L. C. , Lees, S. , and Mook, H. A. , 1985, “ Neutron Diffraction Studies of Collagen in Fully Mineralized Bone,” J. Mol. Biol., 181(2), pp. 265–270. [CrossRef] [PubMed]
Sasaki, N. , Tagami, A. , Goto, T. , Taniguchi, M. , Nakata, M. , and Hikichi, K. , 2002, “ Atomic Force Microscopic Studies on the Structure of Bovine Femoral Cortical Bone at the Collagen Fibril-Mineral Level,” J. Mater. Sci.: Mater. Med., 13(3), pp. 333–337. [CrossRef] [PubMed]
Nair, A. K. , Gautieri, A. , and Buehler, M. J. , 2014, “ Role of Intrafibrillar Collagen Mineralization in Defining the Compressive Properties of Nascent Bone,” Biomacromolecules, 15(7), pp. 2494–2500. [CrossRef] [PubMed]
Lees, S. , and Prostak, K. , 1988, “ The Locus of Mineral Crystallites in Bone,” Connect. Tissue Res., 18(1), pp. 41–54. [CrossRef] [PubMed]
Lees, S. , Prostak, K. , Ingle, V. K. , and Kjoller, K. , 1994, “ The Loci of Mineral in Turkey Leg Tendon as Seen by Atomic Force Microscope and Electron Microscopy,” Calcif. Tissue Int., 55(3), pp. 180–189. [CrossRef] [PubMed]
Prostak, K. S. , and Lees, S. , 1996, “ Visualization of Crystal-Matrix Structure. In Situ Demineralization of Mineralized Turkey Leg Tendon and Bone,” Calcif. Tissue Int., 59(6), pp. 474–479. [CrossRef] [PubMed]
Nikolov, S. , and Raabe, D. , 2008, “ Hierarchical Modeling of the Elastic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization,” Biophys. J., 94(11), pp. 4220–4232. [CrossRef] [PubMed]
Hellmich, C. , Barthélémy, J.-F. , and Dormieux, L. , 2004, “ Mineral–Collagen Interactions in Elasticity of Bone Ultrastructure—A Continuum Micromechanics Approach,” Eur. J. Mech. A, 23(5), pp. 783–810. [CrossRef]
Chen, P.-Y. , Toroian, D. , Price, P. A. , and McKittrick, J. , 2011, “ Minerals Form a Continuum Phase in Mature Cancellous Bone,” Calcif. Tissue Int., 88(5), pp. 351–361. [CrossRef] [PubMed]
Hamed, E. , Novitskaya, E. , Li, J. , Chen, P.-Y. , Jasiuk, I. , and McKittrick, J. , 2012, “ Elastic Moduli of Untreated, Demineralized and Deproteinized Cortical Bone: Validation of a Theoretical Model of Bone as an Interpenetrating Composite Material,” Acta Biomater., 8(3), pp. 1080–1092. [CrossRef] [PubMed]
Jäger, I. , and Fratzl, P. , 2000, “ Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles,” Biophys. J., 79(4), pp. 1737–1746. [CrossRef] [PubMed]
Siegmund, T. , Allen, M. R. , and Burr, D. B. , 2008, “ Failure of Mineralized Collagen Fibrils: Modeling the Role of Collagen Cross-Linking,” J. Biomech., 41(7), pp. 1427–1435. [CrossRef] [PubMed]
Ji, B. , and Gao, H. , 2004, “ Mechanical Properties of Nanostructure of Biological Materials,” J. Mech. Phys. Solids, 52(9), pp. 1963–1990. [CrossRef]
Pidaparti, R. M. V. , Chandran, A. , Takano, Y. , and Turner, C. H. , 1996, “ Bone Mineral Lies Mainly Outside Collagen Fibrils: Predictions of a Composite Model for Osternal Bone,” J. Biomech., 29(7), pp. 909–916. [CrossRef] [PubMed]
Duer, M. J. , 2015, “ The Contribution of Solid-State NMR Spectroscopy to Understanding Biomineralization: Atomic and Molecular Structure of Bone,” J. Magn. Reson., 253, pp. 98–110. [CrossRef] [PubMed]
Libonati, F. , Nair, A. K. , Vergani, L. , and Buehler, M. J. , 2014, “ Mechanics of Collagen–Hydroxyapatite Model Nanocomposites,” Mech. Res. Commun., 58, pp. 17–23. [CrossRef]
Katz, J. L. , and Ukraincik, K. , 1971, “ On the Anisotropic Elastic Properties of Hydroxyapatite,” J. Biomech., 4(3), pp. 221–227. [CrossRef] [PubMed]
Vercher-Martínez, A. , Giner, E. , Arango, C. , and Fuenmayor, F. J. , 2015, “ Influence of the Mineral Staggering on the Elastic Properties of the Mineralized Collagen Fibril in Lamellar Bone,” J. Mech. Behav. Biomed. Mater., 42, pp. 243–256. [CrossRef] [PubMed]
Sherman, V. R. , Yang, W. , and Meyers, M. A. , 2015, “ The Materials Science of Collagen,” J. Mech. Behav. Biomed. Mater., 52, pp. 22–50. [CrossRef] [PubMed]
Luo, Q. , Nakade, R. , Dong, X. , Rong, Q. , and Wang, X. , 2011, “ Effect of Mineral–Collagen Interfacial Behavior on the Microdamage Progression in Bone Using a Probabilistic Cohesive Finite Element Model,” J. Mech. Behav. Biomed. Mater., 4(7), pp. 943–952. [CrossRef] [PubMed]
Bhowmik, R. , Katti, K. S. , and Katti, D. R. , 2007, “ Mechanics of Molecular Collagen is Influenced by Hydroxyapatite in Natural Bone,” J. Mater. Sci., 42(21), pp. 8795–8803. [CrossRef]
Bhowmik, R. , Katti, K. S. , and Katti, D. R. , 2009, “ Mechanisms of Load-Deformation Behavior of Molecular Collagen in Hydroxyapatite-Tropocollagen Molecular System: Steered Molecular Dynamics Study,” J. Eng. Mech., 135(5), pp. 413–421. [CrossRef]
Fritsch, A. , Hellmich, C. , and Dormieux, L. , 2009, “ Ductile Sliding Between Mineral Crystals Followed by Rupture of Collagen Crosslinks: Experimentally Supported Micromechanical Explanation of Bone Strength,” J. Theor. Biol., 260(2), pp. 230–252. [CrossRef] [PubMed]
Ji, B. , 2008, “ A Study of the Interface Strength Between Protein and Mineral in Biological Materials,” J. Biomech., 41(2), pp. 259–266. [CrossRef] [PubMed]
Wilson, E. E. , Awonusi, A. , Morris, M. D. , Kohn, D. H. , Tecklenburg, M. M. , and Beck, L. W. , 2005, “ Highly Ordered Interstitial Water Observed in Bone by Nuclear Magnetic Resonance,” J. Bone Mineral Res., 20(4), pp. 625–634. [CrossRef]
Tai, K. , Ulm, F.-J. , and Ortiz, C. , 2006, “ Nanogranular Origins of the Strength of Bone,” Nano Lett., 6(11), pp. 2520–2525. [CrossRef] [PubMed]
ABAQUS, 2016, “ ABAQUS Documentation,” Dassault Systèmes, Providence, RI.
Taqa, A. G. A. , Al-Rub, R. K. A. , Senouci, A. , Al-Nuaimi, N. , and Bani-Hani, K. A. , 2015, “ The Effect of Fiber Geometry and Interfacial Properties on the Elastic Properties of Cementitious Nanocomposite Material,” J. Nanomater., 2015, p. 283579.
Yuan, F. , Stock, S. R. , Haeffner, D. R. , Almer, J. D. , Dunand, D. C. , and Brinson, L. C. , 2011, “ A New Model to Simulate the Elastic Properties of Mineralized Collagen Fibril,” Biomech. Model. Mechanobiol., 10(2), pp. 147–160. [CrossRef] [PubMed]
Furin, I. , Pastrama, M.-I. , Kariem, H. , Luczynski, K. W. , Lahayne, O. , and Hellmich, C. , 2016, “ A New Nanoindentation Protocol for Identifying the Elasticity of Undamaged Extracellular Bone Tissue,” MRS Adv., 1(11), pp. 693–704. [CrossRef]
Morin, C. , and Hellmich, C. , 2014, “ A Multiscale Poromicromechanical Approach to Wave Propagation and Attenuation in Bone,” Ultrasonics, 54(5), pp. 1251–1269. [CrossRef] [PubMed]
Hellmich, C. , and Ulm, F.-J. , 2002, “ Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues,” J. Eng. Mech., 128(8), pp. 898–908. [CrossRef]
Fritsch, A. , and Hellmich, C. , 2007, “ ‘Universal’ Microstructural Patterns in Cortical and Trabecular, Extracellular and Extravascular Bone Materials: Micromechanics-Based Prediction of Anisotropic Elasticity,” J. Theor. Biol., 244(4), pp. 597–620. [CrossRef] [PubMed]
Ghanbari, J. , and Naghdabadi, R. , 2009, “ Nonlinear Hierarchical Multiscale Modeling of Cortical Bone Considering Its Nanoscale Microstructure,” J. Biomech., 42(10), pp. 1560–1565. [CrossRef] [PubMed]
Luczynski, K. W. , Steiger-Thirsfeld, A. , Bernardi, J. , Eberhardsteiner, J. , and Hellmich, C. , 2015, “ Extracellular Bone Matrix Exhibits Hardening Elastoplasticity and More Than Double Cortical Strength: Evidence From Homogeneous Compression of Non-Tapered Single Micron-Sized Pillars Welded to a Rigid Substrate,” J. Mech. Behav. Biomed. Mater., 52, pp. 51–62. [CrossRef] [PubMed]
Pradhan, S. M. , Katti, K. S. , and Katti, D. R. , 2014, “ Multiscale Model of Collagen Fibril in Bone: Elastic Response,” J. Eng. Mech., 140(3), pp. 454–461. [CrossRef]
Gupta, H. S. , Seto, J. , Wagermaier, W. , Zaslansky, P. , Boesecke, P. , and Fratzl, P. , 2006, “ Cooperative Deformation of Mineral and Collagen in Bone at the Nanoscale,” Proc. Natl. Acad. Sci., 103(47), pp. 17741–17746. [CrossRef]
Barkaoui, A. , and Hambli, R. , 2011, “ Finite Element 3D Modeling of Mechanical Behavior of Mineralized Collagen Microfibrils,” J. Appl. Biomater. Biomech., 9(3), pp. 199–205. [PubMed]
Barkaoui, A. , and Hambli, R. , 2014, “ Nanomechanical Properties of Mineralised Collagen Microfibrils Based on Finite Elements Method: Biomechanical Role of Cross-Links,” Comput. Methods Biomech. Biomed. Eng., 17(14), pp. 1590–1601. [CrossRef]
Barkaoui, A. , Tlili, B. , Vercher-Martínez, A. , and Hambli, R. , 2016, “ A Multiscale Modelling of Bone Ultrastructure Elastic Proprieties Using Finite Elements Simulation and Neural Network Method,” Comput. Methods Programs Biomed., 134, pp. 69–78. [CrossRef] [PubMed]
Hambli, R. , and Barkaoui, A. , 2012, “ Physically Based 3D Finite Element Model of a Single Mineralized Collagen Microfibril,” J. Theor. Biol., 301, pp. 28–41. [CrossRef] [PubMed]
Hamed, E. , Lee, Y. , and Jasiuk, I. , 2010, “ Multiscale Modeling of Elastic Properties of Cortical Bone,” Acta Mech., 213(1–2), pp. 131–154. [CrossRef]
De Simone, A. , Vitagliano, L. , and Berisio, R. , 2008, “ Role of Hydration in Collagen Triple Helix Stabilization,” Biochem. Biophys. Res. Commun., 372(1), pp. 121–125. [CrossRef] [PubMed]
Bhowmik, R. , Katti, K. S. , and Katti, D. R. , 2006, “ Influence of Mineral-Polymer Interactions on Molecular Mechanics of Polymer in Composite Bone Biomaterials,” MRS Proc., 978.
Posner, A. S. , and Beebe, R. A. , 1975, “ The Surface Chemistry of Bone Mineral and Related Calcium Phosphates,” Semin. Arthritis Rheum., 4(3), pp. 267–291. [CrossRef] [PubMed]
Zhang, D. , Chippada, U. , and Jordan, K. , 2007, “ Effect of the Structural Water on the Mechanical Properties of Collagen-Like Microfibrils: A Molecular Dynamics Study,” Ann. Biomed. Eng., 35(7), pp. 1216–1230. [CrossRef] [PubMed]
Dubey, D. K. , and Tomar, V. , 2009, “ Role of the Nanoscale Interfacial Arrangement in Mechanical Strength of Tropocollagen–Hydroxyapatite-Based Hard Biomaterials,” Acta Biomater., 5(7), pp. 2704–2716. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Geometric representations of the two models considered in this study: (a) a staggered arrangement of HA inside collagen fibrils (image is taken from Ref. [34]) and (b) the HA minerals residing outside collagen fibrils (image is taken from Ref. [17])

Grahic Jump Location
Fig. 2

Schematic of Jäger and Fratzl model (model I) [34]: (a) plane stress/strain cases and (b) axisymmetric case

Grahic Jump Location
Fig. 3

Model for bone at the nanoscale assuming minerals lie outside collagen fibrils (model II). The model is investigated under several arrangements and assumptions: (a) plane stress/strain and no matrix, (b) axisymmetric and no matrix, (c) plane stress/strain and matrix, and (d) axisymmetric and matrix is used to separate the multiple sentences.

Grahic Jump Location
Fig. 4

Schematic illustration of traction-separation law: (a) pure normal deformation (opening mode) and (b) pure tangential deformation (sliding mode)

Grahic Jump Location
Fig. 5

Stress–strain curves of model I (uniaxial longitudinal tensile loading) at different fracture energies under (a) plane stress, (b) plane strain, and (c) axisymmetric assumption. The values in the legends are in J/m2. The strength of the interface is 64 MPa.

Grahic Jump Location
Fig. 6

Effect of fracture energy on the strength of model I for uniaxial tensile loading. The strength of the interface is 64 MPa.

Grahic Jump Location
Fig. 7

Von Mises stress contours for model I: (a) plane strain, (b) plane stress, and (c) axisymmetric cases under uniaxial tensile loading. The strength of the interface is 64 MPa while the fracture energy is 0.2 J/m2 and the applied strain is 2%. The unit of the stress values is GPa.

Grahic Jump Location
Fig. 8

Stress–strain curves of model II. The interfacial fracture energy is 0.2 J/m2 while the strength of the interface is 64 MPa.

Grahic Jump Location
Fig. 9

Longitudinal tensile elastic modulus of model II under different geometrical conditions. The strength of the interface is 64 MPa, and the fracture energy is 0.2 J/m2.

Grahic Jump Location
Fig. 10

Effect of fracture energy on the longitudinal tensile strength of model II. The strength of the interface is 64 MPa.

Grahic Jump Location
Fig. 11

Effect of the interfacial strength on the longitudinal tensile strength of model II. The interfacial fracture energy is 0.2 J/m2.

Grahic Jump Location
Fig. 12

Von Mises stress contours for model II: (a) plane stress with matrix, (b) plane stress without matrix, (c) axisymmetric with matrix, and (d) axisymmetric without matrix. The strength of the interface is 64 MPa while the fracture energy is 0.2 J/m2 and the applied strain is 0.5%. The unit of the stress values is GPa.

Grahic Jump Location
Fig. 13

Comparison between model I and model II. The strength of the interface is 64 MPa while the fracture energy is 0.2 J/m2.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In