0
Technical Brief

Male and Female Cervical Spine Biomechanics and Anatomy: Implication for Scaling Injury Criteria

[+] Author and Article Information
Narayan Yoganandan

Professor
Department of Neurosurgery,
Medical College of Wisconsin,
Milwaukee, WI 53226;
Department of Orthopaedic Surgery,
Chair of Biomedical Engineering,
Medical College of Wisconsin,
Milwaukee, WI 53226
e-mail: yoga@mcw.edu

Cameron R. Bass

Department of Biomedical Engineering,
Duke University,
Raleigh, NC 27708

Liming Voo

Johns Hopkins University Applied Physics Laboratory,
Laurel, MD 20723

Frank A. Pintar

Department of Neurosurgery,
Medical College of Wisconsin,
Milwaukee, WI 53226

1Corresponding author.

Manuscript received November 28, 2016; final manuscript received March 15, 2017; published online April 6, 2017. Assoc. Editor: Joel D Stitzel.This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government's contributions.

J Biomech Eng 139(5), 054502 (Apr 06, 2017) (5 pages) Paper No: BIO-16-1480; doi: 10.1115/1.4036313 History: Received November 28, 2016; Revised March 15, 2017

There is an increased need to develop female-specific injury criteria and anthropomorphic test devices (dummies) for military and automotive environments, especially as women take occupational roles traditionally reserved for men. Although some exhaustive reviews on the biomechanics and injuries of the human spine have appeared in clinical and bioengineering literatures, focus has been largely ignored on the difference between male and female cervical spine responses and characteristics. Current neck injury criteria for automotive dummies for assessing crashworthiness and occupant safety are obtained from animal and human cadaver experiments, computational modeling, and human volunteer studies. They are also used in the military. Since the average human female spines are smaller than average male spines, metrics specific to the female population may be derived using simple geometric scaling, based on the assumption that male and female spines are geometrically scalable. However, as described in this technical brief, studies have shown that the biomechanical responses between males and females do not obey strict geometric similitude. Anatomical differences in terms of the structural component geometry are also different between the two cervical spines. Postural, physiological, and motion responses under automotive scenarios are also different. This technical brief, focused on such nonuniform differences, underscores the need to conduct female spine-specific evaluations/experiments to derive injury criteria for this important group of the population.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Clark, C. R. , and Benzel, E. C. , 2005, The Cervical Spine, Lippincott Williams & Wilkins, Baltimore, MD.
Yoganandan, N. , Nahum, A. M. , and Melvin, J. W. , eds., 2014, Accidental Injury: Biomechanics and Prevention, Springer, New York.
Yoganandan, N. , Myklebust, J. B. , Ray, G. , and Sances, A., Jr. , 1987, “ Mathematical and Finite Element Analysis of Spine Injuries,” Crit. Rev. Biomed. Eng., 15(1), pp. 29–93. [PubMed]
Myers, B. S. , and Winkelstein, B. A. , 1995, “ Epidemiology, Classification, Mechanism, and Tolerance of Human Cervical Spine Injuries,” Crit. Rev. Biomed. Eng., 23(5–6), pp. 307–409. [CrossRef] [PubMed]
Yoganandan, N. , Dickman, C. A. , and Benzel, E. C. , 2013, “ Practical Anatomy and Fundamental Biomechanics,” Spine Surgery, E. C. Benzel , ed., Elsevier, New York, pp. 267–289.
Bass, C. , Donnellan, L. , Salzar, R. S. , Lucas, S. , Folk, B. , Davis, M. , Rafaels, K. A. , Planchak, C. , Meyerhoff, K. , Ziemba, A. , and Alem, N. , 2006, “ A New Neck Injury Criterion in Combined Vertical/Frontal Crashes With Head Supported Mass,” International Research Council on the Biomechanics of Impact (IRCOBI), Madrid, Spain, Sept. 20–22, pp. 75–91.
Maiman, D. J. , Sances, A., Jr. , Myklebust, J. B. , Larson, S. J. , Houterman, C. , Chilbert, M. , and El-Ghatit, A. Z. , 1983, “ Compression Injuries of the Cervical Spine: A Biomechanical Analysis,” Neurosurgery, 13(3), pp. 254–260. [CrossRef] [PubMed]
McElhaney, J. H. , Dougherty, B. J. , Paver, J. G. , Myers, B. S. , and Gray, L. , 1988, “ Combined Bending and Axial Loading Responses of the Human Cervical Spine,” SAE Paper No. 881709.
McElhaney, J. H. , Paver, J. G. , McCrackin, H. J. , and Maxwell, G. M. , 1983, “ Cervical Spine Compression Responses,” SAE Paper No. 831615.
Nightingale, R. W. , Carol Chancey, V. , Ottaviano, D. , Luck, J. F. , Tran, L. , Prange, M. , and Myers, B. S. , 2007, “ Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments,” J. Biomech., 40(3), pp. 535–542. [CrossRef] [PubMed]
Nightingale, R. W. , McElhaney, J. H. , Richardson, W. J. , Best, T. M. , and Myers, B. S. , 1996, “ Experimental Impact Injury to the Cervical Spine: Relating Motion of the Head and the Mechanism of Injury,” J. Bone Joint Surg. Am., 78(3), pp. 412–421. [CrossRef] [PubMed]
Nightingale, R. W. , McElhaney, J. H. , Richardson, W. J. , and Myers, B. S. , 1996, “ Dynamic Responses of the Head and Cervical Spine to Axial Impact Loading,” J. Biomech., 29(3), pp. 307–318. [CrossRef] [PubMed]
Nightingale, R. W. , Myers, B. S. , and Yoganandan, N. , 2014, “ Neck Injury Biomechanics,” Accidental Injury: Biomechanics and Prevention, N. Yoganandan , A. M. Nahum , and J. W. Melvin , eds., Springer, New York, pp. 259–308.
Nightingale, R. W. , Winkelstein, B. A. , Knaub, K. E. , Richardson, W. J. , Luck, J. F. , and Myers, B. S. , 2002, “ Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension,” J. Biomech., 35(6), pp. 725–732. [CrossRef] [PubMed]
Pintar, F. A. , Yoganandan, N. , Voo, L. , Cho, M. , and Maiman, D. J. , 1998, “ Mechanisms of Hyperflexion Cervical Spine Injury,” International Conference on the Biomechanics of Impact (IRCOBI), Gothenburg, Sweden, Sept. 16–18, pp. 249–260.
Yoganandan, N. , Pintar, F. , and Cusick, J. F. , 1997, “ Biomechanics of Compression-Extension Injuries to the Cervical Spine,” 41st Association for the Advancement of Automotive Engineering, Orlando, FL, Nov. 10–11, pp. 331–344.
Yoganandan, N. , Pintar, F. A. , Arnold, P. , Reinartz, J. , Cusick, J. F. , Maiman, D. J. , and Sances, A., Jr. , 1994, “ Continuous Motion Analysis of the Head-Neck Complex Under Impact,” J. Spinal Disord., 7(5), pp. 420–428. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Sances, A., Jr. , and Maiman, D. J. , 1991, “ Strength and Motion Analysis of the Human Head-Neck Complex,” J. Spinal Disord., 4(1), pp. 73–85. [PubMed]
Myers, B. S. , McElhaney, J. H. , Doherty, B. J. , Paver, J. G. , and Gray, L. , 1991, “ The Role of Torsion in Cervical Spine Trauma,” Spine, 16(8), pp. 870–874. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Sances, A., Jr. , Reinartz, J. , and Larson, S. J. , 1991, “ Strength and Kinematic Response of Dynamic Cervical Spine Injuries,” Spine, 16(10 Suppl.), pp. S511–517. [CrossRef] [PubMed]
Voo, L. M. , Pintar, F. A. , Yoganandan, N. , and Liu, Y. K. , 1998, “ Static and Dynamic Bending Responses of the Human Cervical Spine,” ASME J. Biomech. Eng., 120(6), pp. 693–696. [CrossRef]
Amevo, B. , Aprill, C. , and Bogduk, N. , 1992, “ Abnormal Instantaneous Axes of Rotation in Patients With Neck Pain,” Spine, 17(7), pp. 748–756. [CrossRef] [PubMed]
Frobin, W. , Leivseth, G. , Biggemann, M. , and Brinckmann, P. , 2002, “ Sagittal Plane Segmental Motion of the Cervical Spine. A New Precision Measurement Protocol and Normal Motion Data of Healthy Adults,” Clin. Biomech., 17(1), pp. 21–31. [CrossRef]
Katz, P. R. , Reynolds, H. M. , Foust, D. R. , and Baum, J. K. , 1975, “ Mid-Sagittal Dimensions of Cervical Vertebral Bodies,” Am. J. Phys. Anthropol., 43(3), pp. 319–326. [CrossRef] [PubMed]
Liguoro, D. , Vandermeersch, B. , and Guerin, J. , 1994, “ Dimensions of Cervical Vertebral Bodies According to Age and Sex,” Surg. Radiol. Anat., 16(2), pp. 149–155. [CrossRef] [PubMed]
Parenteau, C. S. , Zuby, D. , Brolin, K. B. , Svensson, M. Y. , Palmertz, C. , and Wang, S. C. , 2013, “ Restrained Male and Female Occupants in Frontal Crashes: Are We Different?,” International Conference on the Biomechanics of Impact (IRCOBI), Gothenburg, Sweden, Sept. 11–13, pp. 803–817.
Vasavada, A. N. , Li, S. , and Delp, S. L. , 2001, “ Three-Dimensional Isometric Strength of Neck Muscles in Humans,” Spine, 26(17), pp. 1904–1909. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Stemper, B. D. , Baisden, J. L. , Aktay, R. , Shender, B. S. , and Paskoff, G. , 2006, “ Bone Mineral Density of Human Female Cervical and Lumbar Spines From Quantitative Computed Tomography,” Spine, 31(1), pp. 73–76. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Stemper, B. D. , Baisden, J. L. , Aktay, R. , Shender, B. S. , Paskoff, G. , and Laud, P. , 2006, “ Trabecular Bone Density of Male Human Cervical and Lumbar Vertebrae,” Bone, 39(2), pp. 336–344. [CrossRef] [PubMed]
Winkelstein, B. A. , McLendon, R. E. , Barbir, A. , and Myers, B. S. , 2001, “ An Anatomical Investigation of the Human Cervical Facet Capsule, Quantifying Muscle Insertion Area,” J. Anat., 198(Pt. 4), pp. 455–461. [CrossRef] [PubMed]
Yoganandan, N. , Cusick, J. F. , Pintar, F. A. , and Rao, R. D. , 2001, “ Whiplash Injury Determination With Conventional Spine Imaging and Cryomicrotomy,” Spine, 26(22), pp. 2443–2448. [CrossRef] [PubMed]
Yoganandan, N. , Knowles, S. A. , Maiman, D. J. , and Pintar, F. A. , 2003, “ Anatomic Study of the Morphology of Human Cervical Facet Joint,” Spine, 28(20), pp. 2317–2323. [CrossRef] [PubMed]
Cusick, J. F. , Yoganandan, N. , Pintar, F. , and Gardon, M. , 1996, “ Cervical Spine Injuries From High-Velocity Forces: A Pathoanatomic and Radiologic Study,” J. Spinal Disord., 9(1), pp. 1–7. [CrossRef] [PubMed]
Cusick, J. F. , and Yoganandan, N. , 2002, “ Biomechanics of the Cervical Spine 4: Major Injuries,” Clin. Biomech., 17(1), pp. 1–20. [CrossRef]
FMVSS, 2001, “ Federal Motor Vehicle Safety Standards—Occupant Crash Protection,” U.S. Government Publishing Office, Washington, DC, Standard No. FMVSS-208.
Yoganandan, N. , Arun, M. W. , and Pintar, F. A. , 2014, “ Normalizing and Scaling of Data to Derive Human Response Corridors From Impact Tests,” J. Biomech., 47(8), pp. 1749–1756. [CrossRef] [PubMed]
Cusick, J. F. , Pintar, F. A. , and Yoganandan, N. , 2001, “ Whiplash Syndrome: Kinematic Factors Influencing Pain Patterns,” Spine, 26(11), pp. 1252–1258. [CrossRef] [PubMed]
Stemper, B. D. , Yoganandan, N. , Pintar, F. , and Gennarellu, T. A. , 2007, “ Toward a Lower Neck Rear Impact Injury Criterion—Correlation of Lower Neck Loads With Spinal Kinematics,” International Conference on the Biomechanics of Impact (IRCOBI), Maastricht, The Netherlands, Sept. 19–21, pp. 249–260.
Stemper, B. D. , Yoganandan, N. , and Pintar, F. A. , 2003, “ Gender Dependent Cervical Spine Segmental Kinematics During Whiplash,” J. Biomech., 36(9), pp. 1281–1289. [CrossRef] [PubMed]
Hanten, W. P. , Olson, S. L. , Russell, J. L. , Lucio, R. M. , and Campbell, A. H. , 2000, “ Total Head Excursion and Resting Head Posture: Normal and Patient Comparisons,” Arch. Phys. Med. Rehabil., 81(1), pp. 62–66. [CrossRef] [PubMed]
Youdas, J. W. , Garrett, T. R. , Suman, V. J. , Bogard, C. L. , Hallman, H. O. , and Carey, J. R. , 1992, “ Normal Range of Motion of the Cervical Spine: An Initial Goniometric Study,” Phys. Ther., 72(11), pp. 770–780. [CrossRef] [PubMed]
Lind, B. , Sihlbom, H. , Nordwall, A. , and Malchau, H. , 1989, “ Normal Range of Motion of the Cervical Spine,” Arch. Phys. Med. Rehabil., 70(9), pp. 692–695. [PubMed]
Machino, M. , Yukawa, Y. , Imagama, S. , Ito, K. , Katayama, Y. , Matsumoto, T. , Inoue, T. , Ouchida, J. , Tomita, K. , Ishiguro, N. , and Kato, F. , 2016, “ Age-Related and Degenerative Changes in the Osseous Anatomy, Alignment, and Range of Motion of the Cervical Spine: A Comparative Study of Radiographic Data From 1016 Patients With Cervical Spondylotic Myelopathy and 1230 Asymptomatic Subjects,” Spine, 41(6), pp. 476–482. [CrossRef] [PubMed]
Ono, K. , Ejima, S. , Suzuki, S. , Kaneoka, K. , Fukushima, M. , and Ujihashi, S. , 2006, “ Prediction of Neck Injury Risk Based on the Analysis of Localized Cervical Vertebral Motion of Human Volunteers During Low-Speed Rear Impacts,” International Research Council on the Biomechanics of Impact (IRCOBI), Madrid, Spain, Sept. 20–22, pp. 103–113.
Sato, F. , Nakajima, T. , Ono, K. , Svensson, M. , Brolin, K. , and Kaneoka, K. , 2014, “ Dynamic Cervical Vertebral Motion of Female and Male Volunteers and Analysis of Its Interaction With Head/Neck/Torso Behavior During Low-Speed Rear Impact,” International Research Council on the Biomechanics of Impact (IRCOBI), Berlin, Sept. 10–12, pp. 227–249.
Sato, F. , Nakajima, T. , Ono, K. , Svensson, M. , and Kaneoka, K. , 2015, “ Characteristics of Dynamic Cervical Vertebral Kinematics for Female and Male Volunteers in Low-Speed Rear Impact, Based on Quasistatic Neck Kinematics,” International Research Council on the Biomechanics of Impact (IRCOBI), Lyon, France, Sept. 9–11, pp. 261–277.
Siegmund, G. , King, D. L. , Lawrence, J. M. , Wheeler, J. , Brault, J. , and Smith, T. A. , 1997, “ Head/Neck Kinematic Response of Human Subjects in Low-Speed Rear-End Collisions,” SAE Paper No. 973341.
Brault, J. R. , Wheeler, J. B. , Siegmund, G. P. , and Brault, E. J. , 1998, “ Clinical Response of Human Subjects to Rear-End Automobile Collisions,” Arch. Phys. Med. Rehabil., 79(1), pp. 72–80. [CrossRef] [PubMed]
Sato, F. , Odani, M. , Endo, Y. , Tada, M. , Miyazaki, Y. , Nakajima, T. , Ono, K. , Morikawa, S. , and Svensson, M. , 2016, “ Analysis of the Alignment of Whole Spine in Automotive Seated and Supine Postures Using an Upright Open MRI System,” Int. J. Automot. Eng., 7(1), pp. 29–35.
Sato, F. , Odani, M. , Miyazaki, Y. , Nakajima, T. , Makoshi, J. A. , Yamazaki, K. , Svensson, M. , Osth, J. , Morikawa, S. , Schick, S. , and Perez, A. F. , 2016, “ Investigation of Whole Spine Alignment Patterns in Automotive Seated Posture Using Upright Open MRI Systems,” International Conference on the Biomechanics of Impact (IRCOBI), Malaga, Spain, Sept. 14–16, pp. 233–245.
Maiman, D. J. , Yoganandan, N. , and Pintar, F. A. , 2002, “ Preinjury Cervical Alignment Affecting Spinal Trauma,” J. Neurosurg., 97(1 Suppl.), pp. 57–62. [PubMed]
Spitzer, W. O. , Skovron, M. L. , Salmi, L. R. , Cassidy, J. D. , Duranceau, J. , Suissa, S. , and Zeiss, E. , 1995, “ Scientific Monograph of the Quebec Task Force on Whiplash-Associated Disorders: Redefining ‘Whiplash’ and Its Management,” Spine, 20(8 Suppl.), pp. 1S–73S. [PubMed]
Bogduk, N. , and Yoganandan, N. , 2001, “ Biomechanics of the Cervical Spine Part 3: Minor Injuries,” Clin. Biomech., 16(4), pp. 267–275. [CrossRef]
Frobin, W. , Leivseth, G. , Biggemann, M. , and Brinckmann, P. , 2002, “ Vertebral Height, Disc Height, Posteroanterior Displacement and Dens-Atlas Gap in the Cervical Spine: Precision Measurement Protocol and Normal Data,” Clin. Biomech., 17(6), pp. 423–431. [CrossRef]
Stemper, B. D. , Yoganandan, N. , Pintar, F. A. , Maiman, D. J. , Meyer, M. A. , DeRosia, J. , Shender, B. S. , and Paskoff, G. , 2008, “ Anatomical Gender Differences in Cervical Vertebrae of Size-Matched Volunteers,” Spine, 33(2), pp. E44–E49. [CrossRef] [PubMed]
Eis, E. , Sferco, R. , and Fay, P. , 2005, “ HUMOS: Human Model for Safety—A Joint Effort Towards the Development of Refined Human-Like Car Occupant Models,” SAE Paper No. 2001-06-0129.
Huelke, D. F. , and Nusholtz, G. S. , 1986, “ Cervical Spine Biomechanics: A Review of the Literature,” J. Orthop. Res., 4(2), pp. 232–245. [CrossRef] [PubMed]
Sances, A., Jr. , Myklebust, J. B. , Maiman, D. J. , Larson, S. J. , Cusick, J. F. , and Jodat, R. W. , 1984, “ The Biomechanics of Spinal Injuries,” Crit. Rev. Biomed. Eng., 11(1), pp. 1–76. [PubMed]
Sances, A., Jr. , Weber, R. C. , Larson, S. J. , Cusick, J. S. , Myklebust, J. B. , and Walsh, P. R. , 1981, “ Bioengineering Analysis of Head and Spine Injuries,” Crit. Rev. Bioeng., 5(2), pp. 79–122. [PubMed]
Yoganandan, N. , Kumaresan, S. , Voo, L. , and Pintar, F. A. , 1996, “ Finite Element Applications in Human Cervical Spine Modeling,” Spine, 21(15), pp. 1824–1834. [CrossRef] [PubMed]
Yoganandan, N. , Stemper, B. D. , Pintar, F. A. , Maiman, D. J. , McEntire, B. J. , and Chancey, V. C. , 2013, “ Cervical Spine Injury Biomechanics: Applications for Under Body Blast Loadings in Military Environments,” Clin. Biomech., 28(6), pp. 602–609. [CrossRef]
Mertz, H. J. , and Irwin, A. I. , 2014, “ Anthropomorphic Test Devices and Injury Risk Assessments,” Accidental Injury: Biomechanics and Prevention, N. Yoganandan , A. M. Nahum , and J. W. Melvin , eds., Springer, New York, pp. 83–112.
Mertz, H. J. , and Prasad, P. , 2000, “ Improved Neck Injury Risk Curves for Tension and Extension Moment Measurements of Crash Dummies,” Stapp Car Crash J., 44, pp. 59–75. [PubMed]
Melvin, J. W. , 1995, “ Injury Assessment Reference Values for the CRABI 6-Month Infant Dummy in a Rear-Facing Infant Restraint With Airbag Deployment,” SAE Paper No. 950872.
Mertz, H. J. , Irwin, A. L. , and Prasad, P. , 2003, “ Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values,” Stapp Car Crash J., 47, pp. 155–188. [PubMed]
Kleinberger, M. , Sun, E. , Eppinger, R. , Kuppa, S. , and Saul, R. , 1998, “ Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems,” National Highway Traffic Safety Administration, Washington, DC.
Iwamoto, M. , Omori, K. , Kimpara, H. , Nakahira, Y. , Tamura, A. , Watanabe, I. , Miki, K. , Hasegawa, J. , and Oshita, F. , 2003, “ Recent Advances in THUMS: Development of Individual Internal Organs, Brain, Small Female and Pedestrian Model,” 4th European LS-DYNA Users Conference, Ulm, Germany, May 22–23, pp. 1–10.
Schneider, L. , Robbins, D. , Pflug, M. A. , and Snyder, R. G. , 1983, “ Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropometric Dummy Family,” Vol. 1, U.S. Department of Transportation, Paper No. UMTRI-83-53-1.
Kitagawa, Y. , Yamada, K. , Motojima, H. , and Yasuki, T. , 2015, “ Consideration on Gender Difference of Whiplash Associated Disorder in Low Speed Rear Impact,” International Conference on the Biomechanics of Impact (IRCOBI), Lyon, France, Sept. 9–11, pp. 233–245.
Davis, M. L. , Allen, B. C. , Geer, C. P. , Stitzel, J. D. , and Gayzik, S. F. , 2014, “ A Multi-Modality Image Set for the Development of a 5th Percentile Female Finite Element Model,” International Conference on the Biomechanics of Impact (IRCOBI), Berlin, Sept. 10–12, pp. 461–475.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In