Research Papers

Structural and Functional Differences Between Porcine Aorta and Vena Cava

[+] Author and Article Information
Jeffrey M. Mattson

Department of Mechanical Engineering,
Boston University,
Boston, MA 02215
e-mail: jmattson@bu.edu

Yanhang Zhang

Department of Mechanical Engineering,
Department of Biomedical Engineering,
Boston University,
110 Cummington Mall,
Boston, MA 02215
e-mail: yanhang@bu.edu

1Corresponding author.

Manuscript received December 1, 2016; final manuscript received March 3, 2017; published online June 6, 2017. Assoc. Editor: Kristen Billiar.

J Biomech Eng 139(7), 071007 (Jun 06, 2017) (8 pages) Paper No: BIO-16-1490; doi: 10.1115/1.4036261 History: Received December 01, 2016; Revised March 03, 2017

Elastin and collagen fibers are the major load-bearing extracellular matrix (ECM) constituents of the vascular wall. Arteries function differently than veins in the circulatory system; however as a result from several treatment options, veins are subjected to sudden elevated arterial pressure. It is thus important to recognize the fundamental structure and function differences between a vein and an artery. Our research compared the relationship between biaxial mechanical function and ECM structure of porcine thoracic aorta and inferior vena cava. Our study suggests that aorta contains slightly more elastin than collagen due to the cyclical extensibility, but vena cava contains almost four times more collagen than elastin to maintain integrity. Furthermore, multiphoton imaging of vena cava showed longitudinally oriented elastin and circumferentially oriented collagen that is recruited at supraphysiologic stress, but low levels of strain. However in aorta, elastin is distributed uniformly, and the primarily circumferentially oriented collagen is recruited at higher levels of strain than vena cava. These structural observations support the functional finding that vena cava is highly anisotropic with the longitude being more compliant and the circumference stiffening substantially at low levels of strain. Overall, our research demonstrates that fiber distributions and recruitment should be considered in addition to relative collagen and elastin contents. Also, the importance of accounting for the structural and functional differences between arteries and veins should be taken into account when considering disease treatment options.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Alkhalili, E. , Greenbaum, A. , Langsfeld, M. , Marek, J. , Rana, M. A. , Glew, R. , and Nir, I. , 2016, “ Leiomyosarcoma of the Inferior Vena Cava: A Case Series and Review of the Literature,” Ann. Vasc. Surg., 33, pp. 245–251. [CrossRef] [PubMed]
Huang, Y.-K. , Lin, C.-C. , and Lin, H.-S. , 2015, “ Peritonitis as Presentation of Aorto-Caval Fistula With Salmonella Choleraesuis-Associated Abdominal Aortic Aneurysm,” Surg. Infect., 16(1), pp. 108–109. [CrossRef]
Ng, S. , Tan, K. A. L. , and Anil, G. , 2015, “ The Role of Interventional Radiology in Complications Associated With Liver Transplantation,” Clin. Radiol., 70(12), pp. 1323–1335. [CrossRef] [PubMed]
Wachtel, H. , Jackson, B. M. , Bartlett, E. K. , Karakousis, G. C. , Roses, R. E. , Bavaria, J. E. , and Fraker, D. L. , 2015, “ Resection of Primary Leiomyosarcoma of the Inferior Vena Cava (IVC) With Reconstruction: A Case Series and Review of the Literature,” J. Surg. Oncol., 111(3), pp. 328–333. [CrossRef] [PubMed]
Owens, C. D. , Gasper, W. J. , Rahman, A. S. , and Conte, M. S. , 2015, “ Vein Graft Failure,” J. Vasc. Surg., 61(1), pp. 203–216. [CrossRef] [PubMed]
Lee, Y. U. , Naito, Y. , Kurobe, H. , Breuer, C. K. , and Humphrey, J. D. , 2013, “ Biaxial Mechanical Properties of the Inferior Vena Cava in C57BL/6 and CB-17 SCID/Bg Mice,” J. Biomech., 46(13), pp. 2277–2282. [CrossRef] [PubMed]
Desai, M. , Mirzay-Razzaz, J. , von Delft, D. , Sarkar, S. , Hamilton, G. , and Seifalian, A. M. , 2010, “ Inhibition of Neointimal Formation and Hyperplasia in Vein Grafts by External Stent/Sheath,” Vasc. Med., 15(4), pp. 287–297. [CrossRef] [PubMed]
Dobrin, P. B. , Littooy, F. N. , and Endean, E. D. , 1989, “ Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts,” Surgery, 105(3), pp. 393–400. [PubMed]
Lu, D. Y. , Chen, E. Y. , Wong, D. J. , Yamamoto, K. , Protack, C. D. , Williams, W. T. , Assi, R. , Hall, M. R. , Sadaghianloo, N. , and Dardik, A. , 2014, “ Vein Graft Adaptation and Fistula Maturation in the Arterial Environment,” J. Surg. Res., 188(1), pp. 162–173. [CrossRef] [PubMed]
Predel, H. G. , Yang, Z. , von Segesser, L. , Turina, M. , Bühler, F. R. , and Lüscher, T. F. , 1992, “ Implications of Pulsatile Stretch on Growth of Saphenous Vein and Mammary Artery Smooth Muscle,” Lancet, 340(8824), pp. 878–879. [CrossRef] [PubMed]
John, L. C. H. , 2009, “ Biomechanics of Coronary Artery and Bypass Graft Disease: Potential New Approaches,” Ann. Thorac. Surg., 87(1), pp. 331–338. [CrossRef] [PubMed]
Miyake, T. , Aoki, M. , and Morishita, R. , 2008, “ Inhibition of Anastomotic Intimal Hyperplasia Using a Chimeric Decoy Strategy Against NFκB and E2F in a Rabbit Model,” Cardiovasc. Res., 79(4), pp. 706–714. [CrossRef] [PubMed]
Humphrey, J. D. , 2002, Cardiovascular Solid Mechanics, Springer, New York.
Davies, M. G. , Fulton, G. J. , Svendsen, E. , and Hagen, P.-O. , 1999, “ Time Course of the Regression of Intimal Hyperplasia in Experimental Vein Grafts,” Cardiovasc. Pathol., 8(3), pp. 161–168. [CrossRef] [PubMed]
Fann, J. I. , Sokoloff, M. H. , Sarris, G. E. , Yun, K. L. , Kosek, J. C. , and Miller, D. C. , 1990, “ The Reversibility of Canine Vein-Graft Arterialization,” Circulation, 82(5 Suppl.), p. IV9-18. [PubMed]
Owens, C. D. , 2010, “ Adaptive Changes in Autogenous Vein Grafts for Arterial Reconstruction: Clinical Implications,” J. Vasc. Surg., 51(3), pp. 736–746. [CrossRef] [PubMed]
Seidel, C. L. , Lewis, R. M. , Bowers, R. , Bukoski, R. D. , Kim, H. S. , Allen, J. C. , and Hartley, C. , 1984, “ Adaptation of Canine Saphenous Veins to Grafting. Correlation of Contractility and Contractile Protein Content,” Circ. Res., 55(1), pp. 102–109. [CrossRef] [PubMed]
Zhang, Y. , Barocas, V. H. , Berceli, S. A. , Clancy, C. E. , Eckmann, D. M. , Garbey, M. , Kassab, G. S. , Lochner, D. R. , McCulloch, A. D. , Tran-Son-Tay, R. , and Trayanova, N. A. , 2016, “ Multi-Scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention,” Ann. Biomed. Eng., 44(9), pp. 2642–2660. [CrossRef] [PubMed]
Roach, M. R. , and Burton, A. C. , 1957, “ The Reason for the Shape of the Distensibility Curves of Arteries,” Can. J. Biochem. Physiol., 35(8), pp. 681–690. [CrossRef] [PubMed]
Chow, M.-J. , Turcotte, R. , Lin, C. P. , and Zhang, Y. , 2014, “ Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen,” Biophys. J., 106(12), pp. 2684–2692. [CrossRef] [PubMed]
Fata, B. , Carruthers, C. A. , Gibson, G. , Watkins, S. C. , Gottlieb, D. , Mayer, J. E. , and Sacks, M. S. , 2013, “ Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth,” ASME J. Biomech. Eng., 135(2), p. 021022. [CrossRef]
Zadrozny, L. M. , Neufeld, E. B. , Lucotte, B. M. , Connelly, P. S. , Yu, Z.-X. , Dao, L. , Hsu, L.-Y. , and Balaban, R. S. , 2015, “ Study of the Development of the Mouse Thoracic Aorta Three-Dimensional Macromolecular Structure Using Two-Photon Microscopy,” J. Histochem. Cytochem., 63(1), pp. 8–21. [CrossRef] [PubMed]
Bellini, C. , Caulk, A. W. , Li, G. , Tellides, G. , and Humphrey, J. D. , 2017, “ Biomechanical Phenotyping of the Murine Aorta: What Is the Best Control?,” ASME J. Biomech. Eng., 139(4), p. 044501. [CrossRef]
Akhtar, R. , Schwarzer, N. , Sherratt, M. J. , Watson, R. E. B. , Graham, H. K. , Trafford, A. W. , Mummery, P. M. , and Derby, B. , 2009, “ Nanoindentation of Histological Specimens,” J. Mater. Res., 24(3), pp. 638–646. [CrossRef] [PubMed]
Weisbecker, H. , Unterberger, M. J. , and Holzapfel, G. A. , 2015, “ Constitutive Modelling of Arteries Considering Fibre Recruitment and Three-Dimensional Fibre Distribution,” J. R. Soc. Interface, 12(105).
Witzenburg, C. M. , Dhume, R. Y. , Shah, S. B. , Korenczuk, C. E. , Wagner, H. P. , Alford, P. W. , and Barocas, V. H. , 2017, “ Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model,” ASME J. Biomech. Eng., 139(3), p. 031005. [CrossRef]
Zeinali-Davarani, S. , Wang, Y. , Chow, M.-J. , Turcotte, R. , and Zhang, Y. , 2015, “ Contribution of Collagen Fiber Undulation to Regional Biomechanical Properties Along Porcine Thoracic Aorta,” ASME J. Biomech. Eng., 137(5), p. 051001. [CrossRef]
Ferruzzi, J. , Bersi, M. R. , and Humphrey, J. D. , 2013, “ Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models,” Ann. Biomed. Eng., 41(7), pp. 1311–1330. [CrossRef] [PubMed]
Huang, A. H. , Balestrini, J. L. , Udelsman, B. V. , Zhou, K. C. , Zhao, L. , Ferruzzi, J. , Starcher, B. C. , Levene, M. J. , Humphrey, J. D. , and Niklason, L. E. , 2016, “ Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries,” Tissue Eng., Part C, 22(6), pp. 524–533. [CrossRef]
Hemmasizadeh, A. , Tsamis, A. , Cheheltani, R. , Assari, S. , D'Amore, A. , Autieri, M. , Kiani, M. F. , Pleshko, N. , Wagner, W. R. , Watkins, S. C. , Vorp, D. , and Darvish, K. , 2015, “ Correlations Between Transmural Mechanical and Morphological Properties in Porcine Thoracic Descending Aorta,” J. Mech. Behav. Biomed. Mater., 47, pp. 12–20. [CrossRef] [PubMed]
Wagenseil, J. E. , and Mecham, R. P. , 2009, “ Vascular Extracellular Matrix and Arterial Mechanics,” Physiol. Rev., 89(3), pp. 957–989. [CrossRef] [PubMed]
Humphrey, J. D. , 1995, “ Mechanics of the Arterial Wall: Review and Directions,” Crit. Rev. Biomed. Eng., 23(1–2), pp. 1–162. [PubMed]
McGilvray, K. C. , Sarkar, R. , Nguyen, K. , and Puttlitz, C. M. , 2010, “ A Biomechanical Analysis of Venous Tissue in Its Normal and Post-Phlebitic Conditions,” J. Biomech., 43(15), pp. 2941–2947. [CrossRef] [PubMed]
Monos, E. , Berczi, V. , and Nadasy, G. , 1995, “ Local Control of Veins: Biomechanical, Metabolic, and Humoral Aspects,” Physiol. Rev., 75(3), pp. 611–666. [PubMed]
Desch, G. W. , and Weizsäcker, H. W. , 2007, “ A Model for Passive Elastic Properties of Rat Vena Cava,” J. Biomech., 40(14), pp. 3130–3145. [CrossRef] [PubMed]
Alastrué, V. , Peña, E. , Martínez, M. A. , and Doblaré, M. , 2008, “ Experimental Study and Constitutive Modelling of the Passive Mechanical Properties of the Ovine Infrarenal Vena Cava Tissue,” J. Biomech., 41(14), pp. 3038–3045. [CrossRef] [PubMed]
Rossmann, J. S. , 2010, “ Elastomechanical Properties of Bovine Veins,” J. Mech. Behav. Biomed. Mater., 3(2), pp. 210–215. [CrossRef] [PubMed]
Silver, F. H. , Snowhill, P. B. , and Foran, D. J. , 2003, “ Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava, and Carotid Artery,” Ann. Biomed. Eng., 31(7), pp. 793–803. [CrossRef] [PubMed]
Chow, M.-J. , Choi, M. , Yun, S. H. , and Zhang, Y. , 2013, “ The Effect of Static Stretch on Elastin Degradation in Arteries,” PLoS One, 8(12), p. e81951. [CrossRef] [PubMed]
Chow, M.-J. , Mondonedo, J. R. , Johnson, V. M. , and Zhang, Y. , 2013, “ Progressive Structural and Biomechanical Changes in Elastin Degraded Aorta,” Biomech. Model. Mechanobiol., 12(2), pp. 361–372. [CrossRef] [PubMed]
Chow, M.-J. , Zou, Y. , He, H. , McGowan, J. , Francis, X. , Zurakowski, D. , and Zhang, Y. , 2011, “ Obstruction-Induced Pulmonary Vascular Remodeling,” ASME J. Biomech. Eng., 133(11), p. 111009. [CrossRef]
Sacks, M. S. , and Chuong, C. J. , 1993, “ Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium,” ASME J. Biomech. Eng., 115(2), pp. 202–205. [CrossRef]
Wolinsky, H. , and Glagov, S. , 1967, “ A Lamellar Unit of Aortic Medial Structure and Function in Mammals,” Circ. Res., 20(1), pp. 99–111. [CrossRef] [PubMed]
Kim, J. , and Baek, S. , 2011, “ Circumferential Variations of Mechanical Behavior of the Porcine Thoracic Aorta During the Inflation Test,” J. Biomech., 44(10), pp. 1941–1947. [CrossRef] [PubMed]
Sokolis, D. P. , 2007, “ Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis,” Acta Physiol., 190(4), pp. 277–289. [CrossRef]
Sokolis, D. P. , 2012, “ Experimental Investigation and Constitutive Modeling of the 3D Histomechanical Properties of Vein Tissue,” Biomech. Model. Mechanobiol., 12(3), pp. 431–451. [CrossRef] [PubMed]
Humphrey, J. D. , Dufresne, E. R. , and Schwartz, M. A. , 2014, “ Mechanotransduction and Extracellular Matrix Homeostasis,” Nat. Rev. Mol. Cell Biol., 15(12), pp. 802–812. [CrossRef] [PubMed]
Qiu, Y. , and Tarbell, J. M. , 2000, “ Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production,” J. Vasc. Res., 37(3), pp. 147–157. [CrossRef] [PubMed]
Gineyts, E. , Cloos, P. A. C. , Borel, O. , Grimaud, L. , Delmas, P. D. , and Garnero, P. , 2000, “ Racemization and Isomerization of Type I Collagen C-Telopeptides in Human Bone and Soft Tissues: Assessment of Tissue Turnover,” Biochem. J., 345(3), pp. 481–485. [CrossRef] [PubMed]
Humphrey, J. D. , Eberth, J. F. , Dye, W. W. , and Gleason, R. L. , 2009, “ Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries,” J. Biomech., 42(1), pp. 1–8. [CrossRef] [PubMed]
Haskett, D. , Johnson, G. , Zhou, A. , Utzinger, U. , and Geest, J. V. , 2010, “ Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location,” Biomech. Model. Mechanobiol., 9(6), pp. 725–736. [CrossRef] [PubMed]
Martin, C. , Pham, T. , and Sun, W. , 2011, “ Significant Differences in the Material Properties Between Aged Human and Porcine Aortic Tissues,” Eur. J. Cardiothorac. Surg., 40(1), pp. 28–34. [CrossRef] [PubMed]
Madhavan, K. , Belchenko, D. , Motta, A. , and Tan, W. , 2010, “ Evaluation of Composition and Crosslinking Effects on Collagen-Based Composite Constructs,” Acta Biomater., 6(4), pp. 1413–1422. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Movat's stain of aorta (a) and vena cava ((b) and (c)) from adventitia (left) to intima (right). Scale bars are 100 μm. The adventitia is primarily collagen (yellow) and the media consisted of collagen, elastin (black), smooth muscle (red), and GAGs (blue, appears green due to overlay with yellow). Collagen and elastin assay results were significantly (p < 0.05) different in aorta and vena cava (d). See online for color figure.

Grahic Jump Location
Fig. 2

Average stress–stretch curves (a) from equibiaxial tests of aorta and vena cava with the vena cava being more anisotropic than aorta. Average tangent modulus (b) was determined by taking the derivative of a sixth-order polynomial fit to the stress–stretch curves.

Grahic Jump Location
Fig. 3

Multiphoton images of undeformed media and adventitia for both aorta and vena cava. In vena cava, elastin (green) is generally longitudinally oriented and medial collagen (blue) is generally circumferentially oriented, but these fibers are more uniformly distributed in aorta. Adventitial collagen (blue) is wavy, but straightens with stretch. Circumferential (C) and longitudinal (L) directions are at 0 deg and ±90 deg, respectively. Images are 425 μm × 425 μm. See online for color figure.

Grahic Jump Location
Fig. 4

Multiphoton images of vena cava under mechanical loading. Biaxial grip-to-grip strain at 5% and 10% where applied in both circumferential (C) and longitudinal (L) directions at 0 deg and ±90 deg, respectively. Images are 425 μm × 425 μm. See online for color figure.

Grahic Jump Location
Fig. 5

Straightness parameter (Ps) for adventitial collagen. Vena cava adventitial collagen fibers are recruited immediately with stretch and fully straightened by 10% strain, whereas aorta fibers show a delayed recruitment beginning between 15% and 20% strain. Aorta data from Ref. [18].

Grahic Jump Location
Fig. 6

Average fiber distributions in aorta and vena cava, where the numbers represent grip-to-grip strain for circumferential (C) and longitudinal (L) directions at 0 deg and ±90 deg, respectively. The most striking difference is the longitudinally oriented elastin in vena cava. Aorta collagen fibers are more circumferentially aligned than in vena cava when unloaded, but with stretch, vena cava collagen fibers become more circumferentially aligned. Aorta data from Ref. [18].

Grahic Jump Location
Fig. 7

Average vena cava fiber distributions, where the numbers represent grip-to-grip strain for circumferential (C) and longitudinal (L) directions at 0 deg and ±90 deg, respectively. The circumference was only stretched to 10% strain because of the high degree of anisotropy. Medial elastin (a) remains longitudinally oriented with stretch. Medial collagen (b) becomes more circumferential with stretch, but the distribution widens with greater longitudinal stretch. Adventitial collagen (c) behaves similarly to medial collagen.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In