0
Technical Brief

Changes in Joint Contact Mechanics in a Large Quadrupedal Animal Model After Partial Meniscectomy and a Focal Cartilage Injury

[+] Author and Article Information
David J. Heckelsmiller, Douglas R. Pedersen

Department of Orthopedics and Rehabilitation,
The University of Iowa,
Iowa City, IA 52242-1100;
Department of Biomedical Engineering,
The University of Iowa,
Iowa City, IA 52242-1100

M. James Rudert, Thomas E. Baer, Douglas C. Fredericks

Department of Orthopedics and Rehabilitation,
The University of Iowa,
Iowa City, IA 52242-1100

Jessica E. Goetz

Orthopedic Biomechanics Lab,
Department of Orthopedics and Rehabilitation,
The University of Iowa,
2181 Westlawn Building,
Iowa City, IA 52242-1100;
Department of Biomedical Engineering,
The University of Iowa,
Iowa City, IA 52242-1100
e-mail: jessica-goetz@uiowa.edu

1Corresponding author.

Manuscript received November 21, 2016; final manuscript received February 27, 2017; published online March 22, 2017. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 139(5), 054501 (Mar 22, 2017) (5 pages) Paper No: BIO-16-1472; doi: 10.1115/1.4036148 History: Received November 21, 2016; Revised February 27, 2017

Acute mechanical damage and the resulting joint contact abnormalities are central to the initiation and progression of post-traumatic osteoarthritis (PTOA). Study of PTOA is typically performed in vivo with replicate animals using artificially induced injury features. The goal of this work was to measure changes in a joint contact stress in the knee of a large quadruped after creation of a clinically realistic overload injury and a focal cartilage defect. Whole-joint overload was achieved by excising a 5-mm wedge of the anterior medial meniscus. Focal cartilage defects were created using a custom pneumatic impact gun specifically developed and mechanically characterized for this work. To evaluate the effect of these injuries on joint contact mechanics, Tekscan (Tekscan, Inc., South Boston, MA) measurements were obtained pre-operatively, postmeniscectomy, and postimpact (1.2-J) in a nonrandomized group of axially loaded cadaveric sheep knees. Postmeniscectomy, peak contact stress in the medial compartment is increased by 71% (p = 0.03) and contact area is decreased by 35% (p = 0.001); the center of pressure (CoP) shifted toward the cruciate ligaments in both the medial (p = 0.004) and lateral (p = 0.03) compartments. The creation of a cartilage defect did not significantly change any aspect of contact mechanics measured in the meniscectomized knee. This work characterizes the mechanical environment present in a quadrupedal animal knee joint after two methods to reproducibly induce joint injury features that lead to PTOA.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Anderson, D. D. , Chubinskaya, S. , Guilak, F. , Martin, J. A. , Oegema, T. R. , Olson, S. A. , and Buckwalter, J. A. , 2011, “ Post-Traumatic Osteoarthritis: Improved Understanding and Opportunities for Early Intervention,” J. Orthop. Res., 29(6), pp. 802–809. [CrossRef] [PubMed]
Buckwalter, J. A. , and Brown, T. D. , 2004, “ Joint Injury, Repair, and Remodeling: Roles in Post-Traumatic Osteoarthritis,” Clin. Orthop. Relat. Res., 423, pp. 7–16. [CrossRef]
Buckwalter, J. A. , Saltzman, C. , and Brown, T. , 2004, “ The Impact of Osteoarthritis: Implications for Research,” Clin. Orthop. Relat. Res., 427(Suppl), pp. S6–S15. [CrossRef]
Arunakul, M. , Tochigi, Y. , Goetz, J. E. , Diestelmeier, B. W. , Heiner, A. D. , Rudert, J. , Fredericks, D. C. , Brown, T. D. , and McKinley, T. O. , 2013, “ Replication of Chronic Abnormal Cartilage Loading by Medial Meniscus Destabilization for Modeling Osteoarthritis in the Rabbit Knee In Vivo,” J. Orthop. Res., 31(10), pp. 1555–1560. [CrossRef] [PubMed]
Andriacchi, T. P. , Mundermann, A. , Smith, R. L. , Alexander, E. J. , Dyrby, C. O. , and Koo, S. , 2004, “ A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee,” Ann. Biomed. Eng., 32(3), pp. 447–457. [CrossRef] [PubMed]
Zabala, M. E. , Favre, J. , Scanlan, S. F. , Donahue, J. , and Andriacchi, T. P. , 2013, “ Three-Dimensional Knee Moments of ACL Reconstructed and Control Subjects During Gait, Stair Ascent, and Stair Descent,” J. Biomech., 46(3), pp. 515–520. [CrossRef] [PubMed]
Andriacchi, T. P. , and Mundermann, A. , 2006, “ The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis,” Curr. Opin. Rheumatol., 18(5), pp. 514–518. [CrossRef] [PubMed]
von Porat, A. , Roos, E. M. , and Roos, H. , 2004, “ High Prevalence of Osteoarthritis 14 Years After an Anterior Cruciate Ligament Tear in Male Soccer Players: A Study of Radiographic and Patient Relevant Outcomes,” Ann. Rheum. Dis., 63(3), pp. 269–273. [CrossRef] [PubMed]
Gardinier, E. S. , Di Stasi, S. , Manal, K. , Buchanan, T. S. , and Snyder-Mackler, L. , 2014, “ Knee Contact Force Asymmetries in Patients Who Failed Return-to-Sport Readiness Criteria 6 Months After Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 42(12), pp. 2917–2925. [CrossRef] [PubMed]
Kiapour, A. M. , and Murray, M. M. , 2014, “ Basic Science of Anterior Cruciate Ligament Injury and Repair,” Bone Jt. Res., 3(2), pp. 20–31. [CrossRef]
Hoshino, Y. , Fu, F. H. , Irrgang, J. J. , and Tashman, S. , 2013, “ Can Joint Contact Dynamics be Restored by Anterior Cruciate Ligament Reconstruction?,” Clin. Orthop. Relat. Res., 471(9), pp. 2924–2931. [CrossRef] [PubMed]
Amano, K. , Pedoia, V. , Su, F. , Souza, R. B. , Li, X. J. , and Ma, C. B. , 2016, “ Persistent Biomechanical Alterations After ACL Reconstruction are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR,” Orthop. J. Sports Med., 4(4), pp. 1–10.
Gratz, K. R. , Wong, B. L. , Bae, W. C. , and Sah, R. L. , 2009, “ The Effects of Focal Articular Defects on Cartilage Contact Mechanics,” J. Orthop. Res., 27(5), pp. 584–592. [CrossRef] [PubMed]
Hjelle, K. , Solheim, E. , Strand, T. , Muri, R. , and Brittberg, M. , 2002, “ Articular Cartilage Defects in 1000 Knee Arthroscopies,” Arthroscopy, 18(7), pp. 730–734. [CrossRef] [PubMed]
Seitz, A. M. , Lubomierski, A. , Friemert, B. , Ignatius, A. , and Durselen, L. , 2012, “ Effect of Partial Meniscectomy at the Medial Posterior Horn on Tibiofemoral Contact Mechanics and Meniscal Hoop Strains in Human Knees,” J. Orthop. Res., 30(6), pp. 934–942. [CrossRef] [PubMed]
Proffen, B. L. , McElfresh, M. , Fleming, B. C. , and Murray, M. M. , 2011, “ A Comparative Anatomical Study of the Human Knee and Six Animal Species,” Knee, 19(4), pp. 493–499. [CrossRef] [PubMed]
Christiansen, B. A. , Anderson, M. J. , Lee, C. A. , Williams, J. C. , Yik, J. H. N. , and Haudenschild, D. R. , 2012, “ Musculoskeletal Changes Following Non-Invasive Knee Injury Using a Novel Mouse Model of Post-Traumatic Osteoarthritis,” Osteoarthritis Cartilage, 20(7), pp. 773–782. [CrossRef] [PubMed]
Maerz, T. , Kurdziel, M. , Newton, M. D. , Altman, P. , Anderson, K. , Matthew, H. W. T. , and Baker, K. C. , 2016, “ Subchondral and Epiphyseal Bone Remodeling Following Surgical Transection and Noninvasive Rupture of the Anterior Cruciate Ligament as Models of Post-Traumatic Osteoarthritis,” Osteoarthritis Cartilage, 24(4), pp. 698–708. [CrossRef] [PubMed]
Bolam, C. J. , Hurtig, M. B. , Cruz, A. , and McEwen, B. J. E. , 2006, “ Characterization of Experimentally Induced Post-Traumatic Osteoarthritis in the Medial Femorotibial Joint of Horses,” Am. J. Vet. Res., 67(3), pp. 433–447. [CrossRef] [PubMed]
Brown, T. D. , Pope, D. F. , Hale, J. E. , Buckwalter, J. A. , and Brand, R. A. , 1991, “ Effects of Osteochondral Defect Size on Cartilage Contact Stress,” J. Orthop. Res., 9(4), pp. 559–567. [CrossRef] [PubMed]
Taylor, W. R. , Ehrig, R. M. , Heller, M. O. , Schell, H. , Seebeck, P. , and Duda, G. N. , 2006, “ Tibio-Femoral Joint Contact Forces in Sheep,” J. Biomech., 39(5), pp. 791–798. [CrossRef] [PubMed]
von Lewinski, G. , Stukenborg-Colsman, C. , Ostermeier, S. , and Hurschler, C. , 2006, “ Experimental Measurement of Tibiofemoral Contact Area in a Meniscectomized Ovine Model Using a Resistive Pressure Measuring Sensor,” Ann. Biomed. Eng., 34(10), pp. 1607–1614. [CrossRef] [PubMed]
Elsner, J. J. , Linder-Ganz, E. , Danino, A. , Guilak, F. , and Shterling, A. , 2009, “ Meniscal Implant Biomechanical Performance: A Novel Quantitative Approach,” ASME Paper No. SBC2009-204867.
Brown, T. D. , Rudert, M. J. , and Grosland, N. M. , 2004, “ New Methods for Assessing Cartilage Contact Stress After Articular Fracture,” Clin. Orthop. Relat. Res., 423, pp. 52–58. [CrossRef]
Bonnevie, E. D. , Delco, M. L. , Fortier, L. A. , Alexander, P. G. , Tuan, R. S. , and Bonassar, L. J. , 2015, “ Characterization of Tissue Response to Impact Loads Delivered Using a Hand-Held Instrument for Studying Articular Cartilage Injury,” Cartilage, 6(4), pp. 226–232. [CrossRef] [PubMed]
Guettler, J. H. , Demetropoulos, C. K. , Yang, K. H. , and Jurist, K. A. , 2004, “ Osteochondral Deflects in the Human,” Am. J. Sports Med., 32(6), pp. 1451–1458. [CrossRef] [PubMed]
Green, D. M. , Noble, P. C. , Ahuero, J. S. , and Birdsall, H. H. , 2006, “ Cellular Events Leading to Chondrocyte Death After Cartilage Impact Injury,” Arthritis Rheum., 54(5), pp. 1509–1517. [CrossRef] [PubMed]
Ding, L. , Heying, E. , Nicholson, N. , Stroud, N. J. , Homandberg, G. A. , Buckwalter, J. A. , Guo, D. , and Martin, J. A. , 2010, “ Mechanical Impact Induces Cartilage Degradation Via Mitogen Activated Protein Kinases,” Osteoarthritis Cartilage, 18(11), pp. 1509–1517. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The cartilage impact gun featuring (a) the impact rod in a loaded position and (b) a conical spike on the impact rod face

Grahic Jump Location
Fig. 2

(a) Photographs of an intact knee specimen (top) and following partial meniscectomy (bottom). The 5-mm wedge of meniscus to be excised has been marked. The Tekscan sensor has been positioned to cover the main weight-bearing portions of the medial and lateral compartments. (b) Tekscan stress maps for an intact knee specimen (top) and the same specimen following partial meniscectomy (bottom).

Grahic Jump Location
Fig. 3

(Top row) Axial view of four 1.2-J cartilage impacts. (Bottom row) Corresponding sagittal views following the bisection of the impact site. Specimens were photographed under equivalent lighting conditions and positioning. India ink has been used to emphasize cartilage damage.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In