0
Research Papers

Use of Robotic Manipulators to Study Diarthrodial Joint Function

[+] Author and Article Information
Richard E. Debski

Orthopaedic Robotics Laboratory,
Departments of Bioengineering
and Orthopaedic Surgery,
University of Pittsburgh,
408 Center for Bioengineering,
300 Technology Drive,
Pittsburgh, PA 15219
e-mail: genesis1@pitt.edu

Satoshi Yamakawa, Hiromichi Fujie

Tokyo Metropolitan University,
6-6 Asahigaoka, Hino,
Tokyo 191-0065, Japan

Volker Musahl

Orthopaedic Robotics Laboratory,
Departments of Orthopaedic Surgery
and Bioengineering,
University of Pittsburgh,
408 Center for Bioengineering,
300 Technology Drive,
Pittsburgh, PA 15219

1Corresponding author.

Manuscript received July 9, 2016; final manuscript received December 23, 2016; published online January 19, 2017. Assoc. Editor: Beth A. Winkelstein.

J Biomech Eng 139(2), 021010 (Jan 19, 2017) (7 pages) Paper No: BIO-16-1288; doi: 10.1115/1.4035644 History: Received July 09, 2016; Revised December 23, 2016

Diarthrodial joint function is mediated by a complex interaction between bones, ligaments, capsules, articular cartilage, and muscles. To gain a better understanding of injury mechanisms and to improve surgical procedures, an improved understanding of the structure and function of diarthrodial joints needs to be obtained. Thus, robotic testing systems have been developed to measure the resulting kinematics of diarthrodial joints as well as the in situ forces in ligaments and their replacement grafts in response to external loading conditions. These six degrees-of-freedom (DOF) testing systems can be controlled in either position or force modes to simulate physiological loading conditions or clinical exams. Recent advances allow kinematic, in situ force, and strain data to be measured continuously throughout the range of joint motion using velocity-impedance control, and in vivo kinematic data to be reproduced on cadaveric specimens to determine in situ forces during physiologic motions. The principle of superposition can also be used to determine the in situ forces carried by capsular tissue in the longitudinal direction after separation from the rest of the capsule as well as the interaction forces with the surrounding tissue. Finally, robotic testing systems can be used to simulate soft tissue injury mechanisms, and computational models can be validated using the kinematic and force data to help predict in vivo stresses and strains present in these tissues. The goal of these analyses is to help improve surgical repair procedures and postoperative rehabilitation protocols. In the future, more information is needed regarding the complex in vivo loads applied to diarthrodial joints during clinical exams and activities of daily living to serve as input to the robotic testing systems. Improving the capability to accurately reproduce in vivo kinematics with robotic testing systems should also be examined.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Frobell, R. B. , Lohmander, L. S. , and Roos, H. P. , 2007, “ Acute Rotational Trauma to the Knee: Poor Agreement Between Clinical Assessment and Magnetic Resonance Imaging Findings,” Scand. J. Med. Sci. Sports, 17(2), pp. 109–114. [PubMed]
Gottlob, C. A. , Baker, C. L., Jr. , Pellissier, J. M. , and Colvin, L. , 1999, “ Cost Effectiveness of Anterior Cruciate Ligament Reconstruction in Young Adults,” Clin. Orthop. Relat. Res., 367, pp. 272–282. [CrossRef]
Leininger, R. E. , Knox, C. L. , and Comstock, R. D. , 2007, “ Epidemiology of 1.6 Million Pediatric Soccer-Related Injuries Presenting to US Emergency Departments From 1990 to 2003,” Am. J. Sports Med., 35(2), pp. 288–293. [CrossRef] [PubMed]
Nordenvall, R. , Bahmanyar, S. , Adami, J. , Stenros, C. , Wredmark, T. , and Fellander-Tsai, L. , 2012, “ A Population-Based Nationwide Study of Cruciate Ligament Injury in Sweden, 2001–2009: Incidence, Treatment, and Sex Differences,” Am. J. Sports Med., 40(8), pp. 1808–1813. [CrossRef] [PubMed]
Mather, R. C., 3rd , Koenig, L. , Kocher, M. S. , Dall, T. M. , Gallo, P. , Scott, D. J. , Bach, B. R., Jr. , and Spindler, K. P. , 2013, “ Societal and Economic Impact of Anterior Cruciate Ligament Tears,” J. Bone Jt. Surg., 95(19), pp. 1751–1759. [CrossRef]
Colombet, P. , Robinson, J. , Christel, P. , Franceschi, J. P. , and Djian, P. , 2007, “ Using Navigation to Measure Rotation Kinematics During ACL Reconstruction,” Clin. Orthop. Relat. Res., 454, pp. 59–65. [CrossRef] [PubMed]
Murray, P. J. , Alexander, J. W. , Gold, J. E. , Icenogle, K. D. , Noble, P. C. , and Lowe, W. R. , 2010, “ Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction: Kinematics and Knee Flexion Angle-Graft Tension Relation,” Arthroscopy, 26(2), pp. 202–213. [CrossRef] [PubMed]
Yoo, J. D. , Papannagari, R. , Park, S. E. , DeFrate, L. E. , Gill, T. J. , and Li, G. , 2005, “ The Effect of Anterior Cruciate Ligament Reconstruction on Knee Joint Kinematics Under Simulated Muscle Loads,” Am. J. Sports Med., 33(2), pp. 240–246. [CrossRef] [PubMed]
Debski, R. E. , Parsons, I. M. T. , Woo, S. L. , and Fu, F. H. , 2001, “ Effect of Capsular Injury on Acromioclavicular Joint Mechanics,” J. Bone Jt. Surg., 83(9), pp. 1344–1351. [CrossRef]
Debski, R. E. , Sakone, M. , Woo, S. L. , Wong, E. K. , Fu, F. H. , and Warner, J. J. , 1999, “ Contribution of the Passive Properties of the Rotator Cuff to Glenohumeral Stability During Anterior-Posterior Loading,” J. Shoulder Elbow Surg., 8(4), pp. 324–329. [CrossRef] [PubMed]
Debski, R. E. , Wong, E. K. , Woo, S. L. , Sakane, M. , Fu, F. H. , and Warner, J. J. , 1999, “ In Situ Force Distribution in the Glenohumeral Joint Capsule During Anterior-Posterior Loading,” J. Orthop. Res., 17(5), pp. 769–776. [CrossRef] [PubMed]
Fujie, H. , Mabuchi, K. , Woo, S. L. , Livesay, G. A. , Arai, S. , and Tsukamoto, Y. , 1993, “ The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology,” ASME J. Biomech. Eng., 115(3), pp. 211–217. [CrossRef]
Fujie, H. , Otsubo, H. , Fukano, S. , Suzuki, T. , Suzuki, D. , Mae, T. , and Shino, K. , 2011, “ Mechanical Functions of the Three Bundles Consisting of the Human Anterior Cruciate Ligament,” Knee Surg., Sports Traumatol., Arthroscopy, 19(Suppl. 1), pp. S47–S53. [CrossRef]
Lenschow, S. , Zantop, T. , Weimann, A. , Lemburg, T. , Raschke, M. , Strobel, M. , and Petersen, W. , 2006, “ Joint Kinematics and In Situ Forces After Single Bundle PCL Reconstruction: A Graft Placed at the Center of the Femoral Attachment Does Not Restore Normal Posterior Laxity,” Arch. Orthop. Trauma Surg., 126(4), pp. 253–259. [CrossRef] [PubMed]
Mae, T. , Shino, K. , Nakata, K. , Toritsuka, Y. , Otsubo, H. , and Fujie, H. , 2008, “ Optimization of Graft Fixation at the Time of Anterior Cruciate Ligament Reconstruction—Part II: Effect of Knee Flexion Angle,” Am. J. Sports Med., 36(6), pp. 1094–1100. [CrossRef] [PubMed]
Most, E. , Axe, J. , Rubash, H. , and Li, G. , 2004, “ Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes,” J. Biomech., 37(11), pp. 1743–1748. [CrossRef] [PubMed]
Musahl, V. , Plakseychuk, A. , VanScyoc, A. , Sasaki, T. , Debski, R. E. , McMahon, P. J. , and Fu, F. H. , 2005, “ Varying Femoral Tunnels Between the Anatomical Footprint and Isometric Positions: Effect on Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee,” Am. J. Sports Med., 33(5), pp. 712–718. [CrossRef] [PubMed]
Rudy, T. W. , Livesay, G. A. , Woo, S. L. , and Fu, F. H. , 1996, “ A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments,” J. Biomech., 29(10), pp. 1357–1360. [CrossRef] [PubMed]
Woo, S. L. , Debski, R. E. , Wong, E. K. , Yagi, M. , and Tarinelli, D. , 1999, “ Use of Robotic Technology for Diarthrodial Joint Research,” J. Sci. Med. Sport, 2(4), pp. 283–297. [CrossRef] [PubMed]
Woo, S. L. , and Fisher, M. B. , 2009, “ Evaluation of Knee Stability With Use of a Robotic System,” J. Bone Jt. Surg., 91(Suppl. 1), pp. 78–84. [CrossRef]
Woo, S. L. , Kanamori, A. , Zeminski, J. , Yagi, M. , Papageorgiou, C. , and Fu, F. H. , 2002, “ The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads,” J. Bone Jt. Surg., 84(6), pp. 907–914. [CrossRef]
Zantop, T. , Lenschow, S. , Lemburg, T. , Weimann, A. , and Petersen, W. , 2004, “ Soft-Tissue Graft Fixation in Posterior Cruciate Ligament Reconstruction: Evaluation of the Effect of Tibial Insertion Site on Joint Kinematics and In Situ Forces Using a Robotic/UFS Testing System,” Arch. Orthop. Trauma Surg., 124(9), pp. 614–620. [CrossRef] [PubMed]
Gill, T. J. , DeFrate, L. E. , Wang, C. , Carey, C. T. , Zayontz, S. , Zarins, B. , and Li, G. , 2003, “ The Biomechanical Effect of Posterior Cruciate Ligament Reconstruction on Knee Joint Function. Kinematic Response to Simulated Muscle Loads,” Am. J. Sports Med., 31(4), pp. 530–536. [PubMed]
Gill, T. J. , DeFrate, L. E. , Wang, C. , Carey, C. T. , Zayontz, S. , Zarins, B. , and Li, G. , 2004, “ The Effect of Posterior Cruciate Ligament Reconstruction on Patellofemoral Contact Pressures in the Knee Joint Under Simulated Muscle Loads,” Am. J. Sports Med., 32(1), pp. 109–115. [CrossRef] [PubMed]
Li, G. , DeFrate, L. E. , Zayontz, S. , Park, S. E. , and Gill, T. J. , 2004, “ The Effect of Tibiofemoral Joint Kinematics on Patellofemoral Contact Pressures Under Simulated Muscle Loads,” J. Orthop. Res., 22(4), pp. 801–806. [CrossRef] [PubMed]
Li, G. , Most, E. , Sultan, P. G. , Schule, S. , Zayontz, S. , Park, S. E. , and Rubash, H. E. , 2004, “ Knee Kinematics With a High-Flexion Posterior Stabilized Total Knee Prosthesis: An In Vitro Robotic Experimental Investigation,” J. Bone Jt. Surg., 86(8), pp. 1721–1729. [CrossRef]
Li, G. , Rudy, T. W. , Sakane, M. , Kanamori, A. , Ma, C. B. , and Woo, S. L. , 1999, “ The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL,” J. Biomech., 32(4), pp. 395–400. [CrossRef] [PubMed]
Li, G. , Suggs, J. , and Gill, T. , 2002, “ The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation,” Ann. Biomed. Eng., 30(5), pp. 713–720. [CrossRef] [PubMed]
Markolf, K. L. , O'Neill, G. , Jackson, S. R. , and McAllister, D. R. , 2004, “ Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments,” Am. J. Sports Med., 32(5), pp. 1144–1149. [CrossRef] [PubMed]
Fujie, H. , Livesay, G. A. , Woo, S. L. , Kashiwaguchi, S. , and Blomstrom, G. , 1995, “ The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology,” ASME J. Biomech. Eng., 117(1), pp. 1–7. [CrossRef]
Fujie, H. , Sekito, T. , and Orita, A. , 2004, “ A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint,” ASME J. Biomech. Eng., 126(1), pp. 54–61. [CrossRef]
Gilbertson, L. G. , Doehring, T. C. , Livesay, G. A. , Rudy, T. W. , Kang, J. D. , and Woo, S. L. , 1999, “ Improvement of Accuracy in a High-Capacity, Six Degree-of-Freedom Load Cell: Application to Robotic Testing of Musculoskeletal Joints,” Ann. Biomed. Eng., 27(6), pp. 839–843. [CrossRef] [PubMed]
Woo, S. L. , Wu, C. , Dede, O. , Vercillo, F. , and Noorani, S. , 2006, “ Biomechanics and Anterior Cruciate Ligament Reconstruction,” J. Orthop. Surg. Res., 1(1), p. 2. [CrossRef] [PubMed]
Livesay, G. A. , Fujie, H. , Kashiwaguchi, S. , Morrow, D. A. , Fu, F. H. , and Woo, S. L. , 1995, “ Determination of the In Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament,” Ann. Biomed. Eng., 23(4), pp. 467–474. [CrossRef] [PubMed]
Livesay, G. A. , Rudy, T. W. , Woo, S. L. , Runco, T. J. , Sakane, M. , Li, G. , and Fu, F. H. , 1997, “ Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament,” J. Orthop. Res., 15(2), pp. 278–284. [CrossRef] [PubMed]
Grood, E. S. , and Suntay, W. J. , 1983, “ A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Fujie, H. , Livesay, G. A. , Fujita, M. , and Woo, S. L. , 1996, “ Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control,” J. Biomech., 29(12), pp. 1577–1585. [CrossRef] [PubMed]
Fujie, H. , and Yagi, H. , 2011, “ Novel Robotic System for Joint Mechanical Tests Using Velocity-Impedance Control,” ASME Paper No. SBC2011-53884.
Goertzen, D. J. , and Kawchuk, G. N. , 2009, “ A Novel Application of Velocity-Based Force Control for Use in Robotic Biomechanical Testing,” J. Biomech., 42(3), pp. 366–369. [CrossRef] [PubMed]
Lawless, I. M. , Ding, B. , Cazzolato, B. S. , and Costi, J. J. , 2014, “ Adaptive Velocity-Based Six Degree of Freedom Load Control for Real-Time Unconstrained Biomechanical Testing,” J. Biomech., 47(12), pp. 3241–3247. [CrossRef] [PubMed]
Hirabayashi, H. , Sugimoto, K. , Enomoto, A. , and Ishimaru, I. , 2000, “ Robot Manipulation Using Virtual Compliance Control,” J. Rob. Mechantronics, 12(5), pp. 567–576. [CrossRef]
Kanamori, A. , Woo, S. L. , Ma, C. B. , Zeminski, J. , Rudy, T. W. , Li, G. , and Livesay, G. A. , 2000, “ The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology,” Arthroscopy, 16(6), pp. 633–639. [CrossRef] [PubMed]
Moore, S. M. , Stehle, J. H. , Rainis, E. J. , McMahon, P. J. , and Debski, R. E. , 2008, “ The Current Anatomical Description of the Inferior Glenohumeral Ligament Does Not Correlate With Its Functional Role in Positions of External Rotation,” J. Orthop. Res., 26(12), pp. 1598–1604. [CrossRef] [PubMed]
Fujie, H. , Mabuchi, K. , Tsukamoto, Y. , Yamamoto, M. , and Sasada, T. , 1987, “ Application of Robotics to the Knee Instability Test—Preliminary Experiment of Canine Knee Joints,” Annual Meeting of Japanese Society for Orthopaedic Biomechanics, pp. 105–110.
Fujie, H. , Mabuchi, K. , Tsukamoto, Y. , Yamamoto, M. , and Sasada, T. , 1989, “ Application of Robotics to Palpation of Injury of Ligaments—Development of a New Method of Knee Instability Test,” American Society of Mechanical Engineers—Bioengineering Division, San Francisco, CA, pp. 119–121.
Bell, K. M. , Arilla, F. V. , Rahnemai-Azar, A. A. , Fu, F. H. , Musahl, V. , and Debski, R. E. , 2015, “ Novel Technique for Evaluation of Knee Function Continuously Through the Range of Flexion,” J. Biomech., 48(13), pp. 3728–3731. [CrossRef] [PubMed]
Ma, C. B. , Janaushek, M. A. , Vogrin, T. M. , Rudy, T. W. , Harner, C. D. , and Woo, S. L. , 2000, “ Significance of Changes in the Reference Position for Measurements of Tibial Translation and Diagnosis of Cruciate Ligament Deficiency,” J. Orthop. Res., 18(2), pp. 176–182. [CrossRef] [PubMed]
Woo, S. L. , Chan, S. S. , and Yamaji, T. , 1997, “ Biomechanics of Knee Ligament Healing, Repair and Reconstruction,” J. Biomech., 30(5), pp. 431–439. [CrossRef] [PubMed]
Markolf, K. L. , Jackson, S. R. , Foster, B. , and McAllister, D. R. , 2014, “ ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion-Extension Cycle,” J. Orthop. Res., 32(1), pp. 89–95. [CrossRef] [PubMed]
Malicky, D. M. , Kuhn, J. E. , Frisancho, J. C. , Lindholm, S. R. , Raz, J. A. , and Soslowsky, L. J. , 2002, “ Neer Award 2001: Nonrecoverable Strain Fields of the Anteroinferior Glenohumeral Capsule Under Subluxation,” J. Shoulder Elbow Surg., 11(6), pp. 529–540. [CrossRef] [PubMed]
Moore, S. M. , Ellis, B. , Weiss, J. A. , McMahon, P. J. , and Debski, R. E. , 2010, “ The Glenohumeral Capsule Should Be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model,” Ann. Biomed. Eng., 38(1), pp. 66–76. [CrossRef] [PubMed]
Claes, S. , Vereecke, E. , Maes, M. , Victor, J. , Verdonk, P. , and Bellemans, J. , 2013, “ Anatomy of the Anterolateral Ligament of the Knee,” J. Anat., 223(4), pp. 321–328. [CrossRef] [PubMed]
Guenther, D. , Rahnemai-Azar, A. A. , Bell, K. M. , Irarrazaval, S. , Fu, F. H. , Musahl, V. , and Debski, R. E. , 2016, “ The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue,” Am. J. Sports Med. (epub).
Sexton, S. L. , Guenther, D. , Bell, K. M. , Irarrazaval, S. , Rahnemai-Azar, A. A. , Fu, F. H. , Musahl, V. , and Debski, R. E. , 2016, “ Anterolateral Capsule of the Knee Functions as a Sheet of Tissue Based on Tissue Strain,” Summer Biomechanics, Bioengineering and Biotransport Conference, National Harbor, MD, p. SB3C2016-2096. http://www.engineering.pitt.edu/Departments/Bioengineering/_.../Sexton_Stephanie/
Darcy, S. P. , Kilger, R. H. , Woo, S. L. , and Debski, R. E. , 2006, “ Estimation of ACL Forces by Reproducing Knee Kinematics Between Sets of Knees: A Novel Non-Invasive Methodology,” J. Biomech., 39(13), pp. 2371–2377. [CrossRef] [PubMed]
Nesbitt, R. J. , Herfat, S. T. , Boguszewski, D. V. , Engel, A. J. , Galloway, M. T. , and Shearn, J. T. , 2014, “ Primary and Secondary Restraints of Human and Ovine Knees for Simulated In Vivo Gait Kinematics,” J. Biomech., 47(9), pp. 2022–2027. [CrossRef] [PubMed]
Arciero, R. A. , Wheeler, J. H. , Ryan, J. B. , and McBride, J. T. , 1994, “ Arthroscopic Bankart Repair Versus Nonoperative Treatment for Acute, Initial Anterior Shoulder Dislocations,” Am. J. Sports Med., 22(5), pp. 589–594. [CrossRef] [PubMed]
Browe, D. P. , Rainis, C. A. , McMahon, P. J. , and Debski, R. E. , 2013, “ Injury to the Anteroinferior Glenohumeral Capsule During Anterior Dislocation,” Clin. Biomech., 28(2), pp. 140–145. [CrossRef]
Browe, D. P. , Voycheck, C. A. , McMahon, P. J. , and Debski, R. E. , 2014, “ Changes to the Mechanical Properties of the Glenohumeral Capsule During Anterior Dislocation,” J. Biomech., 47(2), pp. 464–469. [CrossRef] [PubMed]
Rainis, C. A. , Browe, D. P. , McMahon, P. J. , and Debski, R. E. , 2013, “ Capsule Function Following Anterior Dislocation: Implications for Diagnosis of Shoulder Instability,” J. Orthop. Res., 31(6), pp. 962–968. [CrossRef] [PubMed]
Li, G. , Gil, J. , Kanamori, A. , and Woo, S. L. , 1999, “ A Validated Three-Dimensional Computational Model of a Human Knee Joint,” ASME J. Biomech. Eng., 121(6), pp. 657–662. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A schematic diagram of an articulated robotic manipulator combined with a UFS, as well as the coordinate systems of the femur, tibia, UFS, and robotic end-effector

Grahic Jump Location
Fig. 2

The Grood and Suntay description of tibiofemoral motion

Grahic Jump Location
Fig. 3

Typical coordinate systems associated with a robotic testing system and the Jacobian matrices that relate the forces and motions between each coordinate system

Grahic Jump Location
Fig. 4

Proximal force applied to a porcine knee as a function of time using the stiffness and velocity-impedance control methodologies

Grahic Jump Location
Fig. 5

An orthogonal robotic testing system with a femur mounted to the lower mechanism and tibia attached to the upper mechanism. (X, Y, Z are the translational degrees-of-freedom; U, V, W are the rotational degrees-of-freedom).

Grahic Jump Location
Fig. 6

Anterior tibial translation and in situ forces in the ACL during static and continuous testing methods [46]

Grahic Jump Location
Fig. 7

Inferior view of the glenohumeral joint with strain markers attached to the inferior glenohumeral capsule to allow the determination of capsular strain [43]

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In