Technical Brief

A Validation Study of the Repeatability and Accuracy of Atomic Force Microscopy Indentation Using Polyacrylamide Gels and Colloidal Probes

[+] Author and Article Information
Donghee Lee

Department of Mechanical and Materials Engineering,
University of Nebraska-Lincoln,
Lincoln, NE 68588
e-mail: donghee.lee@huskers.unl.edu

Sangjin Ryu

Department of Mechanical and Materials Engineering,
University of Nebraska-Lincoln,
Lincoln, NE 68588
e-mail: sangjin.ryu@unl.edu

1Corresponding author.

Manuscript received July 5, 2016; final manuscript received December 18, 2016; published online February 14, 2017. Assoc. Editor: Nathan Sniadecki.

J Biomech Eng 139(4), 044502 (Feb 14, 2017) (7 pages) Paper No: BIO-16-1282; doi: 10.1115/1.4035536 History: Received July 05, 2016; Revised December 18, 2016

The elasticity of soft biological materials is a critical property to understand their biomechanical behaviors. Atomic force microscopy (AFM) indentation method has been widely employed to measure the Young's modulus (E) of such materials. Although the accuracy of the method has been recently evaluated based on comparisons with macroscale E measurements, the repeatability of the method has yet to be validated for rigorous biomechanical studies of soft elastic materials. We tested the AFM indentation method using colloidal probes and polyacrylamide (PAAM) gels of E < 20 kPa as a model soft elastic material after having identified optimal trigger force and probe speed. AFM indentations repeated with time intervals show that the method is well repeatable when performed carefully. Compared with the rheometric method and the confocal microscopy indentation method, the AFM indentation method is evaluated to have comparable accuracy and better precision, although these elasticity measurements appear to rely on the compositions of PAAM gels and the length scale of measurement. Therefore, we have confirmed that the AFM indentation method can reliably measure the elasticity of soft elastic materials.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Radmacher, M. , 1997, “ Measuring the Elastic Properties of Biological Samples With the AFM,” IEEE Eng. Med. Biol., 16(2), pp. 47–57. [CrossRef]
Costa, K. D. , Sim, A. J. , and Yin, F. C.-P. , 2006, “ Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelin Cells Probed by Atomic Force Microscopy,” ASME J. Biomech. Eng., 128(2), pp. 176–184. [CrossRef]
Kuznetsova, T. G. , Starodubtseva, M. N. , Yegorenkov, N. I. , Chizhik, S. A. , and Zhdanov, R. I. , 2007, “ Atomic Force Microscopy Probing of Cell Elasticity,” Micron, 38(8), pp. 824–833. [CrossRef] [PubMed]
Lin, D. C. , Dimitriadis, E. K. , and Horkay, F. , 2007, “ Robust Strategies for Automated AFM Force Curve Analysis-I. Non-Adhesive Indentation of Soft, Inhomogeneous Materials,” ASME J. Biomech. Eng., 129(3), pp. 430–440. [CrossRef]
Lin, D. C. , Dimitriadis, E. K. , and Horkay, F. , 2007, “ Robust Strategies for Automated AFM Force Curve Analysis—II: Adhesion-Influenced Indentation of Soft, Elastic Materials,” ASME J. Biomech. Eng., 129(6), pp. 904–912. [CrossRef]
Simha, N. K. , Jin, H. , Hall, M. L. , Chiravarambath, S. , and Lewis, J. L. , 2007, “ Effect of Indenter Size on Elastic Modulus of Cartilage Measured by Indentation,” ASME J. Biomech. Eng., 129(5), pp. 767–775. [CrossRef]
Tripathy, S. , and Berger, E. J. , 2009, “ Measuring Viscoelasticity of Soft Samples Using Atomic Force Microscopy,” ASME J. Biomech. Eng., 131(9), p. 094507. [CrossRef]
Kirmizis, D. , and Logothetidis, S. , 2010, “ Atomic Force Microscopy Probing in the Measurement of Cell Mechanics,” Int. J. Nanomed., 5, pp. 137–145. [CrossRef]
Azeloglu, E. U. , and Costa, K. D. , 2011, “ Atomic Force Microscopy in Mechanobiology: Measuring Microelastic Heterogeneity of Living Cells,” Atomic Force Microscopy in Biomedical Research: Methods and Protocols, C. P. Braga and D. Ricci , eds., Humana Press, Totowa, NJ, pp. 303–329.
MacKay, J. L. , and Kumar, S. , 2013, “ Measuring the Elastic Properties of Living Cells With Atomic Force Microscopy Indentation,” Cell Imaging Techniques: Methods and Protocols, J. D. Taatjes and J. Roth , eds., Humana Press, Totowa, NJ, pp. 313–329.
Thomas, G. , Burnham, N. A. , Camesano, T. A. , and Wen, Q. , 2013, “ Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy,” J. Visualized Exp., 76, p. e50497.
Gautier, H. O. B. , Thompson, A. J. , Achouri, S. , Koser, D. E. , Holtzmann, K. , Moeendarbary, E. , and Franze, K. , 2015, “ Atomic Force Microscopy-Based Force Measurements on Animal Cells and Tissues,” Methods in Cell Biology, K. P. Ewa, ed., Academic Press, San Diego, CA, pp. 211–235.
Ondeck, M. G. , and Engler, A. J. , 2016, “ Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel,” ASME J. Biomech. Eng., 138(2), p. 021003. [CrossRef]
Demichelis, A. , Divieto, C. , Mortati, L. , Pavarelli, S. , Sassi, G. , and Sassi, M. P. , 2015, “ Toward the Realization of Reproducible Atomic Force Microscopy Measurements of Elastic Modulus in Biological Samples,” J. Biomech., 48(6), pp. 1099–1104. [CrossRef] [PubMed]
Butcher, D. T. , Alliston, T. , and Weaver, V. M. , 2009, “ A Tense Situation: Forcing Tumour Progression,” Nat. Rev. Cancer, 9(2), pp. 108–122. [CrossRef] [PubMed]
Levental, I. , Georges, P. C. , and Janmey, P. A. , 2007, “ Soft Biological Materials and Their Impact on Cell Function,” Soft Matter, 3(3), pp. 299–306. [CrossRef]
Rodriguez, M. L. , McGarry, P. J. , and Sniadecki, N. J. , 2013, “ Review on Cell Mechanics: Experimental and Modeling Approaches,” ASME Appl. Mech. Rev., 65(6), p. 060801. [CrossRef]
Denisin, A. K. , and Pruitt, B. L. , 2016, “ Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications,” ACS Appl. Mater. Interfaces, 8(34), pp. 21893–21902. [CrossRef] [PubMed]
Tse, J. R. , and Engler, A. J. , 2010, “ Preparation of Hydrogel Substrates With Tunable Mechanical Properties,” Current Protocols in Cell Biology, Wiley, Hoboken, NJ, pp. 1–16.
Lakins, J. , Chin, A. , and Weaver, V. , 2012, “ Exploring the Link Between Human Embryonic Stem Cell Organization and Fate Using Tension-Calibrated Extracellular Matrix Functionalized Polyacrylamide Gels,” Progenitor Cells: Methods and Protocols, K. A. Mace and K. M. Braun , eds., Humana Press, Totowa, NJ, pp. 317–350.
Damljanović, V. , Lagerholm, B. C. , and Jacobson, K. , 2005, “ Bulk and Micropatterned Conjugation of Extracellular Matrix Proteins to Characterized Polyacrylamide Substrates for Cell Mechanotransduction Assays,” Biotechniques, 39(6), pp. 847–851. [CrossRef] [PubMed]
Dimitriadis, E. K. , Horkay, F. , Maresca, J. , Kachar, B. , and Chadwick, R. S. , 2002, “ Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope,” Biophys. J., 82(5), pp. 2798–2810. [CrossRef] [PubMed]
Levental, I. , Georges, P. C. , and Janmey, P. A. , 2007, “ Soft Biological Materials and Their Impact on Cell Function,” Soft Matter, 3(3), pp. 299–306. [CrossRef]
Carl, P. , and Schillers, H. , 2008, “ Elasticity Measurement of Living Cells With an Atomic Force Microscope: Data Acquisition and Processing,” Pflugers Arch. Eur. J. Physiol., 457(2), pp. 551–559. [CrossRef]
Lee, D. , Rahman, M. M. , Zhou, Y. , and Ryu, S. , 2015, “ Three-Dimensional Confocal Microscopy Indentation Method for Hydrogel Elasticity Measurement,” Langmuir, 31(35), pp. 9684–9693. [CrossRef] [PubMed]
Engler, A. , Bacakova, L. , Newman, C. , Hategan, A. , Griffin, M. , and Discher, D. , 2004, “ Substrate Compliance Versus Ligand Density in Cell on Gel Responses,” Biophys. J., 86, pp. 617–628. [CrossRef] [PubMed]
Li, C. , Allen, J. , Alliston, T. , and Pruitt, L. A. , 2011, “ The Use of Polyacrylamide Gels for Mechanical Calibration of Cartilage–A Combined Nanoindentation and Unconfined Compression Study,” J. Mech. Behav. Biomed., 4(7), pp. 1540–1547. [CrossRef]
Abidine, Y. , Laurent, V. M. , Michel, R. , Duperray, A. , Palade, L. I. , and Verdier, C. , 2015, “ Physical Properties of Polyacrylamide Gels Probed by AFM and Rheology,” Eur. Phys. Lett., 109(3), p. 38003.
Buffinton, C. M. , Tong, K. J. , Blaho, R. A. , Buffinton, E. M. , and Ebenstein, D. M. , 2015, “ Comparison of Mechanical Testing Methods for Biomaterials: Pipette Aspiration, Nanoindentation, and Macroscale Testing,” J. Mech. Behav. Biomed. Mater., 51, pp. 367–379. [CrossRef] [PubMed]
Di Lorenzo, F. , Hellwig, J. , von Klitzing, R. , and Seiffert, S. , 2015, “ Macroscopic and Microscopic Elasticity of Heterogeneous Polymer Gels,” ACS Macro Lett., 4(7), pp. 698–703. [CrossRef]
Gavara, N. , 2016, “ Combined Strategies for Optimal Detection of the Contact Point in AFM Force-Indentation Curves Obtained on Thin Samples and Adherent Cells,” Sci. Rep., 6, p. 21267. [CrossRef] [PubMed]
Hutter, J. L. , and Bechhoefer, J. , 1993, “ Calibration of Atomic-Force Microscope Tips,” Rev. Sci. Instrum., 64(7), pp. 1868–1873. [CrossRef]
Pettersson, T. , Nordgren, N. , Rutland, M. W. , and Feiler, A. , 2007, “ Comparison of Different Methods to Calibrate Torsional Spring Constant and Photodetector for Atomic Force Microscopy Friction Measurements in Air and Liquid,” Rev. Sci. Instrum., 78(9), p. 093702. [CrossRef] [PubMed]
Tocha, E. , Song, J. , Schönherr, H. , and Vancso, G. J. , 2007, “ Calibration of Friction Force Signals in Atomic Force Microscopy in Liquid Media,” Langmuir, 23(13), pp. 7078–7082. [CrossRef] [PubMed]
Chung, K.-H. , Shaw, G. A. , and Pratt, J. R. , 2009, “ Accurate Noncontact Calibration of Colloidal Probe Sensitivities in Atomic Force Microscopy,” Rev. Sci. Instrum., 80(6), p. 065107. [CrossRef] [PubMed]
Pirzer, T. , and Hugel, T. , 2009, “ Atomic Force Microscopy Spring Constant Determination in Viscous Liquids,” Rev. Sci. Instrum., 80(3), p. 035110. [CrossRef] [PubMed]
Kiracofe, D. , and Raman, A. , 2010, “ On Eigenmodes, Stiffness, and Sensitivity of Atomic Force Microscope Cantilevers in Air Versus Liquids,” J. Appl. Phys., 107(3), p. 033506. [CrossRef]
Ryu, S. , and Franck, C. , 2011, “ In Situ Hydrodynamic Lateral Force Calibration of AFM Colloidal Probes,” Langmuir, 27(21), pp. 13390–13399. [CrossRef] [PubMed]
Hermanowicz, P. , Sarna, M. , Burda, K. , and Gabryś, H. , 2014, “ AtomicJ: An Open Source Software for Analysis of Force Curves,” Rev. Sci. Instrum., 85(6), p. 063703. [CrossRef] [PubMed]
Sneddon, I. N. , 1965, “ The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” Int. J. Eng. Sci., 3(1), pp. 47–57. [CrossRef]
Heuberger, M. , Dietler, G. , and Schlapbach, L. , 1995, “ Mapping the Local Young's Modulus by Analysis of the Elastic Deformations Occurring in Atomic Force Microscopy,” Nanotechnology, 6(1), p. 12. [CrossRef]
Puricelli, L. , Galluzzi, M. , Schulte, C. , Podestà, A. , and Milani, P. , 2015, “ Nanomechanical and Topographical Imaging of Living Cells by Atomic Force Microscopy With Colloidal Probes,” Rev. Sci. Instrum., 86(3), p. 033705. [CrossRef] [PubMed]
Mahaffy, R. E. , Shih, C. K. , MacKintosh, F. C. , and Käs, J. , 2000, “ Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett., 85(4), pp. 880–883. [CrossRef] [PubMed]
Mahaffy, R. E. , Park, S. , Gerde, E. , Käs, J. , and Shih, C. K. , 2004, “ Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy,” Biophys. J., 86(3), pp. 1777–1793. [CrossRef] [PubMed]
Boudou, T. , Ohayon, J. , Picart, C. , and Tracqui, P. , 2006, “ An Extended Relationship for the Characterization of Young's Modulus and Poisson's Ratio of Tunable Polyacrylamide Gels,” Biorheology, 43(6), pp. 721–728. [PubMed]
Yeung, T. , Georges, P. C. , Flanagan, L. A. , Marg, B. , Ortiz, M. , Funaki, M. , Zahir, N. , Ming, W. , Weaver, V. , and Janmey, P. A. , 2005, “ Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion,” Cell Motil. Cytoskeleton, 60(1), pp. 24–34. [CrossRef] [PubMed]
Janmey, P. A. , Georges, P. C. , and Hvidt, S. , 2007, “ Basic Rheology for Biologists,” Methods in Cell Biology, Academic Press, San Diego, CA, pp. 1–27.
Saha, K. , Keung, A. J. , Irwin, E. F. , Li, Y. , Little, L. , Schaffer, D. V. , and Healy, K. E. , 2008, “ Substrate Modulus Directs Neural Stem Cell Behavior,” Biophys. J., 95(9), pp. 4426–4438. [CrossRef] [PubMed]
Legant, W. R. , Miller, J. S. , Blakely, B. L. , Cohen, D. M. , Genin, G. M. , and Chen, C. S. , 2010, “ Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices,” Nat. Methods, 7(12), pp. 969–971. [CrossRef] [PubMed]
Guo, S. , and Akhremitchev, B. B. , 2006, “ Packing Density and Structural Heterogeneity of Insulin Amyloid Fibrils Measured by AFM Nanoindentation,” Biomacromolecules, 7(5), pp. 1630–1636. [CrossRef] [PubMed]
Proksch, R. , Cleveland, J. , Callahan, R. , and Viani, M. , 2004, “ Finite Optical Spot Size and Position Corrections in Thermal Spring Constant Calibration,” Nanotechnology, 15(9), p. 1344. [CrossRef]
Rico, F. , Roca-Cusachs, P. , Gavara, N. , Farré, R. , Rotger, M. , and Navajas, D. , 2005, “ Probing Mechanical Properties of Living Cells by Atomic Force Microscopy With Blunted Pyramidal Cantilever Tips,” Phys. Rev. E, 72(2), p. 021914. [CrossRef]
Derjaguin, B. V. , Muller, V. M. , and Toporov, Y. P. , 1975, “ Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53(2), pp. 314–326. [CrossRef]
Johnson, K. L. , Kendall, K. , and Roberts, A. D. , 1971, “ Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. A, 324(1558), pp. 301–313. [CrossRef]
Frey, M. T. , Engler, A. , Discher, D. E. , Lee, J. , and Wang, Y. L. , 2007, “ Microscopic Methods for Measuring the Elasticity of Gel Substrates for Cell Culture: Microspheres, Microindenters, and Atomic Force Microscopy,” Methods in Cell Biology, W. Yu-Li and E. D. Dennis , eds., Academic Press, San Diego, CA, pp. 47–65.
Heuberger, M. , Dietler, G. , and Schlapbach, L. , 1996, “ Elastic Deformation of Tip and Sample During Atomic Force Microscope Measurements,” J. Vac. Sci. Technol., B, 14(2), pp. 1250–1254. [CrossRef]
Darling, E. M. , Topel, M. , Zauscher, S. , Vail, T. P. , and Guilak, F. , 2008, “ Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes,” J. Biomech., 41(2), pp. 454–464. [CrossRef] [PubMed]
Janmey, P. A. , and Miller, R. T. , 2011, “ Mechanisms of Mechanical Signaling in Development and Disease,” J. Cell Sci., 124(1), pp. 9–18. [CrossRef] [PubMed]
Richards, E. G. , and Temple, C. J. , 1971, “ Some Properties of Polyacrylamide Gels,” Nature, 230(12), pp. 92–96.
Baselga, J. , Hernandez-Fuentes, I. , Pierola, I. F. , and Llorente, M. A. , 1987, “ Elastic Properties of Highly Crosslinked Polyacrylamide Gels,” Macromolecules, 20(12), pp. 3060–3065. [CrossRef]
Baselga, J. , Hernandez-Fuentes, I. , Masegosa, R. M. , and Llorente, M. A. , 1989, “ Effect of Crosslinker on Swelling and Thermodynamic Properties of Polyacrylamide Gels,” Polym. J., 21(6), pp. 467–474. [CrossRef]
Charest, J. M. , Califano, J. P. , Carey, S. P. , and Reinhart-King, C. A. , 2012, “ Fabrication of Substrates With Defined Mechanical Properties and Topographical Features for the Study of Cell Migration,” Macromol. Biosci., 12(1), pp. 12–20. [CrossRef] [PubMed]
Oyen, M. L. , 2014, “ Mechanical Characterisation of Hydrogel Materials,” Int. Mater. Rev., 59(1), pp. 44–59. [CrossRef]
Wen, J. H. , Vincent, L. G. , Fuhrmann, A. , Choi, Y. S. , Hribar, K. C. , Taylor-Weiner, H. , Chen, S. , and Engler, A. J. , 2014, “ Interplay of Matrix Stiffness and Protein Tethering in Stem Cell Differentiation,” Nat. Mater., 13(10), pp. 979–987. [CrossRef] [PubMed]
Stellwagen, N. C. , 1998, “ Apparent Pore Size of Polyacrylamide Gels: Comparison of Gels Cast and Run in Tris-Acetate-EDTA and Tris-Borate-EDTA Buffers,” Electrophoresis, 19(10), pp. 1542–1547. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The effect of: (a) probe speed (Vp) with the fixed trigger force (Ft), and (b) trigger force with the fixed probe speed, on gel elasticity measured with two colloidal tip sizes (5 μm and 12 μm in diameter). Inset in (b): magnified view for gel 1. Error bar: standard deviation. Used PAAM gel samples: set 1 without allylamine.

Grahic Jump Location
Fig. 2

The Young's moduli of PAAM gels measured by the AFM indentation (set 1), rheometric and confocal microscopy indentation methods. Allylamine was added in PAAM gels for comparison with the confocal microscopy indentation method. +: AFM indentation with the 12 μm-diameter tip. *: Data from the previous study [25]. Error bar: standard deviation.

Grahic Jump Location
Fig. 3

Repeated AFM indentations on PAAM gels of no allylamine across samples and days. Insets: repeated AFM indentations on PAAM gels (set 1, no allylamine) with a time interval of 1 h. Error bar: standard deviation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In