0
Research Papers

Hybrid Rigid-Deformable Model for Prediction of Neighboring Intervertebral Disk Loads During Flexion Movement After Lumbar Interbody Fusion at L3–4 Level

[+] Author and Article Information
Tien Tuan Dao

Sorbonne University,
Université de Technologie de Compiègne,
CNRS, UMR 7338 Biomechanics
and Bioengineering,
Centre de Recherche Royallieu,
Compiègne CS 60 319, France
e-mail: tien-tuan.dao@utc.fr

1Corresponding author.

Manuscript received August 26, 2016; final manuscript received December 8, 2016; published online January 23, 2017. Assoc. Editor: James C. Iatridis.

J Biomech Eng 139(3), 031010 (Jan 23, 2017) (6 pages) Paper No: BIO-16-1356; doi: 10.1115/1.4035483 History: Received August 26, 2016; Revised December 08, 2016

Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1–2, L2–3, and L4–5 disks after interbody fusion at L3–4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1–2 disk and in NP region of L2–3 disk. The minimal stress change (1%) is noted at the NP region of the L1–2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nachemson, A. , 1976, “ The Lumbar Spine: An Orthopaedic Challenge,” Spine, 1(1), pp. 59–71. [CrossRef]
Dolphens, M. , Vansteelandt, S. , Cagnie, B. , Vleeming, A. , Nijs, J. , Vanderstraeten, G. , and Danneels, L. , 2016, “ Multivariable Modeling of Factors Associated With Spinal Pain in Young Adolescence,” Eur. Spine J., 25(9), pp. 2809–2821.
Faour, M. , Anderson, J. T. , Haas, A. R. , Percy, R. , Woods, S. T. , Ahn, U. M. , and Ahn, N. U. , 2016, “ Return to Work Rates After Single-Level Cervical Fusion for Degenerative Disc Disease Compared With Fusion for Radiculopathy in a Workers' Compensation Setting,” Spine, 41(14), pp. 1160–1166. [CrossRef] [PubMed]
Erbulut, D. U. , Kiapour, A. , Oktenoglu, T. , Ozer, A. F. , and Goel, V. K. , 2014, “ A Computational Biomechanical Investigation of Posterior Dynamic Instrumentation: Combination of Dynamic Rod and Hinged (Dynamic) Screw,” ASME J. Biomech. Eng., 136(5), p. 051007. [CrossRef]
Gornet, M. F. , Chan, F. W. , Coleman, J. C. , Murrell, B. , Nockels, R. P. , Taylor, B. A. , Lanman, T. H. , and Ochoa, J. A. , 2011, “ Biomechanical Assessment of a PEEK Rod System for Semi-Rigid Fixation of Lumbar Fusion Constructs,” ASME J. Biomech. Eng., 133(8), p. 081009. [CrossRef]
Lee, K. K. , Teo, E. C. , Fuss, F. K. , Vanneuville, V. , Qiu, T. X. , Ng, H. W. , Yang, K. , and Sabitzer, R. J. , 2004, “ Finite-Element Analysis for Lumbar Interbody Fusion Under Axial Loading,” IEEE Trans. Biomed. Eng., 51(3), pp. 393–400. [CrossRef] [PubMed]
Li, J. , Shang, J. , Zhou, Y. , Li, C. , and Liu, H. , 2015, “ Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion,” PLoS One, 10(12), p. e0144637. [CrossRef] [PubMed]
Tanenbaum, J. E. , Miller, J. A. , Alentado, V. J. , Lubelski, D. , Rosenbaum, B. P. , Benzel, E. C. , and Mroz, T. E. , 2016, “ Insurance Status and Reportable Quality Metrics in the Cervical Spine Fusion Population,” Spine J., 17(1), pp. 62–69. [CrossRef] [PubMed]
Agarwal, A. , Palepu, V. , Agarwal, A. K. , Goel, V. K. , Yildirim, E. D. , 2013, “ Biomechanical Evaluation of an Endplate-Conformed Polycaprolactone-Hydroxyapatite Intervertebral Fusion Graft and Its Comparison With a Typical Nonconformed Cortical Graft,” ASME J. Biomech. Eng., 135(6), p. 061005. [CrossRef]
Jaumard, N. V. , Welch, W. C. , and Winkelstein, B. A. , 2011, “ Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions,” ASME J. Biomech. Eng., 133(7), p. 071010. [CrossRef]
Erbulut, D. U. , Zafarparandeh, I. , Hassan, C. R. , Lazoglu, I. , and Ozer, A. F. , 2015, “ Determination of the Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study,” J. Neurosurg, Spine, 23(2), pp. 200–208.
Ma, J. , Jia, H. , Ma, X. , Xu, W. , Yu, J. , Feng, R. , Wang, J. , Xing, D. , Wang, Y. , Zhu, S. , Yang, Y. , Chen, Y. , and Ma, B. , 2014, “ Evaluation of the Stress Distribution Change at the Adjacent Facet Joints After Lumbar Fusion Surgery: A Biomechanical Study,” Proc. Inst. Mech. Eng. H, 228(7), pp. 665–673. [CrossRef] [PubMed]
Xiao, Z. , Wang, L. , Gong, H. , and Zhu, D. , 2012, “ Biomechanical Evaluation of Three Surgical Scenarios of Posterior Lumbar Interbody Fusion by Finite Element Analysis,” Biomed. Eng. Online, 11(1), p. 31. [CrossRef] [PubMed]
Tchako, A. , and Sadegh, A. M. , 2009, “ Stress Changes in Intervertebral Discs of the Cervical Spine Due to Partial Discectomies and Fusion,” ASME J. Biomech. Eng., 131(5), p. 051013. [CrossRef]
Yu, S. W. , Yang, S. C. , Ma, C. H. , Wu, C. H. , Yen, C. Y. , and Tu, Y. K. , 2012, “ Comparison of Dynesys Posterior Stabilization and Posterior Lumbar Interbody Fusion for Spinal Stenosis L4L5,” Acta Orthop. Belg, 78(2), pp. 230–239. http://www.actaorthopaedica.be/acta/article.asp?lang=en&navid=244&id=15237&mod=Act [PubMed]
Stoll, T. M. , Dubois, G. , and Schwarzenbach, O. , 2002, “ The Dynamic Neutralization System for the Spine: A Multi-Center Study of a Novel Non-Fusion System,” Eur. Spine J., 11(Suppl. 2), pp. S170–S178. [PubMed]
Patel, S. S. , Aruni, W. , Inceoglu, S. , Akpolat, Y. T. , Botimer, G. D. , Cheng, W. K. , and Danisa, O. A. , 2016, “ A Comparison of Staphylococcus aureus Biofilm Formation on Cobalt-Chrome and Titanium-Alloy Spinal Implants,” J. Clin. Neurosci., 31, pp. 219–223. [CrossRef] [PubMed]
Bisschop, A. , and van Tulder, M. W. , 2016, “ Market Approval Processes for New Types of Spinal Devices: Challenges and Recommendations for Improvement,” Eur. Spine J., 25(9), pp. 2993–3003. [CrossRef] [PubMed]
Dreischarf, M. , Shirazi-Adl, A. , Arjmand, N. , Rohlmann, A. , and Schmidt, H. , 2016, “ Estimation of Loads on Human Lumbar Spine: A Review of In Vivo and Computational Model Studies,” J. Biomech., 49(6), pp. 833–845. [CrossRef] [PubMed]
Nachemson, A. , 1966, “ The Load on Lumbar Disks in Different Positions of the Body,” Clin. Orthop. Relat. Res., 45, pp. 107–122. [CrossRef] [PubMed]
Takahashi, I. , Kikuchi, S. , Sato, K. , and Sato, N. , 2006, “ Mechanical Load of the Lumbar Spine During Forward Bending Motion of the Trunk—a Biomechanical Study,” Spine, 31(1), pp. 18–23. [CrossRef] [PubMed]
Wilke, H. J. , Neef, P. , Caimi, M. , Hoogland, T. , and Claes, L. E. , 1999, “ New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life,” Spine, 24(8), pp. 755–762. [CrossRef] [PubMed]
Wilke, H. J. , Neef, P. , Hinz, B. , Seidel, H. , and Claes, L. , 2001, “ Intradiscal Pressure Together With Anthropometric Data—a Data Set for the Validation of Models,” Clin. Biomech., 16(1), pp. S111–S126. [CrossRef]
Bashkuev, M. , Vergroesen, P. P. , Dreischarf, M. , Schilling, C. , van der Veen, A. J. , Schmidt, H. , and Kingma, I. , 2016, “ Intradiscal Pressure Measurements: A Challenge or a Routine?,” J. Biomech., 49(6), pp. 864–868. [CrossRef] [PubMed]
Reitmaier, S. , Schmidt, H. , Ihler, R. , Kocak, T. , Graf, N. , Ignatius, A. , and Wilke, H. J. , 2013, “ Preliminary Investigations on Intradiscal Pressures During Daily Activities: An In Vivo Study Using the Merino Sheep,” PLoS One, 8(7), p. e69610. [CrossRef] [PubMed]
Vergroesen, P. P. A. , van der Veen, A. J. , van Royen, B. J. , Kingma, I. , and Smit, T. H. , 2014, “ Intradiscal Pressure Depends on Recent Loading and Correlates With Disc Height and Compressive Stiffness,” Eur. Spine J., 23(11), pp. 2359–2368. [CrossRef] [PubMed]
Wiseman, C. M. , Lindsey, D. P. , Fredrick, A. D. , and Yerby, S. A. , 2005, “ The Effect of an Interspinous Process Implant on Facet Loading During Extension,” Spine, 30(8), pp. 903–907. [CrossRef] [PubMed]
Lindsey, D. P. , Swanson, K. E. , Fuchs, P. , Hsu, K. Y. , Zucherman, J. F. , and Yerby, S. A. , 2003, “ The Effects of an Interspinous Implant on the Kinematics of the Instrumented and Adjacent Levels in the Lumbar Spine,” Spine, 28(19), pp. 2192–2197. [CrossRef] [PubMed]
Arjmand, N. , and Shirazi-Adl, A. , 2006, “ Model and in vivo Studies on Human Trunk Load Partitioning and Stability in Isometric Forward Flexions,” J. Biomech., 39(3), pp. 510–521. [CrossRef] [PubMed]
Arjmand, N. , Gagnon, D. , Plamondon, A. , Shirazi-Adl, A. , and Lariviere, C. , 2010, “ A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings,” J. Biomech., 43(3), pp. 485–491. [CrossRef] [PubMed]
Dao, T. T. , Pouletaut, P. , Charleux, F. , Lazáry, Á. , Eltes, P. , Varga, P. P. , and Ho Ba Tho, M. C. , 2015, “ Multimodal Medical Imaging (CT and Dynamic MRI) Data and Computer-Graphics Multi-Physical Model for the Estimation of Patient Specific Lumbar Spine Muscle Forces,” Data Knowl. Eng., 96–97, pp. 3–18. [CrossRef]
Dao, T. T. , 2016, “ Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement,” J. Med. Biol. Eng., 36(4), pp. 583–593. [CrossRef]
Delp, S. L. , Anderson, F. C. , Arnold, A. S. , Loan, P. , Habib, A. , John, C. T. , Guendelman, E. , and Thelan, D. G. , 2007, “ OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Pearcy, M. J. , and Bogduk, N. , 1988, “ Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints,” Spine, 13(9), pp. 1033–1041. [CrossRef] [PubMed]
Groth, K. M. , and Granata, K. P. , 2008, “ The Viscoelastic Standard Nonlinear Solid Model: Predicting the Response of the Lumbar Intervertebral Disk to Low-Frequency Vibrations,” ASME J. Biomech. Eng., 130(3), p. 031005. [CrossRef]
Fedorov, A. , Beichel, R. , Kalpathy-Cramer, J. , Finet, J. , Fillion-Robin, J.-C. , Pujol, S. , Bauer, C. , Jennings, D. , Fennessy, F. , Sonka, M. , Buatti, J. , Aylward, S. R. , Miller, J. V. , Pieper, S. , and Kikinis, R. , 2012, “ 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network,” Magnetic Resonance Imaging 30(9), pp. 1323–1341. [CrossRef] [PubMed]
Sengupta, D. K. , and Herkowitz, H. N. , 2012, “ Pedicle Screw-Based Posterior Dynamic Stabilization: Literature Review,” Adv. Orthop., 2012, p. 424268. [CrossRef] [PubMed]
Agarwal, A. , Ingels, M. , Kodigudla, M. , Momeni, N. , Goel, V. , and Agarwal, A. K. , 2016, “ Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An in vitro Study,” ASME J. Biomech. Eng., 138(5), p. 051004. [CrossRef]
Davies, M. A. , Bryant, S. C. , Larsen, S. P. , Murrey, D. B. , Nussman, D. S. , Laxer, E. B. , and Darden, B. V. , 2006, “ Comparison of Cervical Disk Implants and Cervical Disk Fusion Treatments in Human Cadaveric Models,” ASME J. Biomech. Eng., 128(4), pp. 481–486. [CrossRef]
Bellini, C. M. , Galbusera, F. , Raimondi, M. T. , Mineo, G. V. , and Brayda-Bruno, M. , 2007, “ Biomechanics of the Lumbar Spine After Dynamic Stabilization,” J. Spinal. Disord. Tech., 20(6), pp. 423–429. [CrossRef] [PubMed]
Warden, K. E. , and Davy, D. T. , 2010, “ Localized Trabecular Damage Adjacent to Interbody Fusion Devices,” Spine, 35(8), pp. 874–880. [CrossRef] [PubMed]
Green, D. W. , Lawhorne, T. W. , Widmann, R. F. , Kepler, C. K. , Ahern, C. , Mintz, D. N. , Rawlins, B. A. , Burke, S. W. , and Boachie-Adjei, O. , 2011, “ Long-Term Magnetic Resonance Imaging Follow-Up Demonstrates Minimal Transitional Level Lumbar Disc Degeneration After Posterior Spine Fusion for Adolescent Idiopathic Scoliosis,” Spine, 36(23), pp. 1948–1954. [CrossRef] [PubMed]
Hikata, T. , Kamata, M. , and Furukawa, M. , 2014, “ Risk Factors for Adjacent Segment Disease After Posterior Lumbar Interbody Fusion and Efficacy of Simultaneous Decompression Surgery for Symptomatic Adjacent Segment Disease,” J. Spinal Disord. Tech., 27(2), pp. 70–75. [CrossRef] [PubMed]
Box, G. E. P. , and Norman, R. D. , 1987, Empirical Model-Building and Response Surfaces, Wiley, New York.
Malandrino, A. , Pozo, J. M. , Castro-Mateos, I. , Frangi, A. F. , van Rijsbergen, M. M. , Ito, K. , Wilke, H. J. , Dao, T. T. , Ho Ba Tho, M. C. , Noailly, J. , 2015, “ On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disc Models,” Front. Bioeng. Biotechnol., 3(5), pp. 1–15. [PubMed]
Wagnac, E. , Arnoux, P. J. , Garo, A. , El-Rich, M. , and Aubin, C. E. , 2001, “ Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc Under Fast Dynamic Compressive Loads,” ASME J. Biomech. Eng., 133(10), p. 101007. [CrossRef]
Baer, A. E. , Laursen, T. A. , Guilak, F. , and Setton, L. A. , 2003, “ The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model,” ASME J. Biomech. Eng., 125(1), pp. 1–11. [CrossRef]
Dao, T. T. , and Ho Ba Tho, M. C. , 2014, Biomechanics of the Musculoskeletal System: Modelling of Data Uncertainty and Knowledge, Wiley Publisher, Hermes Penton Ltd., London, UK.
Dao, T. T. , and Ho Ba Tho, M. C. , 2015, “ Assessment of Parameter Uncertainty in Rigid Musculoskeletal Simulation Using a Probabilistic Approach,” J. Musculoskeletal Res., 18(3), p. 1550013. [CrossRef]
Antoniou, J. , Epure, L. M. , Michalek, A. J. , Grant, M. P. , Iatridis, J. C. , and Mwale, F. , 2013, “ Analysis of Quantitative Magnetic Resonance Imaging and Biomechanical Parameters on Human Discs With Different Grades of Degeneration,” J. Magn. Reson. Imaging., 38(6), pp. 1402–1414. [CrossRef] [PubMed]
Walter, B. A. , Illien-Jünger, S. , Nasser, P. R. , Hecht, A. C. , and Iatridis, J. C. , 2014, “ Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture,” J. Biomech., 47(9), pp. 2095–2101. [CrossRef] [PubMed]
Wilke, H. J. , Kaiser, D. , Volkheimer, D. , Hackenbroch, C. , Püschel, K. , and Rauschmann, M. , 2016, “ A Pedicle Screw System and a Lamina Hook System Provide Similar Primary and Long-Term Stability: A Biomechanical in vitro Study With Quasi-Static and Dynamic Loading Conditions,” Eur. Spine J., 25(9), pp. 2919–2928. [CrossRef] [PubMed]
Dao, T. T. , Marin, F. , Pouletaut, P. , Aufaure, P. , Charleux, F. , and Ho Ba Tho, M. C. , 2012, “ Estimation of Accuracy of Patient Specific Musculoskeletal Modeling: Case Study on a Post-Polio Residual Paralysis Subject,” Comput. Method Biomech. Biomed. Eng., 15(7), pp. 745–775. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Hybrid rigid-deformable modeling workflow

Grahic Jump Location
Fig. 2

Coupling of rigid osteoarticular model and deformable IVD model: whole osteoarticular model (a), lumbar spine model with elastic elements within IVD disks (b), lumbar spine model with interbody fusion at L3–4 level, and viscoelastic standard nonlinear solid (SNS) model (d)

Grahic Jump Location
Fig. 3

Visualization of simulated 40-deg flexion movement of the lumbar spine within interbody fusion at L3–4 level

Grahic Jump Location
Fig. 4

Spinal load change in neighboring disk L4–5 with fusion at disk L3–4

Grahic Jump Location
Fig. 5

Spinal load change in neighboring disk L2–3 with fusion at disk L3–4

Grahic Jump Location
Fig. 6

Spinal load change in neighboring disk L1–2 with fusion at disk L3–4

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In