0
Research Papers

Implantable Sensors for Regenerative Medicine

[+] Author and Article Information
Brett S. Klosterhoff, Robert E. Guldberg

George W. Woodruff School
of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332;
Parker H. Petit Institute for
Bioengineering and Bioscience,
Georgia Institute of Technology,
Atlanta, GA 30332

Melissa Tsang

School of Electrical and Computer Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Didi She

Department of Electrical and
Systems Engineering,
University of Pennsylvania,
Philadelphia, PA 19104

Keat Ghee Ong

Department of Biomedical Engineering,
Michigan Technological University,
Houghton, MI 49931

Mark G. Allen

School of Electrical and Computer Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332;
Department of Electrical and
Systems Engineering,
University of Pennsylvania,
Philadelphia, PA 19104

Nick J. Willett

Parker H. Petit Institute for
Bioengineering and Bioscience,
Georgia Institute of Technology,
Atlanta, GA 30332;
Department of Orthopaedics,
Emory University,
Atlanta, GA 30303;
Atlanta Veteran's Affairs Medical Center,
Decatur, GA 30033;
Wallace H. Coulter Department
of Biomedical Engineering,
Georgia Institute of Technology
and Emory University,
Atlanta, GA 30332

Manuscript received July 6, 2016; final manuscript received November 28, 2016; published online January 19, 2017. Assoc. Editor: Victor H. Barocas.

J Biomech Eng 139(2), 021009 (Jan 19, 2017) (11 pages) Paper No: BIO-16-1284; doi: 10.1115/1.4035436 History: Received July 06, 2016; Revised November 28, 2016

The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nerem, R. M. , 2006, “ Tissue Engineering: The Hope, the Hype, and the Future,” Tissue Eng., 12(5), pp. 1143–1150. [CrossRef] [PubMed]
Carrel, A. , and Lindbergh, C. , 1938, “ The Culture of Organs,” Can. Med. Assoc. J., 39(4), p. 416.
Lysaght, M. J. , Jaklenec, A. , and Deweerd, E. , 2008, “ Great Expectations: Private Sector Activity in Tissue Engineering, Regenerative Medicine, and Stem Cell Therapeutics,” Tissue Eng. Part A, 14(2), pp. 305–315. [CrossRef] [PubMed]
Guldberg, R. E. , 2009, “ Spatiotemporal Delivery Strategies for Promoting Musculoskeletal Tissue Regeneration,” J. Bone Miner. Res., 24(9), pp. 1507–1511. [CrossRef] [PubMed]
Wray, J. B. , 1970, “ The Biochemical Characteristics of the Fracture Hematoma in Man,” Surg., Gynecol. Obstet., 130(5), pp. 847–852.
Brighton, C. T. , and Krebs, A. G. , 1972, “ Oxygen Tension of Healing Fractures in the Rabbit,” J. Bone Jt. Surg. Am., 54(2), pp. 323–332. [CrossRef]
Brighton, C. T. , and Krebs, A. G. , 1972, “ Oxygen Tension of Nonunion of Fractured Femurs in the Rabbit,” Surg. Gynecol. Obstet., 135(3), pp. 379–385. [PubMed]
Kolar, P. , Gaber, T. , Perka, C. , Duda, G. N. , and Buttgereit, F. , 2011, “ Human Early Fracture Hematoma is Characterized by Inflammation and Hypoxia,” Clin. Orthop. Relat. Res., 469(11), pp. 3118–3126. [CrossRef] [PubMed]
Yuasa, M. , Mignemi, N. A. , Nyman, J. S. , Duvall, C. L. , Schwartz, H. S. , Okawa, A. , Yoshii, T. , Bhattacharjee, G. , Zhao, C. , Bible, J. E. , Obremskey, W. T. , Flick, M. J. , Degen, J. L. , Barnett, J. V. , Cates, J. M. M. , and Schoenecker, J. G. , 2015, “ Fibrinolysis is Essential for Fracture Repair and Prevention of Heterotopic Ossification,” J. Clin. Invest., 125(8), pp. 3117–3131. [CrossRef] [PubMed]
Boerckel, J. D. , Uhrig, B. A. , Willett, N. J. , Huebsch, N. , and Guldberg, R. E. , 2011, “ Mechanical Regulation of Vascular Growth and Tissue Regeneration In Vivo,” Proc. Natl. Acad. Sci., 108(37), pp. E674–E680. [CrossRef]
Boerckel, J. D. , Kolambkar, Y. M. , Stevens, H. Y. , Lin, A. S. P. , Dupont, K. M. , and Guldberg, R. E. , 2012, “ Effects of In Vivo Mechanical Loading on Large Bone Defect Regeneration,” J. Orthop. Res., 30(7), pp. 1067–1075. [CrossRef] [PubMed]
Lienau, J. , Schmidt-Bleek, K. , Peters, A. , Haschke, F. , Duda, G. N. , Perka, C. , Bail, H. J. , Schütze, N. , Jakob, F. , and Schell, H. , 2009, “ Differential Regulation of Blood Vessel Formation Between Standard and Delayed Bone Healing,” J. Orthop. Res., 27(9), pp. 1133–1140. [CrossRef] [PubMed]
Claes, L. E. , and Cunningham, J. L. , 2009, “ Monitoring the Mechanical Properties of Healing Bone,” Clin. Orthop. Relat. Res., 467(8), pp. 1964–1971. [CrossRef] [PubMed]
Seide, K. , Aljudaibi, M. , Weinrich, N. , Kowald, B. , Jürgens, C. , Müller, J. , and Faschingbauer, M. , 2012, “ Telemetric Assessment of Bone Healing With an Instrumented Internal Fixator: A Preliminary Study,” J. Bone Jt. Surg. Br., 94(3), pp. 398–404. [CrossRef]
McGilvray, K. C. , Unal, E. , Troyer, K. L. , Santoni, B. G. , Palmer, R. H. , Easley, J. T. , Demir, H. V. , and Puttlitz, C. M. , 2015, “ Implantable Microelectromechanical Sensors for Diagnostic Monitoring and Post-Surgical Prediction of Bone Fracture Healing,” J. Orthop. Res., 33(10), pp. 1439–1446. [CrossRef] [PubMed]
Claes, L. , Recknagel, S. , and Ignatius, A. , 2012, “ Fracture Healing Under Healthy and Inflammatory Conditions,” Nat. Rev. Rheumatol., 8(3), pp. 133–143. [CrossRef] [PubMed]
Korn, C. , and Augustin, H. G. , 2015, “ Mechanisms of Vessel Pruning and Regression,” Dev. Cell, 34(1), pp. 5–17. [CrossRef] [PubMed]
Tzioupis, C. , and Giannoudis, P. V. , 2007, “ Prevalence of Long-Bone Non-Unions,” Injury, 38(Suppl. 2), pp. S3–S9. [CrossRef] [PubMed]
Hak, D. J. , Fitzpatrick, D. , Bishop, J. A. , Marsh, J. L. , Tilp, S. , Schnettler, R. , Simpson, H. , and Alt, V. , 2014, “ Delayed Union and Nonunions: Epidemiology, Clinical Issues, and Financial Aspects,” Injury, 45(Suppl. 2), pp. S3–S7. [CrossRef] [PubMed]
Tang, D. , Tare, R. S. , Yang, L.-Y. , Williams, D. F. , Ou, K.-L. , and Oreffo, R. O. C. , 2016, “ Biofabrication of Bone Tissue: Approaches, Challenges and Translation for Bone Regeneration,” Biomaterials, 83, pp. 363–382. [CrossRef] [PubMed]
Amini, A. R. , Laurencin, C. T. , and Nukavarapu, S. P. , 2012, “ Bone Tissue Engineering: Recent Advances and Challenges,” Crit. Rev. Biomed. Eng., 40(5), pp. 363–408. [CrossRef] [PubMed]
Sebag, F. , Vaillant-Lombard, J. , Berbis, J. , Griset, V. , Henry, J. F. , Petit, P. , and Oliver, C. , 2010, “ Shear Wave Elastography: A New Ultrasound Imaging Mode for the Differential Diagnosis of Benign and Malignant Thyroid Nodules,” J. Clin. Endocrinol. Metab., 95(12), pp. 5281–5288. [CrossRef] [PubMed]
Weidemann, F. , Eyskens, B. , Jamal, F. , Mertens, L. , Kowalski, M. , D'Hooge, J. , Bijnens, B. , Gewillig, M. , Rademakers, F. , Hatle, L. , and Sutherland, G. R. , 2002, “ Quantification of Regional Left and Right Ventricular Radial and Longitudinal Function in Healthy Children Using Ultrasound-Based Strain Rate and Strain Imaging,” J. Am. Soc. Echocardiography, 15(1), pp. 20–28. [CrossRef]
Mason, R. P. , Antich, P. P. , Babcock, E. E. , Constantinescu, A. , Peschke, P. , and Hahn, E. W. , 1994, “ Non-Invasive Determination of Tumor Oxygen Tension and Local Variation With Growth,” Int. J. Radiat. Oncol., 29(1), pp. 95–103. [CrossRef]
Zhang, X. , Lin, Y. , and Gillies, R. J. , 2010, “ Tumor pH and Its Measurement,” J. Nucl. Med., 51(8), pp. 1167–1170. [CrossRef] [PubMed]
Gallagher, F. A. , Kettunen, M. I , Day , S. E., Hu , D.-E., Ardenkjaer-Larsen , J. H., Zandt , R. in't , Jensen, P. R. , Karlsson, M. , Golman, K. , Lerche, M. H. , and Brindle, K. M. , 2008, “ Magnetic Resonance Imaging of pH In Vivo Using Hyperpolarized 13C-Labelled Bicarbonate,” Nature, 453(7197), pp. 940–943. [CrossRef] [PubMed]
Wulsten, D. , Glatt, V. , Ellinghaus, A. , Schmidt-Bleek, K. , Petersen, A. , Schell, H. , Lienau, J. , Sebald, W. , Plöger, F. , Seemann, P. , and Duda, G. N. , 2011, “ Time Kinetics of Bone Defect Healing in Response to BMP-2 and GDF-5 Characterised by in vivo Biomechanics,” Eur. Cell. Mater., 21, pp. 177–192. [CrossRef] [PubMed]
Anderson, A. E. , Ellis, B. J. , and Weiss, J. A. , 2007, “ Verification, Validation and Sensitivity Studies in Computational Biomechanics,” Comput. Methods Biomech. Biomed. Eng., 10(3), pp. 171–184. [CrossRef]
Henninger, H. B. , Reese, S. P. , Anderson, A. E. , and Weiss, J. A. , 2010, “ Validation of Computational Models in Biomechanics,” Proc. Inst. Mech. Eng., Part H, 224(7), pp. 801–812. [CrossRef]
Brown, G. N. , Sattler, R. L. , and Guo, X. E. , 2016, “ Experimental Studies of Bone Mechanoadaptation: Bridging In Vitro and In Vivo Studies With Multiscale Systems,” Interface Focus, 6(1), p. 20150071. [CrossRef] [PubMed]
Bhatia, S. N. , and Ingber, D. E. , 2014, “ Microfluidic Organs-On-Chips,” Nat. Biotechnol., 32(8), pp. 760–772. [CrossRef] [PubMed]
Claes, L. E. , Claes, L. E. , Heigele, C. A. , Heigele, C. A. , Neidlinger-Wilke, C. , Neidlinger-Wilke, C. , Kaspar, D. , Kaspar, D. , Seidl, W. , Seidl, W. , Margevicius, K. J. , Margevicius, K. J. , Augat, P. , and Augat, P. , 1998, “ Effects of Mechanical Factors on the Fracture Healing Process,” Clin. Orthop. Relat. Res., Oct(355Suppl.), pp. S132–S147. [CrossRef]
Epari, D. R. , Lienau, J. , Schell, H. , Witt, F. , and Duda, G. N. , 2008, “ Pressure, Oxygen Tension and Temperature in the Periosteal Callus During Bone Healing—An In Vivo Study in Sheep,” Bone, 43(4), pp. 734–739. [CrossRef] [PubMed]
Szivek, J. A. , Ruth, J. T. , Heden, G. J. , Martinez, M. A. , Diggins, N. H. , and Wenger, K. H. , 2016, “ Determination of Joint Loads Using New Sensate Scaffolds for Regenerating Large Cartilage Defects in the Knee,” J. Biomed. Mater. Res., Part B, epub.
Rebello, K. J. , 2004, “ Applications of MEMS in Surgery,” Proc. IEEE, 92(1), pp. 43–55. [CrossRef]
Pang, C. , Lee, C. , and Suh, K. Y. , 2013, “ Recent Advances in Flexible Sensors for Wearable and Implantable Devices,” J. Appl. Polym. Sci., 130(3), pp. 1429–1441. [CrossRef]
Bashir, R. , 2004, “ BioMEMS: State-of-the-Art in Detection, Opportunities and Prospects,” Adv. Drug Delivery Rev., 56(11), pp. 1565–1586. [CrossRef]
Du, H. , and Bogue, R. , 2007, “ MEMS Sensors: Past, Present and Future,” Sens. Rev., 27(1), pp. 7–13. http://www.dsif.fee.unicamp.br/~fabiano/IE012/Material%20complementar/silicon%20sensors%20past%20present%20and%20future.pdf
Grayson, A. C. R. , Shawgo, R. S. , Johnson, A. M. , Flynn, N. T. , Li, Y. , Cima, M. J. , and Langer, R. , 2004, “ A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices,” Proc. IEEE, 92(1), pp. 6–21. [CrossRef]
Receveur, R. A. M. , Lindemans, F. W. , and De Rooij, N. F. , 2007, “ Microsystem Technologies for Implantable Applications,” J. Micromech. Microeng., 17(5), pp. R50–R80. [CrossRef]
Wise, K. D. , 2007, “ Integrated Sensors, MEMS, and Microsystems: Reflections on a Fantastic Voyage,” Sens. Actuators, A, 136(1), pp. 39–50. [CrossRef]
Allen, M. G. , 2014, “ Microfabricated Implantable Wireless Microsystems: Permanent and Biodegradable Implementations,” IEEE International Conference Micro Electro Mechanical Systems, San Francisco, CA, Jan. 26–30, pp. 1–4.
Langenfeld, H. , Krein, A. , Kirstein, M. , and Binner, L. , 1998, “ Peak Endocardial Acceleration-Based Clinical Testing of the ‘BEST’ DDDR Pacemaker. European PEA Clinical Investigation Group,” Pacing Clin. Electrophysiol., 21(11 Pt 2), pp. 2187–2191. [CrossRef] [PubMed]
Dimarco, J. P. , and Mower, M. , 2003, “ Implantable Cardioverter–Defibrillators,” New Engl. J. Med., 349, pp. 1836–1847. [CrossRef]
Magalski, A. , Adamson, P. , Gadler, F. , Böehm, M. , Steinhaus, D. , Reynolds, D. , Vlach, K. , Linde, C. , Cremers, B. , Sparks, B. , and Bennett, T. , 2002, “ Continuous Ambulatory Right Heart Pressure Measurements With an Implantable Hemodynamic Monitor: A Multicenter, 12-Month Follow-Up Study of Patients With Chronic Heart Failure,” J. Card. Failure, 8(2), pp. 63–70. [CrossRef]
Kipke, D. R. , Vetter, R. J. , Williams, J. C. , and Hetke, J. F. , 2003, “ Silicon-Substrate Intracortical Microelectrode Arrays for Long-Term Recording of Neuronal Spike Activity in Cerebral Cortex,” IEEE Trans. Neural Syst. Rehabil. Eng., 11(2), pp. 151–155. [CrossRef] [PubMed]
Schmidt, E. M. , Bak, M. J. , Hambrecht, F. T. , Kufta, C. V. , O'Rourke, D. K. , and Vallabhanath, P. , 1996, “ Feasibility of a Visual Prosthesis for the Blind Based on Intracortical Microstimulation of the Visual Cortex,” Brain, 119(5), pp. 507–522. [CrossRef] [PubMed]
Zeng, F. G. , Rebscher, S. , Harrison, W. , Sun, X. , and Feng, H. , 2008, “ Cochlear Implants: System Design, Integration, and Evaluation,” IEEE Rev. Biomed. Eng., 1, pp. 115–142. [CrossRef] [PubMed]
Ziaie, B. , Von Arx, J. A. , Dokmeci, M. R. , and Najafi, K. , 1996, “ A Hermetic Glass-Silicon Micropackage With High-Density On-Chip Feedthroughs for Sensors and Actuators,” J. Microelectromech. Syst., 5(3), pp. 166–179. [CrossRef]
Najafi, K. , 2007, “ Packaging of Implantable Microsystems,” Sixth IEEE Sensors Conference, Atlanta, Oct. 28–30, pp. 58–63.
Gilleo, Ken, ET-Trends., L. L. C. , and Warwick, R. I. , 2005, “ MEMS in Medicine,” Circuits Assembly, 16(8), pp. 1–10. http://www.allflexinc.com/PDF/Medical%20Electronics-MEMS.pdf
Steichen, S. D. , Caldorera-Moore, M. , and Peppas, N. A. , 2013, “ A Review of Current Nanoparticle and Targeting Moieties for the Delivery of Cancer Therapeutics,” Off. J. Eur. Fed. Pharm. Sci., 48(3), pp. 416–427. [CrossRef]
Jivani, R. R. , Lakhtaria, G. J. , Patadiya, D. D. , Patel, L. D. , Jivani, N. P. , and Jhala, B. P. , 2014, “ Biomedical Microelectromechanical Systems (BioMEMS): Revolution in Drug Delivery and Analytical Techniques,” Saudi Pharm. J., 24(1), pp. 1–20. [CrossRef]
Tng, D. J. H. , Hu, R. , Song, P. , Roy, I. , and Yong, K. T. , 2012, “ Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS) Drug Delivery Systems for In Vitro and In Vivo Applications,” Micromachines, 3(4), pp. 615–631. [CrossRef]
Viventi, J. , Kim, D.-H. , Vigeland, L. , Frechette, E. S. , Blanco, J. A. , Kim, Y.-S. , Avrin, A. E. , Tiruvadi, V . R. , Hwang, S.-W. , Vanleer, A. C. , Wulsin, D. F. , Davis, K. , Gelber, C. E. , Palmer, L. , Van der Spiegel, J. , Wu, J. , Xiao, J. , Huang, Y. , Contreras, D. , Rogers, J. A. , and Litt, B. , 2011, “ Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity In Vivo,” Nat. Neurosci., 14(12), pp. 1599–1605. [CrossRef] [PubMed]
Rousche, P. J. , Pellinen, D. S. , Pivin, D. P. , Williams, J. C. , Vetter, R. J. , and Kipke, D. R. , 2001, “ Flexible Polyimide-Based Intracortical Electrode Arrays With Bioactive Capability,” IEEE Trans. Biomed. Eng., 48(3), pp. 361–370. [CrossRef] [PubMed]
Chen, P. J. , Saati, S. , Varma, R. , Humayun, M. S. , and Tai, Y. C. , 2010, “ Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant,” J. Microelectromech. Syst., 19(4), pp. 721–734. [CrossRef]
Luo, M. , Song, C. J. , Herrault, F. , and Allen, M. G. , 2014, “ A Microfabricated RF Wireless Pressure Sensor Made Completely of Biodegradable Materials,” Journal of Microelectromechanical Systems, 23(1), pp. 4–13. [CrossRef]
Luo, M. , Martinez, A. W. , Song, C. , Herrault, F. , and Allen, M. G. , 2014, “ A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials,” J. Microelectromech. Syst., 23(1), pp. 4–13. [CrossRef]
Boutry, C. M. , Chandrahalim, H. , Streit, P. , Schinhammer, M. , Hänzi, A. C. , and Hierold, C. , 2013, “ Characterization of Miniaturized RLC Resonators Made of Biodegradable Materials for Wireless Implant Applications,” Sens. Actuators, A, 189, pp. 344–355. [CrossRef]
Heller, A. , 2006, “ Potentially Implantable Miniature Batteries,” Anal. Bioanal. Chem., 385(3), pp. 469–473. [CrossRef] [PubMed]
Yin, L. , Huang, X. , Xu, H. , Zhang, Y. , Lam, J. , Cheng, J. , and Rogers, J. A. , 2014, “ Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries,” Adv. Mater., 26(23), pp. 3879–3884. [CrossRef] [PubMed]
She, D. , Tsang, M. , Kim, J. K. , and Allen, M. G. , 2015, “ Immobilized Electrolyte Biodegradable Batteries for Implantable MEMS,” 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, Alaska, June 21–25, pp. 494–497.
Tsang, M. , Armutlulu, A. , Martinez, A. W. , Allen, S. A. B. , and Allen, M. G. , 2015, “ Biodegradable Magnesium/Iron Batteries With Polycaprolactone Encapsulation: A Microfabricated Power Source for Transient Implantable Devices,” Microsyst. Nanoeng., 1, p. 15024. [CrossRef]
Zhang, T. , Tsang, M. , and Allen, M. G. , 2016, “ Biodegradable Electrical Interconnects for Transient Implantable Systems,” Solid-State Sensor, Actuator, Microsystems Work, Philadelphia, PA, Oct. 24–27.
Kim, D.-H. , Viventi, J. , Amsden, J. J. , Xiao, J. , Vigeland, L. , Kim, Y.-S. , Blanco, J. A. , Panilaitis, B. , Frechette, E. S. , Contreras, D. , Kaplan, D. L. , Omenetto, F. G. , Huang, Y. , Hwang, K.-C. , Zakin, M. R. , Litt, B. , and Rogers, J. A. , 2010, “ Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nat. Mater., 9(6), pp. 511–517. [CrossRef] [PubMed]
Shen, W. , Karumbaiah, L. , Liu, X. , Saxena, T. , Chen, S. , Patkar, R. , Bellamkonda, R. V. , and Allen, M. G. , 2015, “ Extracellular Matrix-Based Intracortical Microelectrodes: Toward a Microfabricated Neural Interface Based on Natural Materials,” Microsyst. Nanoeng., 1, p. 15010. [CrossRef]
Grimes, C. A. , Roy, S. C. , Rani, S. , and Cai, Q. , 2011, “ Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review,” Sensors (Basel), 11(3), pp. 2809–2844. [CrossRef] [PubMed]
Pereles, B. D. , Dienhart, T. , Sansom, T. , Johnston, K. , and Ong, K. G. , 2012, “ A Wireless, Passive Load Cell Based on Magnetoelastic Resonance,” Smart Mater. Struct., 21(7), p. 075018.
Pereles, B. D. , DeRouin, A. J. , and Ong, K. G. , 2015, “ Partially Loaded Magnetoelastic Sensors With Customizable Sensitivities for Large Force Measurements,” IEEE Sens. J., 15(1), pp. 591–597. [CrossRef]
Nakamura, T. , Inoue, Y. , Kim, D. , Matsuhisa, N. , Yokota, T. , Sekitani, T. , Someya, T. , and Sekino, M. , 2014, “ Basic Characteristics of Implantable Flexible Pressure Sensor for Wireless Readout Using MRI,” 36th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE, pp. 2338–2341.
Green, S. R. , Kwon, R. S. , Elta, G. H. , and Gianchandani, Y. B. , 2013, “ in vivo and In Situ Evaluation of a Wireless Magnetoelastic Sensor Array for Plastic Biliary Stent Monitoring,” Biomed. Microdevices, 15(3), pp. 509–517. [CrossRef] [PubMed]
Oess, N. P. , Weisse, B. , and Nelson, B. J. , 2009, “ Magnetoelastic Strain Sensor for Optimized Assessment of Bone Fracture Fixation,” IEEE Sens. J., 9(8), pp. 961–968. [CrossRef]
DeRouin, A. , Pacella, N. , Zhao, C. , An, K.-N. , and Ong, K. , 2015, “ A Wireless Sensor for Real-Time Monitoring of Tensile Force on Sutured Wound Sites,” IEEE Trans. Biomed. Eng., 63(8), pp. 1665–1671.
Holmes, H. R. , DeRouin, A. , Wright, S. , Riedemann, T. M. , Lograsso, T. A. , Rajachar, R. M. , and Ong, K. G. , 2014, “ Biodegradation and Biocompatibility of Mechanically Active Magnetoelastic Materials,” Smart Mater. Struct., 23(9), p. 095036. [CrossRef]
Vlaisavljevich, E. , Holmes, H. R. , Tan, E. L. , Qian, Z. , Trierweiler, S. , Ong, K. G. , and Rajachar, R. M. , 2013, “ Magnetoelastic Vibrational Biomaterials for Real-Time Monitoring and Modulation of the Host Response,” J. Mater. Sci. Mater. Med., 24(4), pp. 1093–1104. [CrossRef] [PubMed]
Vlaisavljevich, E. , Janka, L. P. , Ong, K. G. , and Rajachar, R. M. , 2011, “ Magnetoelastic Materials as Novel Bioactive Coatings for the Control of Cell Adhesion,” IEEE Trans. Biomed. Eng., 58(3), pp. 698–704. [CrossRef] [PubMed]
Pepakayala, V. , Stein, J. , and Gianchandani, Y. , 2015, “ Resonant Magnetoelastic Microstructures for Wireless Actuation of Liquid Flow on 3D Surfaces and Use in Glaucoma Drainage Implants,” Microsyst. Nanoeng., 1, p. 15032. [CrossRef]
Trierweiler, S. , Holmes, H. , Pereles, B. , Rajachar, R. , and Ong, K. G. , 2013, “ Remotely Activated, Vibrational Magnetoelastic Array System for Controlling Cell Adhesion,” J. Biomed. Sci. Eng., 06(4), pp. 478–482. [CrossRef]
Chew, D. J. , Zhu, L. , Delivopoulos, E. , Minev, I . R. , Musick, K. M. , Mosse, C. A. , Craggs, M. , Donaldson, N. , Lacour, S. P. , McMahon, S. B. , and Fawcett, J. W. , 2013, “ A Microchannel Neuroprosthesis for Bladder Control After Spinal Cord Injury in Rat,” Sci. Transl. Med., 5(210), pp. 210–155. [CrossRef]
Chow, E. Y. , Chlebowski, A. L. , Chakraborty, S. , Chappell, W. J. , and Irazoqui, P. P. , 2010, “ Fully Wireless Implantable Cardiovascular Pressure Monitor Integrated With a Medical Stent,” IEEE Trans. Biomed. Eng., 57(6), pp. 1487–1496. [CrossRef] [PubMed]
Griss, P. , Enoksson, P. , Tolvanen-Laakso, H. K. , Meriläinen, P. , Ollmar, S. , and Stemme, G. , 2001, “ Micromachined Electrodes for Biopotential Measurements,” J. Microelectromech. Syst., 10(1), pp. 10–16. [CrossRef]
Cao, H. , Landge, V. , Tata, U. , Seo, Y. S. , Rao, S. , Tang, S. J. , Tibbals, H. F. , Spechler, S. , and Chiao, J. C. , 2012, “ An Implantable, Batteryless, and Wireless Capsule With Integrated Impedance and pH Sensors for Gastroesophageal Reflux Monitoring,” IEEE Trans. Biomed. Eng., 59(12 Part 2), pp. 3131–3139. [PubMed]
Troughton, R. W. , Ritzema, J. , Eigler, N. L. , Melton, I . C. , Krum, H. , Adamson, P. B. , Kar, S. , Shah, P. K. , Whiting, J. S. , Heywood, J. T. , Rosero, S. , Singh, J. P. , Saxon, L. , Matthews, R. , Crozier, I . G. , and Abraham, W. T. , 2011, “ Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance,” J. Cardiovasc. Transl. Res., 4(1), pp. 3–13. [CrossRef] [PubMed]
Totsu, K. , Haga, Y. , and Esashi, M. , 2003, “ Vacuum Sealed Ultra Miniature Fiber-Optic Pressure Sensor Using White Light Interferometry,” 12th International Conference Solid-State Sensors, Actuators Microsystems, (TRANSDUCERS), Boston, June 8–12, pp. 931–934.
Lal, A. , 2001, “ Integrated Pressure and Flow Sensor in Silicon-Based Ultrasonic Surgical Actuator,” IEEE Ultrasonics Symposium. An International Symposium, Oct. 7–10, pp. 1373–1376.
Hong, M. K. , Wong, S. C. , Mintz, G. S. , Popma, J. J. , Kent, K. M. , Pichard, A. D. , Satler, L. F. , Leon, M. B. , and Tobis, J. M. , 1995, “ Can Coronary Flow Parameters After Stent Placement Predict Restenosis?,” Catheterization Cardiovasc. Diagn., 36(3), pp. 278–282. [CrossRef]
Umbrecht, F. , Wendlandt, M. , Juncker, D. , Hierold, C. , and Neuenschwander, J. , 2005, “ A Wireless Implantable Passive Strain Sensor System,” IEEE Sensors, pp. 20–23.
Mahutte, C. K. , 1998, “ On-Line Arterial Blood Gas Analysis With Optodes: Current Status,” Clin. Biochem., 31(3), pp. 119–130. [CrossRef] [PubMed]
Kim, Y. T. , Kim, Y.-Y. , and Jun, C.-H. , 1999, “ Needle-Shaped Glucose Sensor With Multi-Cell Electrode Fabricated by Surface Micromachining,” Proc. SPIE 680, pp. 924–930.
Mastrototaro, J. J. , Cooper, K. W. , Soundararajan, G. , Sanders, J. B. , and Shah, R. V. , 2006, “ Clinical Experience With an Integrated Continuous Glucose Sensor/Insulin Pump Platform: A Feasibility Study,” Adv. Ther., 23(5), pp. 725–732. [CrossRef] [PubMed]
Ling, Y. , Pong, T. , Vassiliou, C. C. , Huang, P. L. , and Cima, M. J. , 2011, “ Implantable Magnetic Relaxation Sensors Measure Cumulative Exposure to Cardiac Biomarkers,” Nat. Biotechnol., 29(3), pp. 273–277. [CrossRef] [PubMed]
DeHennis, A. D. , and Wise, K. D. , 2006, “ A Fully Integrated Multisite Pressure Sensor for Wireless Arterial Flow Characterization,” J. Microelectromech. Syst., 15(3), pp. 678–685. [CrossRef]
Ritzema-Carter, J. L. T. , Smyth, D. , Troughton, R. W. , Crozier, I . G. , Melton, I . C. , Richards, A. M. , Eigler, N. , Whiting, J. , Kar, S. , Krum, H. , and Abraham, W. T. , 2006, “ Dynamic Myocardial Ischemia Caused by Circumflex Artery Stenosis Detected by a New Implantable Left Atrial Pressure Monitoring Device,” Circulation, 113(15), pp. 705–707. [CrossRef]
Schnakenberg, U. , Kruger, C. , Pfeffer, J. G. , Mokwa, W. , Vom Bogel, G. , Gunther, R. , and Schmitz-Rode, T. , 2004, “ Intravascular Pressure Monitoring System,” Sens. Actuators, A, 110(1–3), pp. 61–67. [CrossRef]
Twa, M. D. , Roberts, C. J. , Karol, H. J. , Mahmoud, A. M. , Weber, P. A. , and Small, R. H. , 2010, “ Evaluation of a Contact Lens-Embedded Sensor for Intraocular Pressure Measurement,” J. Glaucoma, 19(6), pp. 382–390. [CrossRef] [PubMed]
Miyake, H. , Ohta, T. , Kajimoto, Y. , and Matsukawa, M. , 1997, “ A New Ventriculoperitoneal Shunt With a Telemetric Intracranial Pressure Sensor: Clinical Experience in 94 Patients With Hydrocephalus,” Neurosurgery, 40(5), pp. 931–935. [CrossRef] [PubMed]
Signorini, D. F. , Shad, A. , Piper, I. R. , and Statham, P. F. , 1998, “ A Clinical Evaluation of the Codman MicroSensor for Intracranial Pressure Monitoring,” Br. J. Neurosurg., 12(3), pp. 223–227. [CrossRef] [PubMed]
Milner, R. , 2006, “ Remote Pressure Sensing for Thoracic Endografts,” Endovascular Today, pp. 1–3. http://evtoday.com/pdfs/EVT0206_F1_Milner.pdf
Takahata, K. , DeHennis, A. , Wise, K. D. , and Gianchandani, Y. B. , 2004, “ A Wireless Microsensor for Monitoring Flow and Pressure in a Blood Vessel Utilizing a Dual-Inductor Antenna Stent and Two Pressure Sensors,” 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, Germany, Jan. 25–29, pp. 216–219.
Renard, 2004, “ Implantable Glucose Sensors for Diabetes Monitoring,” Minimally Invasive Ther. Allied Technol., 13(2), pp. 78–86. [CrossRef]
Receveur, R. A. M. , Marxer, C. R. , Woering, R. , Larik, V. C. M. H. , and de Rooij, N. F. , 2005, “ Laterally Moving Bistable MEMS DC Switch for Biomedical Applications,” J. Microelectromech. Syst., 14(5), pp. 1089–1098. [CrossRef]
Schwarz, M. , Ewe, L. , Hauschild, R. , Hosticka, B. J. , Huppertz, J. , Kolnsberg, S. , Mokwa, W. , and Trieu, H. K. , 2000, “ Single Chip CMOS Imagers and Flexible Microelectronic Stimulators for a Retina Implant System,” Sens. Actuators, A, 83(1), pp. 40–46. [CrossRef]
Siwapornsathain, E. , Lal, A. , and Binard, J. , 2002, “ A Telemetry and Sensor Platform for Ambulatory Urodynamics,” 2nd Annual International IEEE-EMBS Special Topic Conference Microtechnologies in Medicine Biology, pp. 283–287.
D'Lima, D. D. , Fregly, B. J. , and Colwell, C. W. , 2013, “ Implantable Sensor Technology: Measuring Bone and Joint Biomechanics of Daily Life In Vivo,” Arthritis Res. Ther., 15(1), p. 203. [CrossRef] [PubMed]
Epari, D. R. , Lienau, J. , Schell, H. , Witt, F. , and Duda, G. N. , 2008, “ Pressure, Oxygen Tension and Temperature in the Periosteal Callus During Bone Healing-An In Vivo Study in Sheep,” Bone, 43(4), pp. 734–739. [CrossRef] [PubMed]
Frost, M. C. , and Meyerhoff, M. E. , 2002, “ Implantable Chemical Sensors for Real-Time Clinical Monitoring: Progress and Challenges,” Curr. Opin. Chem. Biol., 6(5), pp. 633–641. [CrossRef] [PubMed]
Langer, R. , 1998, “ Drug Delivery and Targeting,” Nature, 392(6679), pp. 5–10. [PubMed]
Azagury, A. , Khoury, L. , Enden, G. , and Kost, J. , 2014, “ Ultrasound Mediated Transdermal Drug Delivery,” Adv. Drug Delivery Rev., 72, pp. 127–143. [CrossRef]
Gao, W. , Chan, J. , and Farokhzad, O. C. , 2010, “ pH-Responsive Nanoparticles for Drug Delivery,” Mol. Pharm., 7(6), pp. 1913–1920. [CrossRef] [PubMed]
Liu, J. , Huang, Y. , Kumar, A. , Tan, A. , Jin, S. , Mozhi, A. , and Liang, X. J. , 2014, “ PH-Sensitive Nano-Systems for Drug Delivery in Cancer Therapy,” Biotechnol. Adv., 32(4), pp. 693–710. [CrossRef] [PubMed]
Bikram, M. , Gobin, A. M. , Whitmire, R. E. , and West, J. L. , 2007, “ Temperature-Sensitive Hydrogels With SiO2-Au Nanoshells for Controlled Drug Delivery,” J. Controlled Release, 123(3), pp. 219–227. [CrossRef]
Koo, A. N. , Lee, H. J. , Kim, S. E. , Chang, J. H. , Park, C. , Kim, C. , Park, J. H. , and Lee, S. C. , 2008, “ Disulfide-Cross-Linked PEG-Poly(Amino Acid)s Copolymer Micelles for Glutathione-Mediated Intracellular Drug Delivery,” Chem. Commun. (Cambridge)., 2008(48), pp. 6570–6572. [CrossRef]
Banerjee, J. , Hanson, A. J. , Gadam, B. , Elegbede, A. I. , Tobwala, S. , Ganguly, B. , Wagh, A. V. , Muhonen, W. W. , Law, B. , Shabb, J. B. , Srivastava, D. K. , and Mallik, S. , 2009, “ Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9,” Bioconjugate Chem., 20(7), pp. 1332–1339. [CrossRef]
Ge, J. , Neofytou, E. , Cahill, T. J. , Beygui, R. E. , and Zare, R. N. , 2012, “ Drug Release From Electric-Field-Responsive Nanoparticles,” ACS Nano, 6(1), pp. 227–233. [CrossRef] [PubMed]
Cai, K. , Luo, Z. , Hu, Y. , Chen, X. , Liao, Y. , Yang, L. , and Deng, L. , 2009, “ Magnetically Triggered Reversible Controlled Drug Delivery From Microfabricated Polymeric Multireservoir Devices,” Adv. Mater., 21(40), pp. 4045–4049. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic outlining the temporal profile of bone regeneration, illustrating phases of healing, structural progression in the defect, and qualitative estimates of environmental parameter profiles. Nondestructive, quantitative measurements of these environmental cues would significantly enhance fundamental understanding of the temporal progression of the bone healing environment as well as many other diseases of interest, providing a better foundation to develop and evaluate effective regenerative therapies. Created using images from Servier Medical Art, CC-BY 3.0.

Grahic Jump Location
Fig. 2

Rendering of one approach which could be implemented to implant sensors in a rodent femoral defect model to measure oxygen tension and/or strain during bone regeneration. Animal injury models utilizing structural implants are particularly advantageous for implantable devices because they provide a stable foundation to anchor the sensor. Depending on the size constraints of the anatomical space under investigation, transceiver and circuitry components could be packaged within a single device or subcutaneous wires could be routed to a remote transceiver pack mounted either intraperitoneally or subcutaneously. Created using images from Servier Medical Art, CC-BY 3.0.

Grahic Jump Location
Fig. 3

Advancements in implantable sensors. Early iterations of implantable sensors featured materials and design approaches that were direct outgrowth from traditional CMOS processing, as denoted by the outward-oriented arrows. However, research developments at the materials-, device- and systems-level have paved the road toward more application-driven, physiologically motivated designs. The integration of these approaches, along with addressing physiological constraints and representative testing, will be necessary for the development of next-generation, implantable sensors for smart regenerative therapies and preclinical tools.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In