Research Papers

A Robust and Subject-Specific Hemodynamic Model of the Lower Limb Based on Noninvasive Arterial Measurements

[+] Author and Article Information
Laurent Dumas

Lab. de Mathématiques de Versailles,
Université Paris-Saclay,
Versailles 78035, France
e-mail: laurent.dumas@uvsq.fr

Tamara El Bouti

MINES ParisTech PSL,
Centre D'efficacité Énergétique des Systèmes,
5 rue Léon Blum,
Palaiseau 91120, France
e-mail: tamara.el_bouti@mines-paristech.fr

Didier Lucor

Université Paris-Saclay,
Campus Universitaire,
bât 508, Rue John von Neumann,
Orsay Cedex F-91405, France
e-mail: didier.lucor@limsi.fr

1Corresponding author.

Manuscript received April 4, 2016; final manuscript received September 19, 2016; published online November 4, 2016. Assoc. Editor: Alison Marsden.

J Biomech Eng 139(1), 011002 (Nov 04, 2016) (11 pages) Paper No: BIO-16-1133; doi: 10.1115/1.4034833 History: Received April 04, 2016; Revised September 19, 2016

Cardiovascular diseases are currently the leading cause of mortality in the population of developed countries, due to the constant increase in cardiovascular risk factors, such as high blood pressure, cholesterol, overweight, tobacco use, lack of physical activity, etc. Numerous prospective and retrospective studies have shown that arterial stiffening is a relevant predictor of these diseases. Unfortunately, the arterial stiffness distribution across the human body is difficult to measure experimentally. We propose a numerical approach to determine the arterial stiffness distribution of an arterial network using a subject-specific one-dimensional model. The proposed approach calibrates the optimal parameters of the reduced-order model, including the arterial stiffness, by solving an inverse problem associated with the noninvasive in vivo measurements. An uncertainty quantification analysis has also been carried out to measure the contribution of the model input parameters variability, alone or by interaction with other inputs, to the variation of clinically relevant hemodynamic indices, here the arterial pulse pressure. The results obtained for a lower limb model, demonstrate that the numerical approach presented here can provide a robust and subject-specific tool to the practitioner, allowing an early and reliable diagnosis of cardiovascular diseases based on a noninvasive clinical examination.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Hallab, M. , Pichierri, S. , Chevalet, P. , de Decker, L. , and Berrut, G. , 2012, “ La Rigidité Artérielle, un Nouveau Facteur de Risque à Mesurer,” Gériatrie et Psychologie Neuropsychiatrie du Vieillissement, 10(3), pp. 235–243. [PubMed]
Laurent, S. , Katsahian, S. , Fassot, C. , Tropeano, A. I. , Gautier, I. , Laloux, B. , and Boutouyrie, P. , 2003, “ Aortic Stiffness is an Independent Predictor of Fatal Stroke in Essential Hypertension,” Stroke, 34(5), pp. 1203–1206. [CrossRef] [PubMed]
Laurent, S. , and Boutouyrie, P. , 2007, “ Arterial Stiffness: A New Surrogate End Point for Cardiovascular Disease?” J. Nephrol., 20(6), pp. 45–50. http://www.sin-italy.org/web%5Ceventi%5CSIN%5Carchivio%5Cjn%5C2007%5Cjnephrol_2007_S12%5CS45-S50%20Laurent.pdf
Korteweg, D. J. , 1878, “ Uber die Fortpflanzungesgechwindigkeit des Schalles in Elastischen Rohern,” Ann. Phys. Chem. (NS), 5, pp. 525–527. [CrossRef]
Antonini-Canterin, F. , Carerj, S. , Di Bello, V. , La Carrubba, S. , Vriz, O. , Pavan, D. , Balbarini, A. , and Nicolosi, G. L. , 2008, “ Arterial Stiffness and Ventricular Stiffness: A Couple of Diseases or a Coupling Disease? A Review From the Cardiologist's Point of View,” Eur. J. Echocardiography, 10(1), pp. 36–43. [CrossRef]
Brown, A. G. , Shi, Y. B. , Marzo, A. , Staicu, C. , Valverde, I. , Beerbaum, P. , Lawford, P. V. , and Hose, D. R. , 2012, “ Accuracy vs. Computational Time: Translating Aortic Simulations to the Clinic,” J. Biomech., 45(3), pp. 516–523. [CrossRef] [PubMed]
Gallo, D. , De Santis, G. , Negri, F. , Tresoldi, D. , Ponzini, R. , Massai, D. , Deriu, M. A. , Segers, P. , Verhegghe, B. , Rizzo, G. , and Morbiducci, U. , 2012, “ On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow,” Ann. Biomed. Eng., 40(3), pp. 729–741. [CrossRef] [PubMed]
Quarteroni, A. , and Formaggia, L. , 2003, “ Mathematical Modelling and Numerical Simulation of the Cardiovascular System,” Modelling of Living Systems (Handbook of Numerical Analysis Series), Elsevier, Amsterdam, The Netherlands.
Reymond, P. , Perren, F. , Lazeyras, F. , and Stergiopulos, N. , “ Patient-Specific Mean Pressure Drop in the Systemic Arterial Tree, a Comparison Between 1-D and 3-D Models,” J. Biomech., 45(15), pp. 2499–2505. [CrossRef] [PubMed]
Steinman, D. A. , 2002, “ Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries,” Ann. Biomed. Eng., 30(4), pp. 483–497. [CrossRef] [PubMed]
Steinman, D. A. , and Taylor, C. A. , 2005, “ Flow Imaging and Computing: Large Artery Hemodynamics,” Ann. Biomed. Eng., 33(12), pp. 1704–1709. [CrossRef] [PubMed]
Alastruey, J. , 2006, “ Numerical Modelling of Pulse Wave Propagation in the Cardiovascular System: Development, Validation and Clinical Applications,” Ph.D. thesis, Imperial College London, University of London, London. http://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.431761
Formaggia, L. , Lamponi, D. , and Quarteroni, A. , 2003, “ One Dimensional Models for Blood Flow in Arteries,” J. Eng. Math., 47(3–4), pp. 251–276. [CrossRef]
Matthys, K. S. , Alastruey, J. , J. Peirò , Khir, A. W. , Segers, P. , Verdonck, P. R. , Parker, K. H. , and Sherwin, S. J. , 2007, “ Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Numerical Simulations Against In Vitro Measurements,” J. Biomech., 40(15), pp. 3476–3486. [CrossRef] [PubMed]
Sherwin, S. J. , Formaggia, L. , Peirò, J. , and Franke, V. , 2003, “ Computational Modelling of 1D Blood Flow With Variable Mechanical Properties and Its Application to the Simulation of Wave Propagation in the Human Arterial System,” Int. J. Numer. Methods Fluids, 43(6–7), pp. 673–700. [CrossRef]
Reymond, P. , Merenda, F. , Perren, F. , Rufenacht, D. , and Stergiopulos, N. , 2009, “ Validation of a One-Dimensional Model of the Systemic Arterial Tree,” Am. J. Physiol.: Heart Circ. Physiol., 297(1), pp. 208–222. [CrossRef]
Alastruey, J. , 2011, “ Numerical Assessment of Time-Domain Methods for the Estimation of Local Arterial Pulse Wave Speed,” J. Biomech., 44(5), pp. 885–891. [CrossRef] [PubMed]
Reymond, P. , Bohraus, Y. , Perren, F. , Lazeyras, F. , and Stergiopulos, N. , 2011, “ Validation of a Patient-Specific One-Dimensional Model of the Systemic Arterial Tree,” Am. J. Physiol.: Heart Circ. Physiol., 301(3), pp. 1173–1182. [CrossRef]
Bollache, E. , Kachenoura, N. , Redheuil, A. , Frouin, F. , Mousseaux, E. , Recho, P. , and Lucor, D. , 2014, “ Descending Aorta Subject-Specific One-Dimensional Model Validated Against in Vivo Data,” J. Biomech., 47(2), pp. 424–431. [CrossRef] [PubMed]
Chen, P. , Quarteroni, A. , and Rozza, G. , 2013, “ Simulation-Based Uncertainty Quantification of Human Arterial Network Hemodynamics,” Int. J. Numer. Methods Biomed. Eng., 29(6), pp. 698–721. [CrossRef]
Xiu, D. , and Sherwin, S. J. , 2007, “ Parametric Uncertainty Analysis of Pulse Wave Propagation in a Model of a Human Arterial Network,” J. Comput. Phys., 226(2), pp. 1385–1407. [CrossRef]
Sandor, Z. , and Andras, P. , 2004, “ Alternative Sampling Methods for Estimating Multivariate Normal Probabilities,” J. Econometrics, 120(2), pp. 207–234. [CrossRef]
Cameron, R. , and Martin, W. , 1947, “ The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals,” Ann. Math., pp. 385–392.
Wiener, N. , 1938, “ The Homogeneous Chaos,” Am. J. Math., pp. 897–936.
Beyer, H. G. , and Schwefel, H. P. , 2002, “ Evolution Strategies: A Comprehensive Introduction,” Nat. Comput., 1(1), pp. 3–52. [CrossRef]
Thiriet, M. , 2007, Biology and Mechanics of Blood Flows, Springer, New York.
Alastruey, J. , Parker, K. H. , Peirò, J. , and Sherwin, S. J. , 2008, “ Lumped Parameter Outflow Models for 1-D Blood Flow Simulations: Effect on Pulse Waves and Parameter Estimation,” Commun. Comput. Phys., 4(2), pp. 317–336. https://www.researchgate.net/profile/Jordi_Alastruey/publication/228661502_Lumped_parameter_outflow_models_for_1-D_blood_flow_simulations_effect_on_pulse_waves_and_parameter_estimation/links/0912f5106c9e2af60e011002.pdf
Milnor, W. R. , 1989, Hemodynamics, 2nd ed., Williams and Wilkins, Baltimore, MD.
Nichols, W. W. , and O'Rourke, M. F. , 1998, McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, Arnold, London.
Cockburn, B. , Karniadakis, G. , and Shu, C. W. , 2000, Discontinuous Galerkin Methods Theory, Computation and Applications (Lectures Notes in Computational Science and Engineering), Vol. 11, Springer, Berlin, Heidelberg, pp. 3–50.
Karniadakis, G. , and Sherwin, S. J. , 2005, Spectral/HP Element Methods for Computational Fluid Dynamics, 2nd ed., Oxford University Press, New York, pp. 288–299.
Bollache, E. , 2014, “ Caractérisation Hémodynamique de l'aorte Thoracique par IRM, Tonométrie D'applanation et Simulations Numériques,” Ph.D. thesis, Université Pierre et Marie Curie, Paris.
El Bouti, T. , 2015, “ Optimisation Robuste et Application à la Reconstruction du Réseau Artériel Humain,” Ph.D. thesis, LMV, Université de Versailles Saint Quentin en Yvelines, Versailles, France.
Hansen, N. , and Ostermeier, A. , 2001, “ Completely Derandomized Self-Adaptation, Evolution Strategies,” Evol. Comput., 9(2), pp. 159–195. [CrossRef] [PubMed]
Safar, M. E. , and London, G. M. , 1994, “ The Arterial System in Human Hypertension,” Textbook of Hypertension, J. D. Swales , ed., Blackwell Scientific, Hoboken, NJ, pp. 85–102.
Xiu, D. , and Karniadakis, G. , 2002, “ The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput., 24(2), pp. 619–644. [CrossRef]
Evans, G. , 1993, Practical Numerical Integration, Wiley, Chichester, UK.
Clenshaw, C. W. , and Curtis, A. R. , 1960, “ A Method for Numerical Integration on an Automatic Computer,” Numer. Math., 2(1), pp. 197–205. [CrossRef]
Gerstner, T. , and Griebel, M. , 1998, “ Numerical Integration Using Sparse Grids,” Numer. Algorithms, 18(3–4), pp. 209–232. [CrossRef]
Smolyak, S. A. , 1963, “ Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions,” Soviet Math. Dokl., 4, pp. 240–243.
Sobol, I. M. , 1993, “ Sensitivity Estimates for Nonlinear Mathematical Models,” Math. Model. Comput. Exp., 1(4), pp. 407–414.
Novak, E. , and Ritter, K. , 1996, “ High Dimensional Integration of Smooth Functions Over Cubes,” Numer. Math., 75(1), pp. 79–97. [CrossRef]
Novak, E. , and Ritter, K. , 1997, “ The Curse of Dimension and a Universal Method for Numerical Integration,” Multivariate Approximation and Splines, Vol. 125, Birkhauser, Basel, Switzerland, pp. 177–187.
Alastruey, J. , Parker, K. , and Sherwin, S. , 2012, “ Arterial Pulse Wave Haemodynamics,” 11th International Conference on Pressure Surges, S. Anderson, eds., Virtual PiE Led t/a BHR Group, pp. 401–442. http://wwwf.imperial.ac.uk/ssherw/spectralhp/papers/PulseSurges_2012.pdf
Brault, A. , Dumas, L. , and Lucor, D. , 2016, “ Uncertainty Quantification of Inflow Boundary Condition and Proximal Arterial Stiffness Coupled Effect on Pulse Wave Propagation in a Vascular Network,” e-print arXiv:1606.06556. https://arxiv.org/abs/1606.06556


Grahic Jump Location
Fig. 3

Layout of a one-dimensional compliant artery

Grahic Jump Location
Fig. 2

Available experimental cross section and velocity profiles for subject P1 and P2: (a) subject P1 and (b) subject P2

Grahic Jump Location
Fig. 1

Simplified schematic of the arterial network of the left lower limb (arterial lengths and diameters are not representative of real scales)

Grahic Jump Location
Fig. 4

Schematic of an arterial bifurcation condition

Grahic Jump Location
Fig. 5

Numerical (solid curves) luminal cross section (top row) and velocity (bottom row) profiles compared to clinical data (dashed curves) for subject P1 with generic parameters

Grahic Jump Location
Fig. 6

Velocity error function: minimizing the amplitude variations and the temporal phase shift between the numerical and measured velocity profiles

Grahic Jump Location
Fig. 7

Evolution of the error function (normalized by its maximum value) with respect to the number of evaluations during a CMA-ES process (subject P1)

Grahic Jump Location
Fig. 8

Numerical luminal cross section and velocity profiles compared to clinical data (dashed curves) for subject P1 with optimal parameters

Grahic Jump Location
Fig. 10

Numerical section and velocity profiles compared to clinical data (dashed curves) for subject P1 with optimal parameters obtained with the error function defined by Err2

Grahic Jump Location
Fig. 11

Numerical section and velocity profiles compared to clinical data (dashed curves) for subject P1 with optimal parameters obtained with the error function defined by Err3

Grahic Jump Location
Fig. 9

Numerical luminal cross section and velocity profiles compared to clinical data (dashed curves) for subject P1 with optimal parameters obtained with the error function defined by Err1

Grahic Jump Location
Fig. 14

Subject P1: First- and second-order Sobol’ coefficients contribution to pulse pressure (PP) for the third UQ study

Grahic Jump Location
Fig. 12

Subject P1: first- and second-order Sobol’ coefficients contribution to pulse pressure (PP) for the first UQ study

Grahic Jump Location
Fig. 13

Subject P1: First- and second-order Sobol’ coefficients contribution to pulse pressure (PP) for the second UQ study



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In