0
Research Papers

A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis

[+] Author and Article Information
Dermot O'Rourke

Medical Device Research Institute,
School of Computer Science,
Engineering and Mathematics,
Flinders University,
1284 South Road,
Adelaide SA 5042, Australia
e-mail: dermot.orourke@flinders.edu.au

Saulo Martelli

Medical Device Research Institute,
School of Computer Science,
Engineering and Mathematics,
Flinders University,
1284 South Road,
Adelaide SA 5042, Australia
e-mail: saulo.martelli@flinders.edu.au

Murk Bottema

Medical Device Research Institute,
School of Computer Science,
Engineering and Mathematics,
Flinders University,
1284 South Road,
Adelaide SA 5042, Australia
e-mail: murk.bottema@flinders.edu.au

Mark Taylor

Medical Device Research Institute,
School of Computer Science,
Engineering and Mathematics,
Flinders University,
1284 South Road,
Adelaide SA 5042, Australia
e-mail: mark.taylor@flinders.edu.au

1Corresponding author.

Manuscript received February 14, 2016; final manuscript received September 6, 2016; published online November 3, 2016. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 138(12), 121008 (Nov 03, 2016) (8 pages) Paper No: BIO-16-1060; doi: 10.1115/1.4034831 History: Received February 14, 2016; Revised September 06, 2016

Assessing the sensitivity of a finite-element (FE) model to uncertainties in geometric parameters and material properties is a fundamental step in understanding the reliability of model predictions. However, the computational cost of individual simulations and the large number of required models limits comprehensive quantification of model sensitivity. To quickly assess the sensitivity of an FE model, we built linear and Kriging surrogate models of an FE model of the intact hemipelvis. The percentage of the total sum of squares (%TSS) was used to determine the most influential input parameters and their possible interactions on the median, 95th percentile and maximum equivalent strains. We assessed the surrogate models by comparing their predictions to those of a full factorial design of FE simulations. The Kriging surrogate model accurately predicted all output metrics based on a training set of 30 analyses (R2 = 0.99). There was good agreement between the Kriging surrogate model and the full factorial design in determining the most influential input parameters and interactions. For the median, 95th percentile and maximum equivalent strain, the bone geometry (60%, 52%, and 76%, respectively) was the most influential input parameter. The interactions between bone geometry and cancellous bone modulus (13%) and bone geometry and cortical bone thickness (7%) were also influential terms on the output metrics. This study demonstrates a method with a low time and computational cost to quantify the sensitivity of an FE model. It can be applied to FE models in computational orthopaedic biomechanics in order to understand the reliability of predictions.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Helgason, B. , Perilli, E. , Schileo, E. , Taddei, F. , Brynjólfsson, S. , and Viceconti, M. , 2008, “ Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review,” Clin. Biomech., 23(2), pp. 135–146. [CrossRef]
Cook, D. , Julias, M. , and Nauman, E. , 2014, “ Biological Variability in Biomechanical Engineering Research: Significance and Meta-Analysis of Current Modeling Practices,” ASME J. Biomech., 47(6), pp. 1241–1250. [CrossRef]
Viceconti, M. , Olsen, S. , Nolte, L. P. , and Burton, K. , 2005, “ Extracting Clinically Relevant Data From Finite Element Simulations,” Clin. Biomech., 20(5), pp. 451–454. [CrossRef]
Anderson, A. , Ellis, B. , and Weiss, J. , 2007, “ Verification, Validation and Sensitivity Studies in Computational Biomechanics,” Comput. Methods Biomech. Biomed. Eng., 10(3), pp. 171–184. [CrossRef]
ASME, 2006, “ Guide for Verification and Validation in Computational Solid Mechanics,” The American Society of Mechanical Engineers, New York, Standard No. VV10-2006, pp. 1–36.
Dar, F. H. , Meakin, J. R. , and Aspden, R. M. , 2002, “ Statistical Methods in Finite Element Analysis,” ASME J. Biomech., 35(9), pp. 1155–1161. [CrossRef]
Clarke, S. G. , Phillips, A. T. M. , Bull, A. M. J. , and Cobb, J. P. , 2012, “ A Hierarchy of Computationally Derived Surgical and Patient Influences on Metal on Metal Press-Fit Acetabular Cup Failure,” ASME J. Biomech., 45(9), pp. 1698–1704. [CrossRef]
Isaksson, H. , van Donkelaar, C. C. , Huiskes, R. , Yao, J. , and Ito, K. , 2008, “ Determining the Most Important Cellular Characteristics for Fracture Healing Using Design of Experiments Methods,” J. Theor. Biol., 255(1), pp. 26–39. [CrossRef] [PubMed]
Yao, J. , Funkenbusch, P. D. , Snibbe, J. , Maloney, M. , and Lerner, A. L. , 2005, “ Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods,” ASME J. Biomech. Eng., 128(3), pp. 399–408. [CrossRef]
Malandrino, A. , Planell, J. A. , and Lacroix, D. , 2009, “ Statistical Factorial Analysis on the Poroelastic Material Properties Sensitivity of the Lumbar Intervertebral Disc Under Compression, Flexion and Axial Rotation,” ASME J. Biomech., 42(16), pp. 2780–2788. [CrossRef]
Mason, R. L. , Gunst, R. F. , and Hess, J. L. , 2003, Statistical Design and Analysis of Experiments: With Applications to Engineering and Science, Wiley, Hoboken, NJ.
Isaksson, H. , van Donkelaar, C. C. , and Ito, K. , 2009, “ Sensitivity of Tissue Differentiation and Bone Healing Predictions to Tissue Properties,” ASME J. Biomech., 42(5), pp. 555–564. [CrossRef]
Forrester, A. , Sobester, A. , and Keane, A. , 2008, Engineering Design Via Surrogate Modelling: A Practical Guide, Wiley, Chichester, UK.
Fitzpatrick, C. K. , Hemelaar, P. , and Taylor, M. , 2014, “ Computationally Efficient Prediction of Bone-Implant Interface Micromotion of a Cementless Tibial Tray During Gait,” ASME J. Biomech., 47(7), pp. 1718–1726. [CrossRef]
Halloran, J. P. , Erdemir, A. , and van den Bogert, A. J. , 2008, “ Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models,” ASME J. Biomech. Eng., 131(1), p. 011014. [CrossRef]
Bah, M. T. , Nair, P. B. , Taylor, M. , and Browne, M. , 2011, “ Efficient Computational Method for Assessing the Effects of Implant Positioning in Cementless Total Hip Replacements,” ASME J. Biomech., 44(7), pp. 1417–1422. [CrossRef]
Donaldson, F. E. , Nyman, Jr, E. , and Coburn, J. C. , 2015, “ Prediction of Contact Mechanics in Metal-on-Metal Total Hip Replacement for Parametrically Comprehensive Designs and Loads,” ASME J. Biomech., 48(10), pp. 1828–1835. [CrossRef]
Eskinazi, I. , and Fregly, B. J. , 2015, “ Surrogate Modeling of Deformable Joint Contact Using Artificial Neural Networks,” Med. Eng. Phys., 37(9), pp. 885–891. [CrossRef] [PubMed]
Lin, Y.-C. , Haftka, R. T. , Queipo, N. V. , and Fregly, B. J. , 2010, “ Surrogate Articular Contact Models for Computationally Efficient Multibody Dynamic Simulations,” Med. Eng. Phys., 32(6), pp. 584–594. [CrossRef] [PubMed]
Pant, S. , Limbert, G. , Curzen, N. P. , and Bressloff, N. W. , 2011, “ Multiobjective Design Optimisation of Coronary Stents,” Biomaterials, 32(31), pp. 7755–7773. [CrossRef] [PubMed]
Anderson, A. E. , Peters, C. L. , Tuttle, B. D. , and Weiss, J. A. , 2005, “ Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies,” ASME J. Biomech. Eng., 127(3), pp. 364–373. [CrossRef]
Daniel, M. , Iglič, A. , and Kralj-Iglič, V. , 2005, “ The Shape of Acetabular Cartilage Optimizes Hip Contact Stress Distribution,” J. Anat., 207(1), pp. 85–91. [CrossRef] [PubMed]
Ghosh, R. , Pal, B. , Ghosh, D. , and Gupta, S. , 2015, “ Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain,” Comput. Methods Biomech. Biomed. Eng., 18(7), pp. 697–710. [CrossRef]
Bryan, R. , Surya Mohan, P. , Hopkins, A. , Galloway, F. , Taylor, M. , and Nair, P. B. , 2010, “ Statistical Modelling of the Whole Human Femur Incorporating Geometric and Material Properties,” Med. Eng. Phys., 32(1), pp. 57–65. [CrossRef] [PubMed]
Dalstra, M. , Huiskes, R. , Odgaard, A. , and van Erning, L. , 1993, “ Mechanical and Textural Properties of Pelvic Trabecular Bone,” ASME J. Biomech., 26(4–5), pp. 523–535. [CrossRef]
Dalstra, M. , and Huiskes, R. , 1991, “ The Pelvic Bone as a Sandwich Construction: A 3-D Finite Element Study,” ASME J. Biomech., 24(6), p. 455. [CrossRef]
Bergmann, G. , 2001, “ Hip Contact Forces and Gait Patterns From Routine Activities,” ASME J. Biomech., 34(7), p. 859. [CrossRef]
Dopico-González, C. , New, A. M. , and Browne, M. , 2010, “ Probabilistic Finite Element Analysis of the Uncemented Hip Replacement-Effect of Femur Characteristics and Implant Design Geometry,” ASME J. Biomech., 43(3), pp. 512–520. [CrossRef]
Goldstein, S. A. , 1987, “ The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function,” ASME J. Biomech., 20(11–12), pp. 1055–1061. [CrossRef]
Keaveny, T. M. , Morgan, E. F. , Niebur, G. L. , and Yeh, O. C. , 2001, “ Biomechanics of Trabecular Bone,” Ann. Rev. Biomed. Eng., pp. 307–333.
Morgan, E. F. , and Keaveny, T. M. , 2001, “ Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site,” ASME J. Biomech., 34(5), pp. 569–577. [CrossRef]
Dalstra, M. , and Huiskes, R. , 1995, “ Load Transfer Across the Pelvic Bone,” ASME J. Biomech., 28(6), pp. 715–724. [CrossRef]
Taddei, F. , Martelli, S. , Reggiani, B. , Cristofolini, L. , and Viceconti, M. , 2006, “ Finite-Element Modeling of Bones From CT Data: Sensitivity to Geometry and Material Uncertainties,” IEEE Trans. Biomed. Eng., 53(11), pp. 2194–2200. [CrossRef] [PubMed]
Manley, M. T. , Ong, K. L. , and Kurtz, S. M. , 2006, “ The Potential for Bone Loss in Acetabular Structures Following THA,” Clin. Orthop. Relat. Res., 453, pp. 246–253. [CrossRef] [PubMed]
Phillips, A. T. M. , Pankaj, P. , Howie, C. R. , Usmani, A. S. , and Simpson, A. H. R. W. , 2007, “ Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions,” Med. Eng. Phys., 29(7), pp. 739–748. [CrossRef] [PubMed]
Zhang, Q. H. , Wang, J. Y. , Lupton, C. , Heaton-Adegbile, P. , Guo, Z. X. , Liu, Q. , and Tong, J. , 2010, “ A Subject-Specific Pelvic Bone Model and Its Application to Cemented Acetabular Replacements,” ASME J. Biomech., 43(14), pp. 2722–2727. [CrossRef]
Dalstra, M. , Huiskes, R. , and Van Erning, L. , 1995, “ Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone,” ASME J. Biomech. Eng., 117(3), pp. 272–278. [CrossRef]
Reilly, D. T. , and Burstein, A. H. , 1974, “ The Mechanical Properties of Cortical Bone,” J. Bone Joint Surg.—Ser. A, 56(5), pp. 1001–1022.
Majumder, S. , Roychowdhury, A. , and Pal, S. , 2007, “ Simulation of Hip Fracture in Sideways Fall Using a 3D Finite Element Model of Pelvis–Femur–Soft Tissue Complex With Simplified Representation of Whole Body,” Med. Eng. Phys., 29(10), pp. 1167–1178. [CrossRef] [PubMed]
Gorissen, D. , Couckuyt, I. , Demeester, P. , Dhaene, T. , and Crombecq, K. , 2010, “ A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res., 11, pp. 2051–2055.
Leung, A. S. O. , Gordon, L. M. , Skrinskas, T. , Szwedowski, T. , and Whyne, C. M. , 2009, “ Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model,” Proc. Inst. Mech. Eng. Part H, 223(8), pp. 965–979. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The finite-element model of the intact hemipelvis, soft tissue layer, and femoral head with the boundary conditions and the acetabular region of interest. A load, representing the peak load experienced during gait, was applied to the base of the femoral head.

Grahic Jump Location
Fig. 2

An illustration of the variation in equivalent strain in the acetabular region of interest. From left to right, the models with the minimum, 25th percentile, median, 75th percentile, and maximum of the maximum equivalent strain are shown. The median, 95th percentile, and maximum equivalent strains (μstrain) are given for each of the regions of interests displayed.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In