0
Technical Brief

Extending the Power-Law Hemolysis Model to Complex Flows

[+] Author and Article Information
Mohammad M. Faghih, M. Keith Sharp

Biofluid Mechanics Laboratory,
Department of Mechanical Engineering,
University of Louisville,
Louisville, KY 40292

Manuscript received April 23, 2016; final manuscript received September 9, 2016; published online November 4, 2016. Assoc. Editor: Ender A. Finol.

J Biomech Eng 138(12), 124504 (Nov 04, 2016) (4 pages) Paper No: BIO-16-1170; doi: 10.1115/1.4034786 History: Received April 23, 2016; Revised September 09, 2016

Hemolysis (damage to red blood cells) is a long-standing problem in blood contacting devices, and its prediction has been the goal of considerable research. The most popular model relating hemolysis to fluid stresses is the power-law model, which was developed from experiments in pure shear only. In the absence of better data, this model has been extended to more complex flows by replacing the shear stress in the power-law equation with a von Mises-like scalar stress. While the validity of the scalar stress also remains to be confirmed, inconsistencies exist in its application, in particular, two forms that vary by a factor of 2 have been used. This article will clarify the proper extension of the power law to complex flows in a way that maintains correct results in the limit of pure shear.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kawahito, K. , and Nose, Y. , 1997, “ Hemolysis in Different Centrifugal Pumps,” Artif. Organs, 21(4), pp. 323–326. [CrossRef] [PubMed]
Ravichandran, A. K. , Parker, J. , Novak, E. , Joseph, S. M. , Schilling, J. D. , Ewald, G. A. , and Silvestry, S. , 2014, “ Hemolysis in Left Ventricular Assist Device: A Retrospective Analysis of Outcomes,” J. Heart Lung Transplant., 33(1), pp. 44–50. [CrossRef] [PubMed]
Maraj, R. , Jacobs, L. E. , Ioli, A. , and Kotler, M. N. , 1998, “ Evaluation of Hemolysis in Patients With Prosthetic Heart Valves,” Clin. Cardiol., 21(6), pp. 387–392. [CrossRef] [PubMed]
Shapira, Y. , Vaturi, M. , and Sagie, A. , 2009, “ Hemolysis Associated With Prosthetic Heart Valves: A Review,” Cardiol. Rev., 17(3), pp. 121–124. [CrossRef] [PubMed]
Whitson, B. A. , Eckman, P. , Kamdar, F. , Lacey, A. , Shumway, S. J. , Liao, K. K. , and John, R. , 2014, “ Hemolysis, Pump Thrombus, and Neurologic Events in Continuous-Flow Left Ventricular Assist Device Recipients,” Ann. Thorac. Surg., 97(6), pp. 2097–2103. [CrossRef] [PubMed]
Taenaka, Y. , Wakisaka, Y. , Masuzawa, T. , Tatsumi, E. , Toda, K. , Miyazaki, K. , Eya, K. , Baba, Y. , Nakatani, T. , Ohno, T. , Nishimura, T. , and Takano, H. , 1996, “ Development of a Centrifugal Pump With Improved Antithrombogenicity and Hemolytic Property for Chronic Circulatory Support,” Artif. Organs, 20(5), pp. 491–496. [CrossRef] [PubMed]
Yasuta, O. , Wakisaka, Y. , Hamamoto, T. , Tominaga, T. , Kitaichi, T. , Masuda, Y. , Hori, T. , and Kitagawa, T. , 2000, “ Advantage in Hemolysis of New Nikkiso Centrifugal Pump (HPM-05) for Pediatric ECMO,” ASAIO J., 46(2), p. 172. [CrossRef]
Oshikawa, M. , Araki, K. , Endo, G. , Anai, H. , Satoh, M. , and Maeda, M. , 2000, “ Development of a Mixed-Flow Cardiac Assist Device: An Approach to Reduce Hemolysis,” ASAIO J., 46(2), p. 154. http://journals.lww.com/asaiojournal/Citation/2000/03000/DEVELOPMENT_OF_A_MIXED_FLOW_CARDIAC_ASSIST_DEVICE_.15.aspx
Luckraz, H. , Woods, M. , and Large, S. R. , 2002, “ And Hemolysis Goes on: Ventricular Assist Device in Combination With Veno-Venous Hemofiltration,” Ann. Thorac. Surg., 73(2), pp. 546–548. [CrossRef] [PubMed]
Mecozzi, G. , Milano, A. D. , De Carlo, M. , Sorrentino, F. , Pratali, S. , Nardi, C. , and Bortolotti, U. , 2002, “ Intravascular Hemolysis in Patients With New-Generation Prosthetic Heart Valves: A Prospective Study,” J. Thorac. Cardiovasc. Surg., 123(3), pp. 550–556. [CrossRef] [PubMed]
Shibasaki, I. , Kuwata, T. , Tsuchiya, G. , Ogawa, H. , Yamada, Y. , Toyoda, S. , Inoue, T. , and Fukuda, H. , 2016, “ Severe Hemolytic Anemia Caused by the NIPRO Extracorporeal Left Ventricular Assist Device,” Gen. Thorac. Cardiovasc. Surg, epub.
da Silva, B. U. , Jatene, A. D. , Leme, J. , Fonseca, J. W. G. , Silva, C. , Uebelhart, B. , Suzuki, C. K. , and Andrade, A. J. P. , 2013, “ In Vitro Assessment of the Apico Aortic Blood Pump: Anatomical Positioning, Hydrodynamic Performance, Hemolysis Studies, and Analysis in a Hybrid Cardiovascular Simulator,” Artif. Organs, 37(11), pp. 950–953. [CrossRef] [PubMed]
Heuser, G. , and Opitz, R. , 1980, “ A Couette Viscometer for Short Time Shearing of Blood,” Biorheology, 17(1–2), pp. 17–24. [PubMed]
Giersiepen, M. , Wurzinger, L. J. , Opitz, R. , and Reul, H. , 1990, “ Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13(5), pp. 300–306. http://europepmc.org/abstract/med/2365485 [PubMed]
Grigioni, M. , Daniele, C. , Morbiducci, U. , D'Avenio, G. , Di Benedetto, G. , and Barbaro, V. , 2004, “ The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies,” Artif. Organs, 28(5), pp. 467–475. [CrossRef] [PubMed]
Garon, A. , and Farinas, M. I. , 2004, “ Fast Three-Dimensional Numerical Hemolysis Approximation,” Artif. Organs, 28(11), pp. 1016–1025. [CrossRef] [PubMed]
Grigioni, M. , Morbiducci, U. , D'Avenio, G. , Benedetto, G. D. , and Gaudio, C. D. , 2005, “ A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model,” Biomech. Model. Mechanobiol., 4(4), pp. 249–260. [CrossRef] [PubMed]
Taskin, M. E. , Fraser, K. H. , Zhang, T. , Wu, C. , Griffith, B. P. , and Wu, Z. J. , 2012, “ Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation,” ASAIO J., 58(4), pp. 363–372. [CrossRef] [PubMed]
Goubergrits, L. , and Affeld, K. , 2004, “ Numerical Estimation of Blood Damage in Artificial Organs,” Artif. Organs, 28(5), pp. 499–507. [CrossRef] [PubMed]
Fill, B. , Gartner, M. , Horner, M. , and Ma, J. , 2008, “ A Comparison of Lagrangian and Eulerian Methodologies for Calculating Hemolysis,” ASAIO J., 54(2), p. 37A. http://journals.lww.com/asaiojournal/toc/2008/03000#-1636155427
Popov, E. P. , Nagarajan, S. , and Lu, Z. A. , 1976, Mechanics of Materials, Prentice-Hall, Englewood Cliffs, NJ.
Bludszuweit, C. , 1994, “ A Theoretical Approach to the Prediction of Haemolysis in Centrifugal Blood Pumps,” Doctoral thesis, Bioengineering Unit, University of Strathclyde, Glasgow, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310066
Bludszuweit, C. , 1995, “ Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump,” Artif. Organs, 19(7), pp. 590–596. [CrossRef] [PubMed]
Apel, J. , Paul, R. , Klaus, S. , Siess, T. , and Reul, H. , 2001, “ Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics,” Artif. Organs, 25(5), pp. 341–347. [CrossRef] [PubMed]
Yano, T. , Sekine, K. , Mitoh, A. , Mitamura, Y. , Okamoto, E. , Kim, D. W. , Nishimura, I. , Murabayashi, S. , and Yozu, R. , 2003, “ An Estimation Method of Hemolysis Within an Axial Flow Blood Pump by Computational Fluid Dynamics Analysis,” Artif. Organs, 27(10), pp. 920–925. [CrossRef] [PubMed]
Arvand, A. , Hormes, M. , and Reul, H. , 2005, “ A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump,” Artif. Organs, 29(7), pp. 531–540. [CrossRef] [PubMed]
Zhang, J. , Gellman, B. , Koert, A. , Dasse, K. A. , Gilbert, R. J. , Griffith, B. P. , and Wu, Z. J. , 2006, “ Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump,” Artif. Organs, 30(3), pp. 168–177. [CrossRef] [PubMed]
Chua, L. P. , Song, G. , Lim, T. M. , and Zhou, T. , 2006, “ Numerical Analysis of the Inner Flow Field of a Biocentrifugal Blood Pump,” Artif. Organs, 30(6), pp. 467–477. [CrossRef] [PubMed]
Alemu, Y. , and Bluestein, D. , 2007, “ Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies,” Artif. Organs, 31(9), pp. 677–688. [CrossRef] [PubMed]
de Tullio, M. D. , Nam, J. , Pascazio, G. , Balaras, E. , and Verzicco, R. , 2012, “ Computational Prediction of Mechanical Hemolysis in Aortic Valved Prostheses,” Eur. J. Mech., B: Fluids, 35, pp. 47–53. [CrossRef]
Segalova, P. A. , Rao, K. T. V. , Zarins, C. K. , and Taylor, C. A. , 2012, “ Computational Modeling of Shear-Based Hemolysis Caused by Renal Obstruction,” ASME J. Biomech. Eng., 134(2), p. 021003. [CrossRef]
Ezzeldin, H. M. , de Tullio, M. D. , Vanella, M. , Solares, S. D. , and Balaras, E. , 2015, “ A Strain-Based Model for Mechanical Hemolysis Based on a Coarse-Grained Red Blood Cell Model,” Ann. Biomed. Eng., 43(6), pp. 1398–1409. [CrossRef] [PubMed]
Ishii, K. , Hosoda, K. , Nishida, M. , Isoyama, T. , Saito, I. , Ariyoshi, K. , Inoue, Y. , Ono, T. , Nakagawa, H. , Sato, M. , Hara, S. , Lee, X. , Wu, S. Y. , Imachi, K. , and Abe, Y. , 2015, “ Hydrodynamic Characteristics of the Helical Flow Pump,” J. Artif. Organs, 18(3), pp. 206–212. [CrossRef] [PubMed]
Mitoh, A. , Yano, T. , Sekine, K. , Mitamura, Y. , Okamoto, E. , Kim, D. W. , Yozu, R. , and Kawada, S. , 2003, “ Computational Fluid Dynamics Analysis of an Intra-Cardiac Axial Flow Pump,” Artif. Organs, 27(1), pp. 34–40. [CrossRef] [PubMed]
Throckmorton, A. L. , Wood, H. G. , Day, S. W. , Song, X. , Click, P. C. , Allaire, P. E. , and Olsen, D. B. , 2003, “ Design of a Continuous Flow Centrifugal Pediatric Ventricular Assist Device,” Int. J. Artif. Organs, 26(11), pp. 1015–1031. https://people.rit.edu/~swdeme/images/publications/Throckmorton%20-%20Design%20of%20Cont%20Flow%20Cent%20Pediatric%20VAD%20-%20scanned.pdf [PubMed]
Wu, J. , Antaki, J. F. , Snyder, T. A. , Wagner, W. R. , Borovetz, H. S. , and Paden, B. E. , 2005, “ Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics,” Artif. Organs, 29(6), pp. 482–489. [CrossRef] [PubMed]
Dongdong, X. , Chunzhang, Z. , Xiwen, Z. , and Jing, B. , 2006, “ Computational Fluid Dynamics Modeling and Hemolysis Analysis of Axial Blood Pumps With Various Impeller Structures,” Prog. Nat. Sci., 16(9), pp. 993–997. [CrossRef]
Kennington, J. R. , Frankel, S. H. , Chen, J. , Koenig, S. C. , Sobieski, M. A. , Giridharan, G. A. , and Rodefeld, M. D. , 2011, “ Design Optimization and Performance Studies of an Adult Scale Viscous Impeller Pump for Powered Fontan in an Idealized Total Cavopulmonary Connection,” Cardiovasc. Eng. Technol., 2(4), pp. 237–243. [CrossRef]
Fraser, K. H. , Zhang, T. , Taskin, M. E. , Griffith, B. P. , and Wu, Z. J. , 2012, “ A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index,” ASME J. Biomech. Eng., 134(8), p. 081002. [CrossRef]
Soares, J. S. , Sheriff, J. , and Bluestein, D. , 2013, “ A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories,” Biomech. Model. Mechanobiol., 12(6), pp. 1127–1141. [CrossRef] [PubMed]
De Wachter, D. , and Verdonck, P. , 2002, “ Numerical Calculation of Hemolysis Levels in Peripheral Hemodialysis Cannulas,” Artif. Organs, 26(7), pp. 576–582. [CrossRef] [PubMed]
Untaroiu, A. , Throckmorton, A. L. , Patel, S. M. , Wood, H. G. , Allaire, P. E. , and Olsen, D. B. , 2005, “ Numerical and Experimental Analysis of an Axial Flow Left Ventricular Assist Device: The Influence of the Diffuser on Overall Pump Performance,” Artif. Organs, 29(7), pp. 581–591. [CrossRef] [PubMed]
Giridharan, G. A. , Koenig, S. C. , Kennington, J. , Sobieski, M. A. , Chen, J. , Frankel, S. H. , and Rodefeld, M. D. , 2013, “ Performance Evaluation of a Pediatric Viscous Impeller Pump for Fontan Cavopulmonary Assist,” J. Thorac. Cardiovasc. Surg., 145(1), pp. 249–257. [CrossRef] [PubMed]
Nakamura, M. , Bessho, S. , and Wada, S. , 2014, “ Analysis of Red Blood Cell Deformation Under Fast Shear Flow for Better Estimation of Hemolysis,” Int. J. Numer. Methods Biomed. Eng., 30(1), pp. 42–54. [CrossRef]
Chen, Y. , and Sharp, M. K. , 2011, “ A Strain-Based Flow-Induced Hemolysis Prediction Model Calibrated by In Vitro Erythrocyte Deformation Measurements,” Artif. Organs, 35(2), pp. 145–156. [PubMed]
Chen, Y. , Kent, T. L. , and Sharp, M. K. , 2013, “ Testing of Models of Flow-Induced Hemolysis in Blood Flow Through Hypodermic Needles,” Artif. Organs, 37(3), pp. 256–266. [CrossRef] [PubMed]
Arora, D. , Behr, M. , and Pasquali, M. , 2004, “ A Tensor-Based Measure for Estimating Blood Damage,” Artif. Organs, 28(11), pp. 1002–1015. [CrossRef] [PubMed]
Chiu, W. C. , Girdhar, G. , Xenos, M. , Alemu, Y. , Soares, J. S. , Einav, S. , Slepian, M. , and Bluestein, D. , 2014, “ Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD,” ASME J. Biomech. Eng., 136(2), pp. 0210141–0210149. [CrossRef]
Shadden, S. C. , and Arzani, A. , 2015, “ Lagrangian Postprocessing of Computational Hemodynamics,” Ann. Biomed. Eng., 43(1), pp. 41–58. [CrossRef] [PubMed]
Marom, G. , and Bluestein, D. , 2016, “ Lagrangian Methods for Blood Damage Estimation in Cardiovascular Devices—How Numerical Implementation Affects the Results,” Expert Rev. Med. Devices, 13(2), pp. 113–122. [CrossRef] [PubMed]
Zhang, T. , Taskin, M. E. , Fang, H.-B. , Pampori, A. , Jarvik, R. , Griffith, B. P. , and Wu, Z. J. , 2011, “ Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood-Shearing Devices,” Artif. Organs, 35(12), pp. 1180–1186. [CrossRef] [PubMed]
Farinas, M. I. , Garon, A. , Lacasse, D. , and N'Dri, D. , 2006, “ Asymptotically Consistent Numerical Approximation of Hemolysis,” ASME J. Biomech. Eng., 128(5), pp. 688–696. [CrossRef]
Lee, S. S. , Yim, Y. , Ahn, K. H. , and Lee, S. J. , 2009, “ Extensional Flow-Based Assessment of Red Blood Cell Deformability Using Hyperbolic Converging Microchannel,” Biomed. Microdevices, 11(5), pp. 1021–1027. [CrossRef] [PubMed]
Down, L. A. , Papavassiliou, D. V. , and O'Rear, E. A. , 2011, “ Significance of Extensional Stresses to Red Blood Cell Lysis in a Shearing Flow,” Ann. Biomed. Eng., 39(6), pp. 1632–1642. [CrossRef] [PubMed]
Yeleswarapu, K. K. , Antaki, J. F. , Kameneva, M. V. , and Rajagopal, K. R. , 1995, “ A Mathematical Model for Shear-Induced Hemolysis,” Artif. Organs, 19(7), pp. 576–582. [CrossRef] [PubMed]
Poorkhalil, A. , Amoabediny, G. , Tabesh, H. , Behbahani, M. , and Mottaghy, K. , 2016, “ A New Approach for Semiempirical Modeling of Mechanical Blood Trauma,” Int. J. Artif. Organs, 39(4), pp. 171–177. [CrossRef] [PubMed]
Vitale, F. , Nam, J. , Turchetti, L. , Behr, M. , Raphael, R. , Annesini, M. C. , and Pasquali, M. , 2014, “ A Multiscale, Biophysical Model of Flow-Induced Red Blood Cell Damage,” AIChE J., 60(4), pp. 1509–1516. [CrossRef]

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In