0
Research Papers

Amyloid Beta Influences Vascular Smooth Muscle Contractility and Mechanoadaptation

[+] Author and Article Information
Eric S. Hald

Department of Biomedical Engineering,
University of Minnesota,
7-105 Nils Hasselmo Hall,
312 Church Street SE,
Minneapolis, MN 554555
e-mail: haldx002@umn.edu

Connor D. Timm

Department of Biomedical Engineering,
University of Minnesota,
7-105 Nils Hasselmo Hall,
312 Church Street SE,
Minneapolis, MN 554555
e-mail: timmx182@umn.edu

Patrick W. Alford

Department of Biomedical Engineering,
University of Minnesota,
7-105 Nils Hasselmo Hall,
312 Church Street SE,
Minneapolis, MN 554555
e-mail: pwalford@umn.edu

1Corresponding author.

Manuscript received May 27, 2016; final manuscript received August 17, 2016; published online October 21, 2016. Assoc. Editor: Jessica E. Wagenseil.

J Biomech Eng 138(11), 111007 (Oct 21, 2016) (8 pages) Paper No: BIO-16-1226; doi: 10.1115/1.4034560 History: Received May 27, 2016; Revised August 17, 2016

Amyloid beta accumulation in neuronal and cerebrovascular tissue is a key precursor to development of Alzheimer's disease and can result in neurodegeneration. While its persistence in Alzheimer's cases is well-studied, amyloid beta's direct effect on vascular function is unclear. Here, we measured the effect of amyloid beta treatment on vascular smooth muscle cell functional contractility and modeled the mechanoadaptive growth and remodeling response to these functional perturbations. We found that the amyloid beta 1-42 isoform induced a reduction in vascular smooth muscle cell mechanical output and reduced response to vasocontractile cues. These data were used to develop a thin-walled constrained mixture arterial model that suggests vessel growth, and remodeling in response to amyloid betamediated alteration of smooth muscle function leads to decreased ability of cerebrovascular vessels to vasodilate. These findings provide a possible explanation for the vascular injury and malfunction often associated with the development of neurodegeneration in Alzheimer's disease.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Evans, D. A. , Funkenstein, H. H. , Albert, M. S. , Scherr, P. A. , Cook, N. R. , Chown, M. J. , Hebert, L. E. , Hennekens, C. H. , and Taylor, J. O. , 1989, “ Prevalence of Alzheimer's Disease in a Community Population of Older Persons. Higher Than Previously Reported,” JAMA, 262(18), pp. 2551–2556. [CrossRef] [PubMed]
Golde, T. E. , Eckman, C. B. , and Younkin, S. G. , 2000, “ Biochemical Detection of Abeta Isoforms: Implications for Pathogenesis, Diagnosis, and Treatment of Alzheimer's Disease,” Biochim. Biophys. Acta, 1502(1), pp. 172–187. [CrossRef] [PubMed]
Zlokovic, B. V. , Deane, R. , Sagare, A. P. , Bell, R. D. , and Winkler, E. A. , 2010, “ Low-Density Lipoprotein Receptor-Related Protein-1: A Serial Clearance Homeostatic Mechanism Controlling Alzheimer's Amyloid Beta-Peptide Elimination From the Brain,” J. Neurochem., 115(5), pp. 1077–1089. [CrossRef] [PubMed]
Jellinger, K. A. , 2010, “ Prevalence and Impact of Cerebrovascular Lesions in Alzheimer and Lewy Body Diseases,” Neurodegener. Dis., 7(1–3), pp. 112–115. [CrossRef] [PubMed]
Zlokovic, B. V. , 2011, “ Neurovascular Pathways to Neurodegeneration in Alzheimer's Disease and Other Disorders,” Nat. Rev. Neurosci., 12(12), pp. 723–738. [PubMed]
Alonzo, N. C. , Hyman, B. T. , Rebeck, G. W. , and Greenberg, S. M. , 1998, “ Progression of Cerebral Amyloid Angiopathy: Accumulation of Amyloid-Beta40 in Affected Vessels,” J. Neuropathol. Exp. Neurol., 57(4), pp. 353–359. [CrossRef] [PubMed]
Shinkai, Y. , Yoshimura, M. , Ito, Y. , Odaka, A. , Suzuki, N. , Yanagisawa, K. , and Ihara, Y. , 1995, “ Amyloid Beta-Proteins 1-40 and 1-42(43) in the Soluble Fraction of Extra- and Intracranial Blood Vessels,” Ann. Neurol., 38(3), pp. 421–428. [CrossRef] [PubMed]
Roher, A. E. , Lowenson, J. D. , Clarke, S. , Woods, A. S. , Cotter, R. J. , Gowing, E. , and Ball, M. J. , 1993, “ Beta-Amyloid-(1-42) is a Major Component of Cerebrovascular Amyloid Deposits: Implications for the Pathology of Alzheimer Disease,” Proc. Natl. Acad. Sci. U.S.A., 90(22), pp. 10836–10840. [CrossRef] [PubMed]
Han, B. H. , Zhou, M. L. , Abousaleh, F. , Brendza, R. P. , Dietrich, H. H. , Koenigsknecht-Talboo, J. , Cirrito, J. R. , Milner, E. , Holtzman, D. M. , and Zipfel, G. J. , 2008, “ Cerebrovascular Dysfunction in Amyloid Precursor Protein Transgenic Mice: Contribution of Soluble and Insoluble Amyloid-Beta Peptide, Partial Restoration Via Gamma-Secretase Inhibition,” J. Neurosci., 28(50), pp. 13542–13550. [CrossRef] [PubMed]
Vinters, H. V. , Secor, D. L. , Read, S. L. , Frazee, J. G. , Tomiyasu, U. , Stanley, T. M. , Ferreiro, J. A. , and Akers, M. A. , 1994, “ Microvasculature in Brain Biopsy Specimens From Patients With Alzheimer's Disease: An Immunohistochemical and Ultrastructural Study,” Ultrastruct. Pathol., 18(3), pp. 333–348. [CrossRef] [PubMed]
Christov, A. , Ottman, J. , Hamdheydari, L. , and Grammas, P. , 2008, “ Structural Changes in Alzheimer's Disease Brain Microvessels,” Curr. Alzheimer Res., 5(4), pp. 392–395. [CrossRef] [PubMed]
Tse, J. R. , and Engler, A. J. , 2010, “ Preparation of Hydrogel Substrates With Tunable Mechanical Properties,” Current Protocols Cell Biology, Wiley, Hoboken, NJ, Chap. 10.
Han, M. , Wen, J. K. , Zheng, B. , Cheng, Y. , and Zhang, C. , 2006, “ Serum Deprivation Results in Redifferentiation of Human Umbilical Vascular Smooth Muscle Cells,” Am. J. Physiol. Cell Physiol., 291(1), pp. C50–C58. [CrossRef] [PubMed]
Xing, L. , Yao, X. , Williams, K. R. , and Bassell, G. J. , 2012, “ Negative Regulation of RhoA Translation and Signaling by hnRNP-Q1 Affects Cellular Morphogenesis,” Mol. Biol. Cell, 23(8), pp. 1500–1509. [CrossRef] [PubMed]
Bray, M. A. , Adams, W. J. , Geisse, N. A. , Feinberg, A. W. , Sheehy, S. P. , and Parker, K. K. , 2010, “ Nuclear Morphology and Deformation in Engineered Cardiac Myocytes and Tissues,” Biomaterials, 31(19), pp. 5143–5150. [CrossRef] [PubMed]
Tseng, Q. , Duchemin-Pelletier, E. , Deshiere, A. , Balland, M. , Guillou, H. , Filhol, O. , and Théry, M. , 2012, “ Spatial Organization of the Extracellular Matrix Regulates Cell–Cell Junction Positioning,” Proc. Natl. Acad. Sci. U.S.A., 109(5), pp. 1506–1511. [CrossRef] [PubMed]
Gleason, R. L. , Taber, L. A. , and Humphrey, J. D. , 2004, “ A 2-D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries,” ASME J. Biomech. Eng., 126(3), pp. 371–381. [CrossRef]
Rodriguez, E. K. , Hoger, A. , and McCulloch, A. D. , 1994, “ Stress-Dependent Finite Growth in Soft Elastic Tissues,” J. Biomech., 27(4), pp. 455–467. [CrossRef] [PubMed]
Ramasubramanian, A. , and Taber, L. A. , 2008, “ Computational Modeling of Morphogenesis Regulated by Mechanical Feedback,” Biomech. Model. Mechanobiol., 7(2), pp. 77–91. [CrossRef] [PubMed]
Humphrey, J. D. , and Rajagopal, K. R. , 2003, “ A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow,” Biomech. Model. Mechanobiol., 2(2), pp. 109–126. [CrossRef] [PubMed]
Lefevre, M. , and Rucker, R. B. , 1980, “ Aorta Elastin Turnover in Normal and Hypercholesterolemic Japanese Quail,” Biochim. Biophys. Acta, 630(4), pp. 519–529. [CrossRef] [PubMed]
Davis, E. C. , 1993, “ Stability of Elastin in the Developing Mouse Aorta: A Quantitative Radioautographic Study,” Histochemistry, 100(1), pp. 17–26. [CrossRef] [PubMed]
Steelman, S. M. , Wu, Q. , Wagner, H. P. , Yeh, A. T. , and Humphrey, J. D. , 2010, “ Perivascular Tethering Modulates the Geometry and Biomechanics of Cerebral Arterioles,” J. Biomech., 43(14), pp. 2717–2721. [CrossRef] [PubMed]
Cheng, J. K. , Stoilov, I. , Mecham, R. P. , and Wagenseil, J. E. , 2013, “ A Fiber-Based Constitutive Model Predicts Changes in Amount and Organization of Matrix Proteins With Development and Disease in the Mouse Aorta,” Biomech. Model. Mechanobiol., 12(3), pp. 497–510. [CrossRef] [PubMed]
Alford, P. W. , Humphrey, J. D. , and Taber, L. A. , 2008, “ Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents,” Biomech. Model. Mechanobiol., 7(4), pp. 245–262. [CrossRef] [PubMed]
Alford, P. W. , and Taber, L. A. , 2008, “ Computational Study of Growth and Remodelling in the Aortic Arch,” Comput. Methods Biomech. Biomed. Eng., 11(5), pp. 525–538. [CrossRef]
Humphrey, J. D. , Eberth, J. F. , Dye, W. W. , and Gleason, R. L. , 2009, “ Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries,” J. Biomech., 42(1), pp. 1–8. [CrossRef] [PubMed]
Cardamone, L. , Valentín, A. , Eberth, J. F. , and Humphrey, J. D. , 2009, “ Origin of Axial Prestretch and Residual Stress in Arteries,” Biomech. Model. Mechanobiol., 8(6), pp. 431–446. [CrossRef] [PubMed]
Kamiya, A. , Bukhari, R. , and Togawa, T. , 1984, “ Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function,” Bull. Math. Biol., 46(1), pp. 127–137. [CrossRef] [PubMed]
Intengan, H. D. , Deng, L. Y. , Li, J. S. , and Schiffrin, E. L. , 1999, “ Mechanics and Composition of Human Subcutaneous Resistance Arteries in Essential Hypertension,” Hypertension, 33(1 Pt. 2), pp. 569–574. [CrossRef] [PubMed]
Bachhuber, T. , Katzmarski, N. , McCarter, J. F. , Loreth, D. , Tahirovic, S. , Kamp, F. , Abou-Ajram, C. , Nuscher, B. , Serrano-Pozo, A. , Müller, A. , Prinz, M. , Steiner, H. , Hyman, B. T. , Haass, C. , and Meyer-Luehmann, M. , 2015, “ Inhibition of Amyloid-β Plaque Formation by α-Synuclein,” Nat. Med., 21(7), pp. 802–807. [CrossRef] [PubMed]
Oakes, P. W. , Banerjee, S. , Marchetti, M. C. , and Gardel, M. L. , 2014, “ Geometry Regulates Traction Stresses in Adherent Cells,” Biophys. J., 107(4), pp. 825–833. [CrossRef] [PubMed]
Alford, P. W. , Nesmith, A. P. , Seywerd, J. N. , Grosberg, A. , and Parker, K. K. , 2011, “ Vascular Smooth Muscle Contractility Depends on Cell Shape,” Integr. Biol. (Camb), 3(11), pp. 1063–1070. [CrossRef] [PubMed]
Win, Z. , Vrla, G. D. , Steucke, K. E. , Sevcik, E. N. , Hald, E. S. , and Alford, P. W. , 2014, “ Smooth Muscle Architecture Within Cell-Dense Vascular Tissues Influences Functional Contractility,” Integr. Biol. (Camb), 6(12), pp. 1201–1210. [CrossRef] [PubMed]
Iadecola, C ., 2004, “ Neurovascular Regulation in the Normal Brain and in Alzheimer's Disease,” Nat. Rev. Neurosci., 5(5), pp. 347–360. [CrossRef] [PubMed]
Mok, S. S. , Turner, B. J. , Beyreuther, K. , Masters, C. L. , Barrow, C. J. , and Small, D. H. , 2002, “ Toxicity of Substrate-Bound Amyloid Peptides on Vascular Smooth Muscle Cells is Enhanced by Homocysteine,” Eur. J. Biochem., 269(12), pp. 3014–3022. [CrossRef] [PubMed]
Davis, J. , Cribbs, D. H. , Cotman, C. W. , and Van Nostrand, W. E. , 1999, “ Pathogenic Amyloid Beta-Protein Induces Apoptosis in Cultured Human Cerebrovascular Smooth Muscle Cells,” Amyloid, 6(3), pp. 157–164. [CrossRef] [PubMed]
Davis-Salinas, J. , Saporito-Irwin, S. M. , Cotman, C. W. , and Van Nostrand, W. E. , 1995, “ Amyloid Beta-Protein Induces Its Own Production in Cultured Degenerating Cerebrovascular Smooth Muscle Cells,” J. Neurochem., 65(2), pp. 931–934. [CrossRef] [PubMed]
Domnitz, S. B. , Robbins, E. M. , Hoang, A. W. , Garcia-Alloza, M. , Hyman, B. T. , Rebeck, G. W. , Greenberg, S. M. , Bacskai, B. J. , and Frosch, M. P. , 2005, “ Progression of Cerebral Amyloid Angiopathy in Transgenic Mouse Models of Alzheimer Disease,” J. Neuropathol. Exp. Neurol., 64(7), pp. 588–594. [CrossRef] [PubMed]
Bell, R. D. , Deane, R. , Chow, N. , Long, X. , Sagare, A. , Singh, I. , Streb, J. W. , Guo, H. , Rubio, A. , Van Nostrand, W. , Miano, J. M. , and Zlokovic, B. V. , 2009, “ SRF and Myocardin Regulate LRP-Mediated Amyloid-Beta Clearance in Brain Vascular Cells,” Nat. Cell Biol., 11(2), pp. 143–153. [CrossRef] [PubMed]
Perry, G. , Smith, M. A. , McCann, C. E. , Siedlak, S. L. , Jones, P. K. , and Friedland, R. P. , 1998, “ Cerebrovascular Muscle Atrophy Is a Feature of Alzheimer's Disease,” Brain Res., 791(1–2), pp. 63–66. [CrossRef] [PubMed]
Viswanathan, A. , and Greenberg, S. M. , 2011, “ Cerebral Amyloid Angiopathy in the Elderly,” Ann. Neurol., 70(6), pp. 871–880. [CrossRef] [PubMed]
Wang, X. , Xing, A. , Xu, C. , Cai, Q. , Liu, H. , and Li, L. , 2010, “ Cerebrovascular Hypoperfusion Induces Spatial Memory Impairment, Synaptic Changes, and Amyloid-β Oligomerization in Rats,” J. Alzheimers Dis., 21(3), pp. 813–822. [PubMed]
Axelsen, P. H. , Komatsu, H. , and Murray, I. V. , 2011, “ Oxidative Stress and Cell Membranes in the Pathogenesis of Alzheimer's Disease,” Physiology (Bethesda), 26(1), pp. 54–69. [CrossRef] [PubMed]
Zhao, Y. , and Zhao, B. , 2013, “ Oxidative Stress and the Pathogenesis of Alzheimer's Disease,” Oxid. Med. Cell. Longevity, 2013(2013), p. 316523.
Rensen, S. S. , Doevendans, P. A. , and van Eys, G. J. , 2007, “ Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity,” Neth. Heart J., 15(3), pp. 100–108. [CrossRef] [PubMed]
Bronfman, F. C. , Soto, C. , Tapia, L. , Tapia, V. , and Inestrosa, N. C. , 1996, “ Extracellular Matrix Regulates the Amount of the Beta-Amyloid Precursor Protein and Its Amyloidogenic Fragments,” J. Cell. Physiol., 166(2), pp. 360–369. [CrossRef] [PubMed]
Hedin, U. , Bottger, B. A. , Forsberg, E. , Johansson, S. , and Thyberg, J. , 1988, “ Diverse Effects of Fibronectin and Laminin on Phenotypic Properties of Cultured Arterial Smooth Muscle Cells,” J. Cell. Biol., 107(1), pp. 307–319. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic of growth and remodeling in thin-walled, constrained mixture arterial model. All the constituents (elastin: left collagen: middle, and muscle cells: right) undergo deformation F, transitioning the artery from a loaded reference configuration, b(0), to a loaded current configuration, b(t). While the constituents are constrained to move together, their zero-stress configurations evolve separately, yielding different elastic deformations for each component. Zero-stress configurations are denoted by capital Bs. Elastin and collagen are produced and degraded with time, with insertion at a prescribed initial stretch ratio, λoe or λoc. Deformation from the zero-stress configuration, Be or Bc, to the current configuration is denoted by the elastic deformation gradient tensor, F*e or F*c. Muscle cells undergo stress-free deformation due to growth, G, and active contraction, A. Upon reassembly and vessel loading, there is an elastic deformation, F*m, from the zero-stress actively contracted state which encompasses growth and active contraction, Bam, to the current configuration, b(t).

Grahic Jump Location
Fig. 2

Treatment of VSMCs with Aβ yields differences in Aβ plaque formation and nuclear morphology. (a) Representative immunofluorescent images of single VSMCs for different treatment conditions; blue: DAPI-stained nuclei, phalloidin-stained f-actin, and immunostained Aβ fibrils; scale bar: 25 μm. (b) (i) Traced VSMC for Aβ plaque coverage quantification, (ii) isolation of VSMC area in Aβ-stained image, and (iii) thresholded Aβ signal for particle analysis. (c) Aβ plaque coverage after 24 h of treatment; error bars: standard deviation and *: significant difference, p < 0.05. (d) Cell spread area after 24 h of Aβ treatment; error bars: standard deviation. (e) VSMC nuclear eccentricity after 24 h of Aβ treatment; boxes: 25–75%, whiskers: 10–90%, mean and median lines shown.

Grahic Jump Location
Fig. 3

Amyloid beta influences VSMC basal functional contractility. (a) Representative brightfield image of VSMC on PA gel, scale bar: 100 μm. (b) Heat map of measured substrate displacement resulting from VSMC traction. (c)–(e) Basal strain energy exerted by cells treated for 24 h (c), 48 h (d), and 96 h (e) with Aβ 1-42. (f) ET-1-induced contraction strain energy following 24 h treatment with Aβ; *: significant difference, p < 0.05.

Grahic Jump Location
Fig. 4

Thin-walled constrained mixture total growth model of cerebrovascular response to altered target stress. (a) Vessel wall thickness and volume fractions of collagen (ϕc) and VSMCs (ϕm). (b) Circumferential growth stretch ratio, λgθ, and radial growth stretch ratio, λgr, relative to baseline homeostatic conditions (σo=75 kPa). (c) Pressure–radius curves for active (solid lines) and passive (dashed lines) mechanical responses for specified target stress. (d) Vasodilation, represented as the ratio between the passive vessel radius, rpassive, and the active vessel radius, ractive, as a function of target stress.

Grahic Jump Location
Fig. 5

Thin-walled constrained mixture collagen deposition model of cerebrovascular response to altered target stress. (a) Vessel wall thickness and volume fractions of collagen (ϕc) and VSMCs (ϕm). (b) Circumferential growth stretch ratio, λgθ, and radial growth stretch ratio, λgr, relative to baseline homeostatic conditions (σo=75 kPa). (c) Pressure–radius curves for active (solid lines) and passive (dashed lines) mechanical responses for specified target stress. (d) Vasodilation, represented as the ratio between the passive vessel radius, rpassive, and the active vessel radius, ractive, as a function of target stress.

Grahic Jump Location
Fig. 6

Loss of VSMC ability to actively contract attenuates vasodilation in model vessels. (a) Pressure–radius curves for active (solid lines) and passive (dashed lines) mechanical responses for specified homeostatic active stretch ratio and target stress σo=75 kPa. (b) Vasodilation, represented as the ratio between the passive vessel radius, rpassive, and the active vessel radius, ractive, as a function of changes in the active stretch ratio, λao, for specified target stress.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In