Research Papers

A Macroscopic Model for Simulating the Mucociliary Clearance in a Bronchial Bifurcation: The Role of Surface Tension

[+] Author and Article Information
Michail Manolidis

Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109;
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France
e-mail: mihalis@umich.edu

Daniel Isabey

Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: daniel.isabey@inserm.fr

Bruno Louis

Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: bruno.louis@inserm.fr

James B. Grotberg

Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: grotberg@umich.edu

Marcel Filoche

Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France;
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-ail: marcel.filoche@polytechnique.edu

1Corresponding author.

Manuscript received December 18, 2015; final manuscript received August 9, 2016; published online November 3, 2016. Assoc. Editor: Naomi Chesler.

J Biomech Eng 138(12), 121005 (Nov 03, 2016) (8 pages) Paper No: BIO-15-1655; doi: 10.1115/1.4034507 History: Received December 18, 2015; Revised August 09, 2016

The mucociliary clearance in the bronchial tree is the main mechanism by which the lungs clear themselves of deposited particulate matter. In this work, a macroscopic model of the clearance mechanism is proposed. Lubrication theory is applied for thin films with both surface tension effects and a moving wall boundary. The flow field is computed by the use of a finite-volume scheme on an unstructured grid that replicates a bronchial bifurcation. The carina in bronchial bifurcations is of special interest because it is a location of increased deposition of inhaled particles. In this study, the mucus flow is computed for different values of the surface tension. It is found that a minimal surface tension is necessary for efficiently removing the mucus while maintaining the mucus film thickness at physiological levels.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Reimer, A. , von Mecklenberg, C. , and Toremalm, N. G. , 1978, “ The Mucociliary Activity of the Upper Respiratory Tract III. A Functional and Morphological Study on the Human and Animal Material With Special Reference to Maxillary Sinus Diseases,” Acta Otolaryngol., 355, pp. 1–20.
Iravani, J. , 1967, “ Flimmerbewegung in den Intrapulmonalen Luftwegen der Ratte,” Pflugers Arch., 297(4), pp. 221–237. [CrossRef]
Salathe, M. , 2007, “ Regulation of Mammalian Ciliary Beating,” Annu. Rev. Physiol., 69(1), pp. 401–422. [CrossRef] [PubMed]
Lai, W. M. , Rubin, D. , and Krempl, E. , 2009, Introduction to Continuum Mechanics, Elsevier, Waltham, MA.
Blake, J. R. , 1975, “ On the Movement of Mucus in the Lung,” J. Biomech., 8(3–4), pp. 179–190. [CrossRef] [PubMed]
Mauroy, B. , Fausser, C. , Pelca, D. , Merck, J. , and Flaud, P. , 2011, “ Toward the Modeling of Mucus Draining From the Human Lung: Role of the Geometry of the Airway Tree,” Phys. Biol., 8, p. 056006.
de Vasconcelos, T. F. , Sapoval, B. , Andrade, J. S. , Grotberg, J. B. , Hu, Y. , and Filoche, M. , 2011, “ Particle Capture in the Lung Made Simple?,” J. Appl. Physiol., 110(6), pp. 1664–1673. [CrossRef] [PubMed]
Kleinstreuer, C. , Zhang, Z. , and Li, Z. , 2008, “ Modeling Airflow and Particle Transport/Deposition in Pulmonary Airways,” Respir. Physiol. Neurobiol., 163(1), pp. 128–138. [CrossRef] [PubMed]
Balashazy, I. , Hofmann, W. , and Heistracher, T. , 2003, “ Local Particle Deposition Patterns may Play a Key Role in the Development of Lung Cancer,” J. Appl. Physiol., 94(5), pp. 1719–1725. [CrossRef] [PubMed]
Sleigh, M. A. , Blake, J. R. , and Liron, N. , 1988, “ The Propulsion of Mucus by Cilia,” Am. Rev. Respir. Dis., 137(3), pp. 726–741. [CrossRef] [PubMed]
Smith, D. J. , Gaffney, E. A. , and Blake, J. R. , 2008, “ Modelling Mucociliary Clearance,” Respir. Physiol. Neurobiol., 163(1), pp. 178–188. [CrossRef] [PubMed]
Blake, J. R. , 1972, “ A Model for the Microstructure in Ciliated Micro-Organisms,” J. Fluid Mech., 55(01), pp. 1–23. [CrossRef]
Liron, N. , and Mochon, S. , 1976, “ The Discrete Cilia Approach to Propulsion of Ciliated Microorganism,” J. Fluid Mech., 75(03), pp. 593–607. [CrossRef]
Fulford, G. R. , and Blake, J. R. , 1986, “ Muco-Ciliary Transport in the Lung,” J. Theor. Biol., 121(4), pp. 381–402. [CrossRef] [PubMed]
Sanderson, M. J. , and Sleigh, M. A. , 1981, “ Ciliary Activity of Cultured Rabbit Tracheal Epithelium: Beat Pattern and Metachrony,” J. Cell Sci., 47, pp. 331–347. [PubMed]
Keller, S. R. , 1975, “ Fluid Mechanical Investigations of Ciliary Propulsion,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Blake, J. R. , and Winet, H. , 1980, “ On the Mechanics of Muco-Ciliary Transport,” Biorheology, 17(1–2), pp. 125–134. [PubMed]
Smith, D. J. , Gaffney, E. A. , and Blake, J. R. , 2007, “ A Viscoelastic Traction Layer Model of Muco-Ciliary Transport,” Bull. Math. Biol., 69, pp. 289–327. [CrossRef] [PubMed]
Ross, S. M. , 1971, “ A Wavy Wall Analytic Model of Muco-Ciliary Pumping,” Ph.D. thesis, John Hopkins University, Baltimore, MD.
Liron, N. , and Rozenson, M. , 1983, “ Muco-Ciliary Transport,” J. Submicrosc. Cytol., 15(1), pp. 317–321.
Mitran, S. M. , 2007, “ Metachronal Wave Formation in a Model of Pulmonary Cilia,” Comput. Struct., 85(11–14), pp. 763–774. [CrossRef] [PubMed]
Mitran, S. M. , 2013, “ Continuum-Kinetic-Microscopic Model of Lung Clearance Due to Core-Annular Fluid Entrainment,” J. Comput. Phys., 244, pp. 193–211. [CrossRef] [PubMed]
Lee, P. S. , Gerrity, T. R. , Hass, F. J. , and Lourenco, R. V. , 1979, “ A Model for Tracheobronchial Clearance of Inhaled Particles,” IEEE Trans. Biomed. Eng., 26(11), pp. 624–630. [CrossRef] [PubMed]
Asgharian, B. , Hofmann, W. , and Miller, F. J. , 2001, “ Mucociliary Clearance of Insoluble Particles From the Tracheobronchial Airways of the Human Lung,” J. Aerosol Sci., 32(6), pp. 817–832. [CrossRef]
Hofmann, W. , and Sturm, R. , 2004, “ Stochastic Model of Particle Clearance in Human Bronchial Airways,” J. Aerosol Med., 17(1), pp. 73–89. [CrossRef] [PubMed]
Farkas, A. , and Szöke, I. , 2013, “ Simulation of Bronchial Mucociliary Clearance of Insoluble Particles by Computational Fluid and Particle Dynamics Methods,” Inhalation Toxicol., 25(10), pp. 593–605. [CrossRef]
Panton, R. L. , 2013, Incompressible Flow, Wiley, New York.
Button, B. , Cai, L. H. , Ehre, C. , Kesimer, M. , Hill, D. B. , Sheehan, J. K. , Boucher, R. C. , and Rubinstein, M. , 2012, “ A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer From Airway Epithelia,” Science, 337(6097), pp. 937–941. [CrossRef] [PubMed]
Weibel, E. R. , 1963, Morphometry of the Human Lung, Springer Verlag Academic, Berlin.
Weibel, E. R. , and Gomez, D. M. , 1962, “ Architecture of the Human Lung,” Science, 137(3530), pp. 577–585. [CrossRef] [PubMed]
Horsfield, L. , Dart, G. , Olson, D. R. , Filley, G. F. , and Cumming, G. , 1971, “ Models of the Human Bronchial Tree,” J. Appl. Physiol., 31(2), pp. 207–217. [PubMed]
Garimella, R. V. , and Swartz, B. K. , 2003, “ Curvature Estimation for Unstructured Triangulations of Surfaces,” Technical Report, Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-03-8240.
ICRP, 1994, “ Human Respiratory Tract Model for Radiological Protection,” International Commission on Radiological Protection (ICRP), Ottawa, ON, Canada, (ICRP) Publication 66.
Matsui, H. , Randell, S. H. , Peretti, S. W. , Davis, C. W. , and Boucher, R. C. , 1998, “ Coordinated Clearance of Periciliary Liquid and Mucus From Airway Surfaces,” J. Clin. Invest., 102(6), pp. 1125–1131. [CrossRef] [PubMed]
Hofmann, W. , Mènache, M. G. , and Graham, R. C. , 1993, “ Radon Dosimetry in the Rat Lung,” Health Phys., 64(3), pp. 279–290. [CrossRef] [PubMed]
Knowles, M. , and Boucher, R. C. , 2002, “ Mucus Clearance as a Primary Innate Defense Mechanism for Mammalian Airways,” J. Clin. Invest., 109(5), pp. 571–577. [CrossRef] [PubMed]
Majima, Y. , 2002, “ Mucoactive Medications and Airway Disease,” Paediatr. Respir. Rev., 3(2), pp. 104–109. [CrossRef] [PubMed]
Moriarty, J. A. , and Grotberg, J. B. , 1999, “ Flow-Induced Instabilities of a Mucus-Serous Bilayer,” J. Fluid Mech., 397(1), pp. 1–22. [CrossRef]
Schurch, S. , Gehr, P. , Hof, V. I. , Geiser, M. , and Green, F. , 1990, “ Surfactant Displaces Particles Toward the Epithelium in Airways and Alveoli,” Respir. Physiol. Neurobiol., 80(1), pp. 17–32. [CrossRef]
Schürch, S. , 1982, “ Surface Tension at Low Lung Volumes: Dependence on Time and Alveolar Size,” Respir. Physiol., 48(3), pp. 339–355. [CrossRef] [PubMed]
Filoche, M. , Tai, C. F. , and Grotberg, J. B. , 2015, “ Three-Dimensional Model of Surfactant Replacement Therapy,” Proc. Natl. Acad. Sci. U. S. A., 112(30), pp. 9287–9292. [CrossRef] [PubMed]
Grotberg, J. B. , Halpern, D. , and Jensen, O. E. , 1995, “ Interaction of Exogenous and Endogenous Surfactant: Spreading-Rate Effects,” J. Appl. Physiol., 78(2), pp. 750–756. [PubMed]
Bull, J. L. , Nelson, L. K. , Walsh, J. T. , Glucksberg, M. R. , Schurch, S. , and Grotberg, J. B. , 1999, “ Surfactant-Spreading and Surface-Compression Disturbance on a Thin Viscous Film,” ASME J. Biomech. Eng., 121(1), pp. 89–98. [CrossRef]
Cassidy, K. J. , Halpern, D. , Ressler, B. G. , and Grotberg, J. B. , 1999, “ Surfactant Effects in Model Airway Closure Experiments,” J. Appl. Physiol., 87(1), pp. 415–427. [PubMed]
Foster, W. M. , Langenback, E. , and Bergofsky, E. H. , 1980, “ Measurement of Tracheal and Bronchial Mucus Velocities in Man: Relation to Lung Clearance,” J. Appl. Physiol., 48(6), pp. 965–971.


Grahic Jump Location
Fig. 1

Geometry of 3D two-layered flow on a flat plate

Grahic Jump Location
Fig. 2

Construction of a CAD model of a symmetric bifurcation

Grahic Jump Location
Fig. 3

Assigned wall velocity field showing the ridge region. Note: The vectors all have the same magnitude corresponding to a speed of 40 μm/s.

Grahic Jump Location
Fig. 4

Streamlines of the prescribed wall velocity field at the ridge. The zoomed region is a rectangle following the bifurcation wall, centered across the ridge, of curvilinear length and with 6 mm and 4 mm, respectively. The carina is the center of the rectangle.

Grahic Jump Location
Fig. 5

Contour plot of the pressure along the ridge (the rectangle area is identical to the one delimited in Fig. 4). The sharp drop over small distances signals a strong pressure gradient (Ca = 10−4).

Grahic Jump Location
Fig. 6

Streamlines of the mucus flow field at the ridge region for four different capillary numbers (the rectangle area is identical to the one delimited in Fig. 4).

Grahic Jump Location
Fig. 7

Contour plots of flow velocity magnitude in the ridge region (the rectangle area is identical to the one defined in Fig.4).

Grahic Jump Location
Fig. 8

Three-dimensional representation of the mucus thickness in the entire bifurcation, for Ca = 8 × 10−4. One can observe that the thickness stabilizes to a constant value far from the bifurcations, in all three branches.

Grahic Jump Location
Fig. 9

Contour plots comparing film thickness at the ridge region for four different capillary numbers (the rectangle area is identical to the one defined in Fig. 4



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In