0
Research Papers

Computational Model of the Arterial and Venous Needle During Hemodialysis

[+] Author and Article Information
David Fulker

School of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Kensington Campus,
Kensington, NSW 2025, Australia
e-mail: d.fulker@unsw.edu.au

Anne Simmons

School of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Kensington Campus,
Kensington, NSW 2025, Australia
e-mail: a.simmons@unsw.edu.au

Tracie Barber

School of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Kensington Campus,
Kensington, NSW 2025, Australia
e-mail: t.barber@unsw.edu.au

Manuscript received June 5, 2016; final manuscript received August 1, 2016; published online November 4, 2016. Assoc. Editor: Tim David.

J Biomech Eng 139(1), 011005 (Nov 04, 2016) (7 pages) Paper No: BIO-16-1238; doi: 10.1115/1.4034429 History: Received June 05, 2016; Revised August 01, 2016

Arteriovenous fistulae (AVF) are the favored choice of vascular access but still have poor long-term success. Hemodynamic parameters play an important role in vascular health and have been linked to the development of intimal hyperplasia (IH), a pathological growth of the blood vessel initiated by injury. This study aimed to investigate the hemodynamics surrounding the arterial needle (AN) and venous needle (VN), using computational fluid dynamics. A range of blood flow rates, needle positions, and needle orientations were examined. Disturbed flows were found around AN tip in both antegrade and retrograde orientations, which result in regions of high residency time on the surface of the vein and may disrupt endothelial function. Conversely, a high speed jet exits the VN, which produced high wall shear stresses (WSSs) at the point of impingement which can damage the endothelium. The secondary flows produced by jet dissipation also resulted in regions of high residency time, which may influence endothelial structure, leading to IH. The use of shallow needle angles, a blood flow rate of approximately 300 ml/min, and placement of the needle tip away from the walls of the vein mitigates this risk.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Levey, A. S. , Coresh, J. , Balk, E. , Kausz, A. T. , Levin, A. , Steffes, M. W. , Hogg, R. J. , Perrone, R. D. , Lau, J. , and Eknoyan, G. , 2003, “ National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification,” Ann. Intern. Med., 139(2), pp. 137–147. [CrossRef] [PubMed]
Kazemzadeh, G. H. , Modaghegh, M.-H. S. , Ravari, H. , Daliri, M. R. , Hoseini, L. , and Nateghi, M. R. , 2012, “ Primary Patency Rate of Native AV Fistula: Long Term Follow Up,” Int. J. Clin. Exp. Med., 5(2), pp. 173–178. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342707/ [PubMed]
Van Tricht, I. , De Wachter, D. , Tordoir, J. H. M. , and Verdonck, P. , 2005, “ Hemodynamics and Complications Encountered With Arteriovenous Fistulas and Grafts as Vascular Access for Hemodialysis: A Review,” Ann. Biomed. Eng., 33(9), pp. 1142–1157. [CrossRef] [PubMed]
Kaushal, K. , and Wilson, S. E. , 2010, “ Thrombophilia as a Cause of Recurrent Vascular Access Thrombosis in Hemodialysis Patients,” Vascular Access: Principles and Practice, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 44–47.
Trampuz, B. V. , Ponikvar, R. , Kandus, A. , and Ponikvar, J. B. , 2013, “ Hemodialysis Arteriovenous Fistula‐Related Complications and Surgery in Kidney Graft Recipients,” Ther. Apheresis Dial., 17(4), pp. 444–447. [CrossRef]
Wang, Y. , Krishnamoorthy, M. , Banerjee, R. , Zhang, J. , Rudich, S. , Holland, C. , Arend, L. , and Chaudhury, P. R. , 2008, “ Venous Stenosis in a Pig Arteriovenous Fistula Model—Anatomy, Mechanisms and Cellular Phenotypes,” Nephrol. Dial. Transplant., 23(2), pp. 525–533. [CrossRef] [PubMed]
Nassar, G. M. , Rhee, E. , Khan, A. J. , Nguyen, B. , Achkar, K. , and Beathard, G. , 2015, “ Percutaneous Thrombectomy of AVF: Immediate Success and Long‐Term Patency Rates,” Semin. Dial., 28(2), pp. 15–22. [CrossRef]
Meyerson, S. L. , Skelly, C. L. , Curi, M. A. , Shakur, U. M. , Vosicky, J. E. , Glagov, S. , and Schwartz, L. B. , 2001, “ The Effects of Extremely Low Shear Stress on Cellular Proliferation and Neointimal Thickening in the Failing Bypass Graft,” J. Vasc. Surg., 34(1), pp. 90–97. [CrossRef] [PubMed]
Keynton, R. S. , Evancho, M. M. , Sims, R. L. , Rodway, N. V. , Gobin, A. , and Rittgers, S. E. , 2001, “ Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study,” ASME J. Biomech. Eng., 123(5), pp. 464–473. [CrossRef]
Vaishnav, R. N. , Patel, D. J. , Atabek, B. H. , Deshpande, M. D. , Plowman, F. , and Vossoughi, J. , 1983, “ Determination of the Local Erosion Stress of the Canine Endothelium Using a Jet Impingement Method,” ASME J. Biomech. Eng., 105(1), pp. 77–83. [CrossRef]
Fry, D. L. , 1968, “ Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients,” Circ. Res., 22(2), pp. 165–197. [CrossRef] [PubMed]
Chien, S. , 2008, “ Effects of Disturbed Flow on Endothelial Cells,” Ann. Biomed. Eng., 36(4), pp. 554–562. [CrossRef] [PubMed]
Himburg, H. A. , Grzybowski, D. M. , Hazel, A. L. , LaMack, J. A. , Li, X.-M. , and Friedman, M. H. , 2004, “ Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability,” Am. J. Physiol.: Heart Circ. Physiol., 286(5), pp. H1916–1922. [CrossRef] [PubMed]
Leverett, B. L. , Hellums, D. J. , Alfrey, C. P. , and Lynch, E. C. , 1972, “ Red Blood Cell Damage by Shear Stress,” Biophys. J., 12(3), pp. 257–273. [CrossRef] [PubMed]
Unnikrishnan, S. , Huynh, T. N. , Brott, B. C. , Ito, Y. , Cheng, C.-H. , Shih, A. M. , Allon, M. , and Anayiotos, A. S. , 2005, “ Turbulent Flow Evaluation of the Venous Needle During Hemodialysis,” ASME J. Biomech. Eng., 127(7), pp. 1141–1146. [CrossRef]
Huynh, T. N. , Chacko, B. K. , Teng, X. , Brott, B. C. , Allon, M. , Kelpke, S. S. , Thompson, J. A. , Patel, R. P. , and Anayiotos, A. S. , 2007, “ Effects of Venous Needle Turbulence During Ex Vivo Hemodialysis on Endothelial Morphology and Nitric Oxide Formation,” J. Biomech., 40(10), pp. 2158–2166. [CrossRef] [PubMed]
Fulker, D. , Kang, M. , Simmons, A. , and Barber, T. , 2013, “ The Flow Field Near a Venous Needle in Hemodialysis: A Computational Study,” Hemodialysis Int., 17(4), pp. 602–611.
Fulker, D. , Simmons, A. , Kabir, K. , Kark, L. , and Barber, T. , 2015, “ The Hemodynamic Effects of Hemodialysis Needle Rotation and Orientation in an Idealized Computational Model,” Artif. Organs, 40(2), pp. 185–189. [CrossRef] [PubMed]
Roache, P. J. , 1997, “ Quantification of Uncertainty in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech., 29(1), pp. 123–160. [CrossRef]
Fulker, D. , Keshavarzi, G. , Simmons, A. , Pugh, D. , and Barber, T. , 2015, “ Pulsatility Produced by the Hemodialysis Roller Pump as Measured by Doppler Ultrasound,” Artif. Organs, 39(11), pp. 945–950. [CrossRef] [PubMed]
Sivanesan, S. , How, T. V. , Black, R. A. , and Bakran, A. , 1999, “ Flow Patterns in the Radiocephalic Arteriovenous Fistula: An In Vitro Study,” J. Biomech., 32(9), pp. 915–925. [CrossRef] [PubMed]
Khan, M. O. , Valen-Sendstad, K. , and Steinman, D. A. , 2015, “ Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics Versus Mesh and Time-Step Resolution,” Am. J. Neuroradiology, 36(7), pp. 1310–1316. [CrossRef]
He, X. , and Ku, D. N. , 1996, “ Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118(1), pp. 74–82. [CrossRef]
Lee, S.-W. , Antiga, L. , and Steinman, D. A. , 2009, “ Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation,” ASME J. Biomech. Eng., 131(6), p. 061013. [CrossRef]
Knight, J. , Olgac, U. , Saur, S. C. , Poulikakos, D. , Marshall, W. , Cattin, P. C. , Alkadhi, H. , and Kurtcuoglu, V. , 2010, “ Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location—A Patient-Specific Computational Study in Human Right Coronary Arteries,” Atherosclerosis, 211(2), pp. 445–450. [CrossRef] [PubMed]
Rothera, C. , McCallum, C. , Huang, S. , Heidenheim, P. , and Lindsay, R. , 2011, “ The Influence of Between-Needle Cannulation Distance on the Efficacy of Hemodialysis Treatments,” Haemodialysis Int., 15(4), pp. 546–552. [CrossRef]
Ozmen, S. , Kadiroglu, A. K. , Ozmen, C. A. , Danis, R. , Sit, D. , Akin, D. , and Yilmaz, M. E. , 2008, “ Does the Direction of Arterial Needle in AV Fistula Cannulation Affect Dialysis Adequacy?,” Clin. Nephrol., 70(3), pp. 229–232. [CrossRef] [PubMed]
Bassiouny, H. S. , White, S. , Glagov, S. , Choi, E. , Giddens, D. P. , and Zarins, C. K. , 1992, “ Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., 15(4), pp. 708–717. [CrossRef] [PubMed]
van Loon, M. M. , Goovaerts, T. , Kessels, A. G. H. , van der Sande, F. M. , and Tordoir, J. H. M. , 2010, “ Buttonhole Needling of Haemodialysis Arteriovenous Fistulae Results in Less Complications and Interventions Compared to the Rope-Ladder Technique,” Nephrol., Dial., Transplant., 25(1), pp. 225–230. [CrossRef]
Parisotto, M. T. , Schoder, V. U. , Miriunis, C. , Grassmann, A. H. , Scatizzi, L. P. , Kaufmann, P. , Stopper, A. , and Marcelli, D. , 2014, “ Cannulation Technique Influences Arteriovenous Fistula and Graft Survival,” Kidney Int., 86(4), pp. 790–797. [CrossRef] [PubMed]
Phares, D. J. , Smedley, G. T. , and Flagan, R. C. , 2000, “ The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface,” J. Fluid Mech., 418(1), pp. 351–375. [CrossRef]
Loureiro, J. B. R. , and Freire, A. P. S. , 2012, “ Wall Shear Stress Measurements and Parametric Analysis of Impinging Wall Jets,” Int. J. Heat Mass Transfer, 55(23–24), pp. 6400–6409. [CrossRef]
Ponce, P. , Marcelli, D. , Scholz, C. , Wehmeyer, W. , Gonçalves, P. , Grassmann, A. , Brand, K. , and Canaud, B. , 2014, “ Does the Extracorporeal Blood Flow Affect Survival of the Arteriovenous Vascular Access?,” Hemodialysis Int., 19(2), pp. 314–322. [CrossRef]
Patard, J.-J. , Bensalah, K. , Lucas, A. , Rodriguez, A. , Manunta, A. , Rivalan, J. , Pogamp, P. L. , Lobel, B. , and Guillé, F. , 2002, “ Management of Vascular Access for Hemodialysis After Successful Kidney Transplantation,” Scand. J. Urol. Nephrol., 36(5), pp. 373–376. [CrossRef] [PubMed]
Glashan, R. W. , and Walker, F. , 1968, “ A Histological Examination of Veins Used in Artificial Arteriovenous (‘Quinton/Scribner’) Shunts,” Br. J. Surg., 55(3), pp. 189–193. [CrossRef] [PubMed]
Rodrigues, L. T. , Pengloan, J. , Baudin, S. , Testou, D. , Abaza, M. , Dahdah, G. , Mouton, A. , and Blanchard, D. , 2000, “ Treatment of Stenosis and Thrombosis in Haemodialysis Fistulas and Grafts by Interventional Radiology,” Nephrol., Dial., Transplant., 15(12), pp. 2029–2036. [CrossRef]
Reidy, M. A. , and Schwartz, S. M. , 1981, “ Endothelial Regeneration. III. Time Course of Intimal Changes After Small Defined Injury to Rat Aortic Endothelium,” Lab. Invest., 44(4), pp. 301–308. http://europepmc.org/abstract/med/7206628 [PubMed]
Fingerle, J. , Au, T. Y. P. , Clowes, A. W. , and Reidy, M. A. , 1990, “ Intimal Lesion Formation in Rat Carotid Arteries After Endothelial Denudation in Absence of Medial Injury,” Arterioscler., Thromb., Vasc. Biol., 10(6), pp. 1082–1087. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Pathlines and velocity contours on cross-sectional planes for the arterial needle in an antegrade orientation during diastole. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 2

Relative residency time on the wall of the vein normalized by the mean wall shear stress for the arterial needle in the antegrade orientation. Low levels of high RRT (<10) have been highlighted to emphasize regions of strong secondary flows. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 3

Pathlines and velocity contours on cross-sectional planes for the arterial needle in a retrograde orientation during diastole. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 4

Relative residency time on the wall of the vein normalized by the mean wall shear stress for the arterial needle in the retrograde orientation. Low levels of high RRT (<10) have been highlighted to emphasize regions of strong secondary flows. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 5

Velocity isosurfaces (1 m/s) visualizing the venous needle jet. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 6

Time average wall shear stress on the wall of the vein for the venous needle. Values < 10 Pa have been highlighted to emphasize regions of excessively high stress. The scale has also been capped at the threshold reported to cause endothelial damage (40 Pa). (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Grahic Jump Location
Fig. 7

Relative residency time on the wall of the vein normalized by the mean wall shear stress for the arterial needle in the retrograde orientation. Low levels of high RRT (<10) have been highlighted to emphasize regions of strong secondary flows. (a)–(c) Variation in blood flow rate (200 ml/min, 300 ml/min, 400 ml/min). (d)–(f) Variation in needle angle (10 deg, 20 deg, 30 deg). (g)–(i) Variation in needle position (bottom, central, top).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In