0
Technical Brief

On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets

[+] Author and Article Information
Keyvan Amini Khoiy

Department of Biomedical Engineering,
The University of Akron,
Olson Research Center, Room 322/3,
260 South Forge Street,
Akron, OH 44325
e-mail: ka67@zips.uakron.edu

Rouzbeh Amini

Mem. ASME
Department of Biomedical Engineering,
The University of Akron,
Olson Research Center, Room 301F,
260 South Forge Street,
Akron, OH 44325
e-mail: ramini@uakron.edu

1Corresponding author.

Manuscript received December 4, 2015; final manuscript received August 1, 2016; published online August 24, 2016. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 138(10), 104504 (Aug 24, 2016) (6 pages) Paper No: BIO-15-1625; doi: 10.1115/1.4034426 History: Received December 04, 2015; Revised August 01, 2016

Located on the right side of the heart, the tricuspid valve (TV) prevents blood backflow from the right ventricle to the right atrium. Similar to other cardiac valves, quantification of TV biaxial mechanical properties is essential in developing accurate computational models. In the current study, for the first time, the biaxial stress–strain behavior of porcine TV was measured ex vivo under different loading protocols using biaxial tensile testing equipment. The results showed a highly nonlinear response including a compliant region followed by a rapid transition to a stiff region for all of the TV leaflets both in the circumferential and in the radial directions. Based on the data analysis, all three leaflets were found to be anisotropic, and they were stiffer in the circumferential direction in comparison to the radial direction. It was also concluded that the posterior leaflet was the most anisotropic leaflet.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hall, J. E. , 2010, Guyton and Hall Textbook of Medical Physiology, Elsevier Health Sciences, Philadelphia, PA.
Vassileva, C. M. , Shabosky, J. , Boley, T. , Markwell, S. , and Hazelrigg, S. , 2012, “ Tricuspid Valve Surgery: The Past 10 Years From the Nationwide Inpatient Sample (NIS) Database,” J. Thorac. Cardiovasc. Surg., 143(5), pp. 1043–1049. [CrossRef] [PubMed]
Navia, J. L. , Brozzi, N. A. , Klein, A. L. , Ling, L. F. , Kittayarak, C. , Nowicki, E. R. , Batizy, L. H. , Zhong, J. , and Blackstone, E. H. , 2012, “ Moderate Tricuspid Regurgitation With Left-Sided Degenerative Heart Valve Disease: To Repair or Not to Repair?,” Annals Thoracic Surg., 93(1), pp. 59–67.
Guenther, T. , Noebauer, C. , Mazzitelli, D. , Busch, R. , Tassani-Prell, P. , and Lange, R. , 2008, “ Tricuspid Valve Surgery: A Thirty-Year Assessment of Early and Late Outcome,” Eur. J. Cardio-Thoracic Surg., 34(2), pp. 402–409. [CrossRef]
Singh, S. K. , Tang, G. H. , Maganti, M. D. , Armstrong, S. , Williams, W. G. , David, T. E. , and Borger, M. A. , 2006, “ Midterm Outcomes of Tricuspid Valve Repair Versus Replacement for Organic Tricuspid Disease,” Annals Thoracic Surg., 82(5), pp. 1735–1741. [CrossRef]
Rankin, J. S. , Hammill, B. G. , Ferguson, T. B. , Glower, D. D. , O'Brien, S. M. , DeLong, E. R. , Peterson, E. D. , and Edwards, F. H. , 2006, “ Determinants of Operative Mortality in Valvular Heart Surgery,” J. Thoracic Cardiovasc. Surg., 131(3), pp. 547–557. [CrossRef]
Desai, R. R. , Abello, L. M. V. , Klein, A. L. , Marwick, T. H. , Krasuski, R. A. , Ye, Y. , Nowicki, E. R. , Rajeswaran, J. , Blackstone, E. H. , and Pettersson, G. B. , 2013, “ Tricuspid Regurgitation and Right Ventricular Function After Mitral Valve Surgery With or Without Concomitant Tricuspid Valve Procedure,” J. Thoracic Cardiovasc. Surg., 146(5), pp. 1126–1132. [CrossRef]
Dreyfus, G. D. , Corbi, P. J. , Chan, K. M. J. , and Bahrami, T. , 2005, “ Secondary Tricuspid Regurgitation Or Dilatation: Which Should Be the Criteria for Surgical Repair?,” Annals Thoracic Surg., 79(1) pp. 127–132. [CrossRef]
Lee, J. W. , Song, J. M. , Park, J. P. , Lee, J. W. , Kang, D. H. , and Song, J. K. , 2010, “ Long-Term Prognosis of Isolated Significant Tricuspid Regurgitation,” Circulation J., 74(2), pp. 375–380. [CrossRef]
Chan, V. , Burwash, I. G. , Lam, B. , Auyeung, T. , Tran, A. , Mesana, T. G. , and Ruel, M. , 2009, “ Clinical and Echocardiographic Impact of Functional Tricuspid Regurgitation Repair at the Time of Mitral Valve Replacement,” Annals Thoracic Surg., 88(4), pp. 1209–1215. [CrossRef]
Cohen, S. R. , Sell, J. E. , McIntosh, C. L. , and Clark, R. E. , 1987, “ Tricuspid Regurgitation in Patients With Acquired, Chronic, Pure Mitral Regurgitation. I. Prevalence, Diagnosis, and Comparison of Preoperative Clinical and Hemodynamic Features in Patients With and Without Tricuspid Regurgitation,” J. Thoracic Cardiovasc. Surg., 94(4), pp. 481–487.
Koelling, T. M. , Aaronson, K. D. , Cody, R. J. , Bach, D. S. , and Armstrong, W. F. , 2002, “ Prognostic Significance of Mitral Regurgitation and Tricuspid Regurgitation in Patients With Left Ventricular Systolic Dysfunction,” Am. Heart J., 144(3), pp. 524–529. [CrossRef] [PubMed]
Sagie, A. , Freitas, N. , Chen, M. H. , Marshall, J. E. , Weyman, A. E. , and Levine, R. A. , 1997, “ Echocardiographic Assessment of Mitral Stenosis and Its Associated Valvular Lesions in 205 Patients and Lack of Association With Mitral Valve Prolapse,” J. Am. Soc. Echocardio., 10(2), pp. 141–148. [CrossRef]
Boyaci, A. , Gokce, V. , Topaloglu, S. , Korkmaz, S. , and Goksel, S. , 2007, “ Outcome of Significant Functional Tricuspid Regurgitation Late After Mitral Valve Replacement for Predominant Rheumatic Mitral Stenosis,” Angiology, 58(3), pp. 336–342. [CrossRef] [PubMed]
Singh, J. P. , Evans, J. C. , Levy, D. , Larson, M. G. , Freed, L. A. , Fuller, D. L. , Lehman, B. , and Benjamin, E. J. , 1999, “ Prevalence and Clinical Determinants of Mitral, Tricuspid, and Aortic Regurgitation (the Framingham Heart Study),” Am. J. Cardiol., 83(6), pp. 897–902. [CrossRef] [PubMed]
Stuge, O. , and Liddicoat, J. , 2006, “ Emerging Opportunities for Cardiac Surgeons Within Structural Heart Disease,” J. Thorac. Cardiovasc. Surg., 132(6), pp. 1258–1261. [CrossRef] [PubMed]
Taramasso, M. , Vanermen, H. , Maisano, F. , Guidotti, A. , La Canna, G. , and Alfieri, O. , 2012, “ The Growing Clinical Importance of Secondary Tricuspid Regurgitation,” J. Am. Coll. Cardiol., 59(8), pp. 703–710. [CrossRef] [PubMed]
May-Newman, K. , and Yin, F. C. , 1995, “ Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets,” Am. J. Physiol., 269(4 Pt. 2), pp. H1319–H1327. [PubMed]
Billiar, K. L. , and Sacks, M. S. , 2000, “ Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results,” ASME J. Biomech. Eng., 122(1), pp. 23–30. [CrossRef]
Grashow, J. S. , Yoganathan, A. P. , and Sacks, M. S. , 2006, “ Biaixal Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates,” Ann. Biomed. Eng., 34(2), pp. 315–325. [CrossRef] [PubMed]
Grashow, J. S. , Sacks, M. S. , Liao, J. , and Yoganathan, A. P. , 2006, “ Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet,” Ann. Biomed. Eng., 34(10), pp. 1509–1518. [CrossRef] [PubMed]
Sacks, M. S. , He, Z. , Baijens, L. , Wanant, S. , Shah, P. , Sugimoto, H. , and Yoganathan, A. P. , 2002, “ Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve,” Ann. Biomed. Eng., 30(10), pp. 1281–1290. [CrossRef] [PubMed]
McCarthy, P. M. , and Sales, V. L. , 2010, “ Evolving Indications for Tricuspid Valve Surgery,” Curr. Treat. Options Cardiovasc. Med., 12(6), pp. 587–597. [CrossRef] [PubMed]
Boronyak, S. M. , and Merryman, W. D. , 2012, “ Development of a Simultaneous Cryo-Anchoring and Radiofrequency Ablation Catheter for Percutaneous Treatment of Mitral Valve Prolapse,” Ann. Biomed. Eng., 40(9), pp. 1971–1981. [CrossRef] [PubMed]
Price, S. L. , Norwood, C. G. , Williams, J. L. , McElderry, H. T. , and Merryman, W. D. , 2010, “ Radiofrequency Ablation Directionally Alters Geometry and Biomechanical Compliance of Mitral Valve Leaflets: Refinement of a Novel Percutaneous Treatment Strategy,” Cardiovasc. Eng. Technol., 1(3), pp. 194–201. [CrossRef]
Hobson, C. M. , Amoroso, N. J. , Amini, R. , Ungchusri, E. , Hong, Y. , D'Amore, A. , Sacks, M. S. , and Wagner, W. R. , 2015, “ Fabrication of Elastomeric Scaffolds With Curvilinear Fibrous Structures for Heart Valve Leaflet Engineering,” J. Biomed. Mater. Res., Part A, 103(9), pp. 3101–3106. [CrossRef]
Zhang, W. , Feng, Y. , Lee, C. , Billiar, K. L. , and Sacks, M. S. , 2015, “ A Generalized Method for the Analysis of Planar Biaxial Mechanical Data Using Tethered Testing Configurations,” ASME J. Biomech. Eng., 137(6), p. 064501. [CrossRef]
Eilaghi, A. , Flanagan, J. G. , Brodland, G. W. , and Ethier, C. R. , 2009, “ Strain Uniformity in Biaxial Specimens is Highly Sensitive to Attachment Details,” ASME J. Biomech. Eng., 131(9), p. 091003. [CrossRef]
Lake, S. P. , and Barocas, V. H. , 2011, “ Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model,” Ann. Biomed. Eng., 39(7), pp. 1891–1903. [CrossRef] [PubMed]
Amini, R. , Voycheck, C. A. , and Debski, R. E. , 2014, “ A Method for Predicting Collagen Fiber Realignment in Non-Planar Tissue Surfaces as Applied to Glenohumeral Capsule During Clinically Relevant Deformation,” ASME J. Biomech. Eng., 136(3), p. 031003. [CrossRef]
Sacks, M. S. , 2000, “ Biaxial Mechanical Evaluation of Planar Biological Materials,” J. Elasticity Phys. Sci. Solids, 61(1–3), pp. 199–246. [CrossRef]
Stevanella, M. , Votta, E. , Lemma, M. , Antona, C. , and Redaelli, A. , 2010, “ Finite Element Modelling of the Tricuspid Valve: A Preliminary Study,” Med. Eng. Phys., 32(10), pp. 1213–1223. [CrossRef] [PubMed]
Redington, A. N. , Gray, H. H. , Hodson, M. E. , Rigby, M. L. , and Oldershaw, P. J. , 1988, “ Characterisation of the Normal Right Ventricular Pressure–Volume Relation by Biplane Angiography and Simultaneous Micromanometer Pressure Measurements,” Br. Heart J., 59(1), pp. 23–30. [CrossRef] [PubMed]
Naeije, R. , Brimioulle, S. , and Dewachter, L. , 2014, “ Biomechanics of the Right Ventricle in Health and Disease (2013 Grover Conference Series),” Pulm. Circ., 4(3), pp. 395–406. [CrossRef] [PubMed]
Redington, A. N. , Rigby, M. L. , Shinebourne, E. A. , and Oldershaw, P. J. , 1990, “ Changes in the Pressure–Volume Relation of the Right Ventricle When Its Loading Conditions Are Modified,” Br. Heart J., 63(1), pp. 45–49. [CrossRef] [PubMed]
Anwar, A. M. , Geleijnse, M. L. , Soliman, O. I. , McGhie, J. S. , Frowijn, R. , Nemes, A. , van den Bosch, A. E. , Galema, T. W. , and Folkert, J. , 2007, “ Assessment of Normal Tricuspid Valve Anatomy in Adults by Real-Time Three-Dimensional Echocardiography,” Int. J. Cardiovasc. Imaging, 23(6), pp. 717–724. [CrossRef] [PubMed]
Tei, C. , Pilgrim, J. P. , Shah, P. M. , Ormiston, J. A. , and Wong, M. , 1982, “ The Tricuspid Valve Annulus: Study of Size and Motion in Normal Subjects and in Patients With Tricuspid Regurgitation,” Circulation, 66(3), pp. 665–671. [CrossRef] [PubMed]
Heyden, S. , Nagler, A. , Bertoglio, C. , Biehler, J. , Gee, M. W. , Wall, W. A. , and Ortiz, M. , 2015, “ Material Modeling of Cardiac Valve Tissue: Experiments, Constitutive Analysis and Numerical Investigation,” J. Biomech., 48(16), pp. 4287–4296. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Custom-made biaxial tensile testing equipment

Grahic Jump Location
Fig. 2

(a) Specially designed phantom to facilitate the attachment of the leaflets to the biaxial tensile testing equipment. (b) Specimen attached to the equipment using fishhooks and suture lines.

Grahic Jump Location
Fig. 3

The three leaflets of the tricuspid valve and the position and shape of the specimens

Grahic Jump Location
Fig. 4

The average membrane tension versus stretch ratio for the loading protocols: (a) number 1 (equibiaxial), (b) number 2, (c) number 3, (d) number 4, and (e) number 5 for the anterior leaflet. The circumferential (Circ) and radial directions are in solid and dashed-dotted, respectively. The bars are standard errors. The horizontal dashed line shows the maximum physiological tension level (Max Physio), while the tension level goes up to 100 N/m in case of hypertension.

Grahic Jump Location
Fig. 5

The average membrane tension versus stretch ratio for the loading protocols: (a) number 1 (equibiaxial), (b) number 2, (c) number 3, (d) number 4, and (e) number 5 for the posterior leaflet. The circumferential (Circ) and radial directions are in solid and dashed-dotted, respectively. The bars are standard errors. The horizontal dashed line shows the maximum physiological tension level (Max Physio), while the tension level goes up to 100 N/m in case of hypertension.

Grahic Jump Location
Fig. 6

The average membrane tension versus stretch ratio for the loading protocols: (a) number 1 (equibiaxial), (b) number 2, (c) number 3, (d) number 4, and (e) number 5 for the septal leaflet. The circumferential (Circ) and radial directions are in solid and dashed-dotted, respectively. The bars are standard errors. The horizontal dashed line shows the maximum physiological tension level (Max Physio), while the tension level goes up to 100 N/m in case of hypertension.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In