Research Papers

Computational Assessment of the Relation Between Embolism Source and Embolus Distribution to the Circle of Willis for Improved Understanding of Stroke Etiology

[+] Author and Article Information
Debanjan Mukherjee

Department of Mechanical Engineering,
University of California, Berkeley,
Berkeley, CA 94720
e-mail: debanjan@berkeley.edu

Neel D. Jani, Kartiga Selvaganesan, Christopher L. Weng

Department of Mechanical Engineering,
University of California, Berkeley,
Berkeley, CA 94720

Shawn C. Shadden

Department of Mechanical Engineering,
University of California, Berkeley,
Berkeley, CA 94720
e-mail: shadden@berkeley.edu

Manuscript received February 26, 2016; final manuscript received June 19, 2016; published online July 12, 2016. Assoc. Editor: Ender A. Finol.

J Biomech Eng 138(8), 081008 (Jul 12, 2016) (13 pages) Paper No: BIO-16-1072; doi: 10.1115/1.4033986 History: Received February 26, 2016; Revised June 19, 2016

Stroke caused by an embolism accounts for about a third of all stroke cases. Understanding the source and cause of the embolism is critical for diagnosis and long-term treatment of such stroke cases. The complex nature of the transport of an embolus within large arteries is a primary hindrance to a clear understanding of embolic stroke etiology. Recent advances in medical image-based computational hemodynamics modeling have rendered increasing utility to such techniques as a probe into the complex flow and transport phenomena in large arteries. In this work, we present a novel, patient-specific, computational framework for understanding embolic stroke etiology, by combining image-based hemodynamics with discrete particle dynamics and a sampling-based analysis. The framework allows us to explore the important question of how embolism source manifests itself in embolus distribution across the various major cerebral arteries. Our investigations illustrate prominent numerical evidence regarding (i) the size/inertia-dependent trends in embolus distribution to the brain; (ii) the relative distribution of cardiogenic versus aortogenic emboli among the anterior, middle, and posterior cerebral arteries; (iii) the left versus right brain preference in cardio-emboli and aortic-emboli transport; and (iv) the source–destination relationship for embolisms affecting the brain.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Di Tullio, M. R. , and Homma, S. , 2002, “ Mechanisms of Cardioembolic Stroke,” Curr. Cardiol. Rep., 4(2), pp. 141–148,. [CrossRef] [PubMed]
Ferro, J. M. , 2003, “ Cardioembolic Stroke: An Update,” Lancet Neurol., 2(3), pp. 177–188. [CrossRef] [PubMed]
Kronzon, I. , and Tunick, P. A. , 2006, “ Aortic Atherosclerotic Disease and Stroke,” Circulation, 114(1), pp. 63–75. [CrossRef] [PubMed]
Limbruno, U. , Micheli, A. , De Carlo, M. , Amoroso, G. , Rossini, R. , Palagi, C. , Di Bello, V. , Sonia Petronio, A. , Fontanini, G. , and Mariani, M. , 2003, “ Mechanical Prevention of Distal Embolization During Primary Angioplasty: Safety, Feasibility, and Impact on Myocardial Reperfusion,” Circulation, 108(2), pp. 171–176. [CrossRef] [PubMed]
Chueh, J. Y. , Kühn, A. L. , Puri, A. S. , Wilson, S. D. , Wakhloo, A. K. , and Gounis, M. J. , 2013, “ Reduction in Distal Emboli With Proximal Flow Control During Mechanical Thrombectomy: A Quantitative In Vitro Study,” Stroke, 44(5), pp. 1396–1401. [CrossRef] [PubMed]
Hoffman, S. J. , Routledge, H. C. , and Lennon, R. J. , 2012, “ Procedural Factors Associated With Percutaneous Coronary Intervention-Related Ischemic Stroke,” JACC: Cardiovasc. Interventions, 5(2), pp. 200–206. [CrossRef]
Goodman, P. D. , Barlow, E. T. , Crapo, P. M. , Fazal Mohammad, S. , and Solen, K. A. , 2005, “ Computational Model of DeviceInduced Thrombosis and Thromboembolism,” Ann. Biomed. Eng., 33(6), pp. 780–797. [CrossRef] [PubMed]
Arboix, A. , and Alió, J. , 2010, “ Cardioembolic Stroke: Clinical Features, Specific Cardiac Disorders and Prognosis,” Curr. Cardiol. Rev., 6(3), pp. 150–161. [CrossRef] [PubMed]
Sacco, R. L. , Ellenberg, J. H. , Mohr, J. P. , Tatemichi, T. K. , Hier, D. B. , Price, T. R. , and Wolf, P. A. , 1989, “ Infarcts of Undetermined Cause: The NINCDS Stroke Data Bank,” Ann. Neurol., 25(4), pp. 382–390. [CrossRef] [PubMed]
Marsh, J. D. , and Keyrouz, S. G. , 2010, “ Stroke Prevention and Treatment,” J. Am. Coll. Cardiol., 56(9), pp. 683–691. [CrossRef] [PubMed]
Ferro, J. M. , Massaro, A. R. , and Mas, J. L. , 2010, “ Aetiological Diagnosis of Ischaemic Stroke in Young Adults,” Lancet Neurol., 9(11), pp. 1085–1096. [CrossRef] [PubMed]
Mohr, J. P. , Caplan, L. R. , Melski, J. W. , Goldstein, R. J. , Duncan, G. W. , Kistler, J. P. , Pessin, M. S. , and Bleich, H. L. , 1978, “ The Harvard Cooperative Stroke Registry. A Prospective Registry,” Neurology, 28(8), pp. 754–754. [CrossRef] [PubMed]
Putaala, J. , Metso, A. J. , Metso, T. M. , Konkola, N. , Kraemer, Y. , Haapaniemi, E. , Kaste, M. , and Tatlisumak, T. , 2009, “ Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry,” Stroke, 40(4), pp. 1195–1203. [CrossRef] [PubMed]
Bogousslavsky, J. , Van Melle, G. , and Regli, F. , 1998, “ The Lausanne Stroke Registry: Analysis of 1,000 Consecutive Patients With First Stroke,” Stroke, 19(9), pp. 1083–1092. [CrossRef]
Smith, W. S. , Lev, M. H. , English, J. D. , Camargo, E. C. , Chou, M. , Johnston, S. C. , Gonzalez, G. , Schaefer, P. W. , Dillon, W. P. , Koroshetz, W. J. , and Furie, K. L. , 2009, “ Significance of Large Vessel Intracranial Occlusion Causing Acute Ischemic Stroke and TIA,” Stroke, 40(12), pp. 3834–3840. [CrossRef] [PubMed]
Kim, H. J. , Song, J. M. , Kwon, S. U. , Kim, B. J. , Kang, D. H. , Song, J. K. , Kim, J. S. , and Kang, D. W. , 2011, “ Right-Left Propensity and Lesion Patterns Between Cardiogenic and Aortogenic Cerebral Embolisms,” Stroke, 42(8), pp. 2323–2325. [CrossRef] [PubMed]
Macdonald, R. L. , Kowalczuk, A. , and Johns, L. , 1995, “ Emboli Enter Penetrating Arteries of Monkey Brain in Relation to Their Size,” Stroke, 26(7), pp. 1247–1250. [CrossRef] [PubMed]
Rapp, J. H. , Hollenbeck, K. , and Pan, X. M. , 2008, “ An Experimental Model of Lacunar Infarction: Embolization of Microthrombi,” J. Vasc. Surg., 48(1), pp. 196–200. [CrossRef] [PubMed]
Pollanen, M. S. , 1991, “ Behaviour of Suspended Particles at Bifurcations: Implications for Embolism,” Phys. Med. Biol., 36(3), pp. 397–401. [CrossRef] [PubMed]
Bushi, D. , Grad, Y. , Einav, S. , Yodfat, O. , Nishri, B. , and Tanne, D. , 2005, “ Hemodynamic Evaluation of Embolic Trajectory in an Arterial Bifurcation: An In-Vitro Experimental Model,” Stroke, 36(12), pp. 2696–700. [CrossRef] [PubMed]
Chung, E. M. L. , Hague, J. P. , and Chanrion, M. , 2010, “ Embolus Trajectory Through a Physical Replica of the Major Cerebral Arteries,” Stroke, 41(4), pp. 647–652. [CrossRef] [PubMed]
Steinman, D. A. , 2002, “ Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries,” Ann. Biomed. Eng., 30(4), pp. 483–497. [CrossRef] [PubMed]
Mukherjee, D. , Padilla, J. , and Shadden, S. C. , 2015, “ Numerical Investigation of Fluid–Particle Interactions for Embolic Stroke,” Theor. Comput. Fluid Dyn., 30(1), pp. 23–39.
Carr, I. A. , Nemoto, N. , Schwartz, R. S. , and Shadden, S. C. , 2013, “ Size-Dependent Predilections of Cardiogenic Embolic Transport,” Am. J. Physiol.: Heart Circ. Physiol., 305(5), pp. H732–H739. [CrossRef] [PubMed]
Choi, H. W. , Navia, J. A. , and Kassab, G. S. , 2013, “ Stroke Propensity is Increased Under Atrial Fibrillation Hemodynamics: A Simulation Study,” PloS One, 8(9), p. e73485. [CrossRef] [PubMed]
Fabbri, D. , Long, Q. , Das, S. , and Pinelli, M. , 2014, “ Computational Modeling of Emboli Travel Trajectories in Cerebral Arteries: Influence of Microembolic Particle Size and Density,” Biomech. Model. Mechanobiol., 13(2), pp. 289–302. [CrossRef] [PubMed]
Simvascular , 2016, “ SimVascular,” Stanford University, Stanford, CA.
Les, A. S. , Shadden, S. C. , Figueroa, C. A. , Park, J. M. , Tedesco, M. M. , Herfkens, R. J. , Dalman, R. L. , and Taylor, C. A. , 2010, “ Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics,” Ann. Biomed. Eng., 38(4), pp. 1288–1313. [CrossRef] [PubMed]
Olufsen, M. S. , Peskin, C. S. , Kim, W. Y. , Pedersen, E. M. , Nadim, A. , and Larsen, J. , 2000, “ Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28(11), pp. 1281–1299. [CrossRef] [PubMed]
Seed, W. A. , and Wood, N. B. , 1971, “ Velocity Patterns in the Aorta,” Cardiovasc. Res., 5(3), pp. 319–330. [CrossRef] [PubMed]
MacDonald, M. E. , and Frayne, R. , 2015, “ Phase Contrast MR Imaging Measurements of Blood Flow in Healthy Human Cerebral Vessel Segments,” Physiol. Meas., 36(7), pp. 1517–1527. [CrossRef] [PubMed]
Zamir, M. , Sinclair, P. , and Wonnacott, T. H. , 1992, “ Relation Between Diameter and Flow in Major Branches of the Arch of the Aorta,” J. Biomech., 25(11), pp. 1303–1310. [CrossRef] [PubMed]
Ku, D. N. , 1997, “ Blood Flow in Arteries,” Annu. Rev. Fluid Mech., 29(1), pp. 399–434. [CrossRef]
Taylor, C. A. , and Figueroa, C. A. , 2009, “ Patient-Specific Modeling of Cardiovascular Mechanics,” Annu. Rev. Biomed. Eng., 11(1), pp. 109–134. [CrossRef] [PubMed]
Brooks, A. N. , and Hughes, T. J. R. , 1982, “ Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32(1), pp. 199–259. [CrossRef]
Franca, L. P. , Frey, S. L. , and Hughes, T. J. R. , 1992, “ Stabilized Finite Element Methods: I. Application to the Advective–Diffusive Model,” Comput. Methods Appl. Mech. Eng., 95(2), pp. 253–276. [CrossRef]
Franca, L. P. , and Frey, S. L. , 1992, “ Stabilized Finite Element Methods: II. The Incompressible Navier–Stokes Equations,” Comput. Methods Appl. Mech. Eng., 99(2), pp. 209–233. [CrossRef]
Taylor, C. A. , Hughes, T. J. R. , and Zarins, C. K. , 1998, “ Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158(1), pp. 155–196. [CrossRef]
Tezduyar, T. E. , and Osawa, Y. , 2000, “ Finite Element Stabilization Parameters Computed From Element Matrices and Vectors,” Comput. Methods Appl. Mech. Eng., 190(3), pp. 411–430. [CrossRef]
Vignon-Clementel, I. E. , Figueroa, C. A. , Jansen, K. E. , and Taylor, C. A. , 2006, “ Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries,” Comput. Methods Appl. Mech. Eng., 195(29), pp. 3776–3796. [CrossRef]
Vignon-Clementel, I. E. , Figueroa, C. A. , Jansen, K. E. , and Taylor, C. A. , 2010, “ Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 625–640. [CrossRef]
Esmaily-Moghadam, M. , Bazilevs, Y. , and Marsden, A. L. , 2013, “ A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics,” Comput. Mech., 52(5), pp. 1141–1152. [CrossRef]
Schroeder, W. J. , Lorensen, B. , and Martin, K. , 2004, “ The Visualization Toolkit,” Kitware, Clifton Park, NY.
Maxey, M. R. , and Riley, J. J. , 1983, “ Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow,” Phys. Fluids, 26(4), pp. 883–889. [CrossRef]
Kim, I. , Elghobashi, S. , and Sirignano, W. A. , 1998, “ On the Equation for Spherical-Particle Motion: Effect of Reynolds and Acceleration Numbers,” J. Fluid Mech., 367(1), pp. 221–253. [CrossRef]
Haider, A. , and Levenspiel, O. , 1989, “ Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles,” Powder Technol., 58(1), pp. 63–70. [CrossRef]
Mei, R. , 1992, “ An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number,” Int. J. Multiphase Flow, 18(1), pp. 145–147. [CrossRef]
Crowe, C. T. , Schwarzkopf, J. D. , Sommerfeld, M. , and Tsuji, Y. , 2011, Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton, FL.
Saffman, P. G. T. , 1965, “ The Lift on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech., 22(2), pp. 385–400. [CrossRef]
Ericson, C. , 2004, Real-Time Collision Detection, CRC Press, Boca Raton, FL.
Mukherjee, D. , and Zohdi, T. I. , 2015, “ A Discrete Element Based Simulation Framework to Investigate Particulate Spray Deposition Processes,” J. Comput. Phys., 290(1), pp. 298–317. [CrossRef]
Park, K. Y. , Kim, Y. B. , Chung, P. W. , Moon, H. S. , Suh, B. C. , Yoon, K. J. , and Lee, Y. T. , 2014, “ Right-Side Propensity of Cardiogenic Emboli in Acute Ischemic Stroke With Atrial Fibrillation,” Scand. Cardiovasc. J., 48(6), pp. 335–338. [CrossRef] [PubMed]
Patel, N. , Horsfield, M. A. , Banahan, C. , Janus, J. , Masters, K. , Morlese, J. , Egan, V. , and Chung, E. M. L. , 2015, “ Impact of Perioperative Infarcts After Cardiac Surgery,” Stroke, 46(3), pp. 680–686. [CrossRef] [PubMed]
Basmadjian, D. , 1990, “ The Effect of Flow and Mass Transport in Thrombogenesis,” Ann. Biomed. Eng., 18(6), pp. 685–709. [CrossRef] [PubMed]
Hathcock, J. J. , 2006, “ Flow Effects on Coagulation and Thrombosis,” Arterioscler., Thromb., Vasc. Biol., 26(8), pp. 1729–1737. [CrossRef]
Chiu, J. J. , and Chien, S. , 2011, “ Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives,” Physiol. Rev., 91(1), pp. 327–387. [CrossRef] [PubMed]
Bark, D. L. , Para, A. N. , and Ku, D. N. , 2012, “ Correlation of Thrombosis Growth Rate to Pathological Wall Shear Rate During Platelet Accumulation,” Biotechnol. Bioeng., 109(10), pp. 2642–2650. [CrossRef] [PubMed]
Richardson, P. D. , 2002, “ Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers,” Ann. Biomed. Eng., 30(4), pp. 524–536. [CrossRef] [PubMed]
VanderLaan, P. A. , Reardon, C. A. , and Getz, G. S. , 2004, “ Site Specificity of Atherosclerosis: Site-Selective Responses to Atherosclerotic Modulators,” Arterioscler., Thromb., Vasc. Biol., 24(1), pp. 12–22. [CrossRef]
Tang, D. , Yang, C. , Zheng, J. , Woodard, P. K. , Sicard, G. A. , Saffitz, J. E. , and Yuan, C. , 2004, “ 3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques,” Ann. Biomed. Eng., 32(7), pp. 947–960. [CrossRef] [PubMed]
Peiffer, V. , Sherwin, S. J. , and Weinberg, P. D. , 2013, “ Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review,” Cardiovasc. Res., 99(2), pp. 242–250. [PubMed]
Fuchs, S. , 2002, “ Stroke Complicating Percutaneous Coronary Interventions: Incidence, Predictors, and Prognostic Implications,” Circulation, 106(1), pp. 86–91. [CrossRef] [PubMed]
Hamon, M. , Baron, J. C. , Viader, F. , and Hamon, M. , 2008, “ Periprocedural Stroke and Cardiac Catheterization,” Circulation, 118(6), pp. 678–683. [CrossRef] [PubMed]
Mukherjee, D. , Zaky, Z. , Zohdi, T. I. , Salama, A. , and Sun, S. , 2015, “ Investigation of Guided Particle Transport for Noninvasive Healing of Damaged Piping System Using Electro-Magneto-Mechanical Methods,” J. Soc. Pet. Eng., 20(4), pp. 872–883.


Grahic Jump Location
Fig. 1

Patient models used for this study

Grahic Jump Location
Fig. 2

Schematic overview of the overall computational framework

Grahic Jump Location
Fig. 8

Surface map indicating embolism source locations and the relative tendency of the released emboli traveling to the brain for aortogenic emboli

Grahic Jump Location
Fig. 7

Quantifying the left–right preference of embolus transport. The size-dependent variations for each patient are shown on the top panels (cardio-emboli on panel (a) and aorto-emboli on panel (b)). The relative distribution statistics with and without considerations of volumetric flow have been presented on the bottom (panels (c) and (d), respectively).

Grahic Jump Location
Fig. 6

The sample distribution for posterior, middle, and anterior cerebral arteries obtained from the numerical experiments. The data on the right have been scaled by the fraction of cerebral flow supplying the corresponding arteries.

Grahic Jump Location
Fig. 5

The sample distribution across the six cerebral arteries for cardiogenic and aortogenic emboli obtained from the numerical experiments. The data on the right are scaled by the fraction of cerebral flow supplying the corresponding arteries. (L, R) denote (left, right), (ACA, PCA, MCA) denote (anterior, posterior, middle) cerebral arteries, and (“-A,” “-C”) denote (aortogenic, cardiogenic).

Grahic Jump Location
Fig. 4

The proportion in which emboli reaching the brain get distributed across the six major cerebral arteries. L/R denote left/right. A, M, and P denote anterior, middle, and posterior, respectively. The distribution of flow across the six arteries is indicated by “flow.”

Grahic Jump Location
Fig. 3

Variations in the probability of emboli reaching the circle of Willis, based on emboli size and instance of release in a cardiac cycle. For each patient, cardio-emboli transport probabilities are depicted on the top and aorto-emboli on the bottom. A detailed labeling has been included to clearly describe the visualizations along the individual axis and an inset for the cardiac cycle, with original release instants used in the experiments depicted as dots overlaid on the flow profile.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In