0
Research Papers

Importance of Patella, Quadriceps Forces, and Depthwise Cartilage Structure on Knee Joint Motion and Cartilage Response During Gait

[+] Author and Article Information
K. S. Halonen

Department of Applied Physics,
University of Eastern Finland,
POB 1627,
Kuopio FI-70211, Finland
e-mail: kimmo.halonen@uef.fi

M. E. Mononen

Department of Applied Physics,
University of Eastern Finland,
POB 1627,
Kuopio FI-70211, Finland

J. S. Jurvelin, J. Töyräs, R. K. Korhonen

Department of Applied Physics,
University of Eastern Finland,
POB 1627,
Kuopio FI-70211, Finland;
Diagnostic Imaging Centre,
Kuopio University Hospital,
POB 100,
Kuopio FI-70029, Finland

A. Kłodowski

Laboratory of Machine Design,
Lappeenranta University of Technology,
Lappeenranta 53850, Finland

J.-P. Kulmala

Department of Biology of Physical Activity,
University of Jyväskylä,
Jyväskylä 40014, Finland

1Corresponding author.

Manuscript received July 15, 2015; final manuscript received April 26, 2016; published online June 7, 2016. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 138(7), 071002 (Jun 07, 2016) (11 pages) Paper No: BIO-15-1348; doi: 10.1115/1.4033516 History: Received July 15, 2015; Revised April 26, 2016

In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal–external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ahmed, A. M. , Burke, D. L. , and Hyder, A. , 1987, “ Force Analysis of the Patellar Mechanism,” J. Orthop. Res., 5(1), pp. 69–85. [CrossRef] [PubMed]
Arokoski, J. P. A. , Jurvelin, J. S. , Väätäinen, U. , and Helminen, H. J. , 2000, “ Normal and Pathological Adaptations of Articular Cartilage to Joint Loading,” Scand. J. Med. Sci. Sports, 10(4), pp. 186–198. [CrossRef] [PubMed]
Hosseini, A. , Van de Velde, S. K. , Kozanek, M. , Gill, T. J. , Grodzinsky, A. J. , Rubash, H. E. , and Li, G. , 2010, “ In-Vivo Time-Dependent Articular Cartilage Contact Behavior of the Tibiofemoral Joint,” Osteoarthritis Cartilage, 18(7), pp. 909–916. [CrossRef] [PubMed]
Kutzner, I. , Heinlein, B. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, A. , Beier, A. , and Bergmann, G. , 2010, “ Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects,” J. Biomech., 43(11), pp. 2164–2173. [CrossRef] [PubMed]
Bergmann, G. , Bender, A. , Graichen, F. , Dymke, J. , Rohlmann, A. , Trepczynski, A. , Heller, M. O. , and Kutzner, I. , 2014, “ Standardized Loads Acting in Knee Implants,” PLoS One, 9(1), pp. 1–12. [CrossRef]
Bingham, J. T. , Papannagari, R. , Van de Velde, S. K. , Gross, C. , Gill, T. J. , Felson, D. T. , Rubash, H. E. , and Li, G. , 2008, “ In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint,” Rheumatology, 47(11), pp. 1622–1627. [CrossRef] [PubMed]
Halonen, K. S. , Mononen, M. E. , Jurvelin, J. S. , Töyräs, J. , Salo, J. , and Korhonen, R. K. , 2014, “ Deformation of Articular Cartilage During Static Loading of a Knee Joint—Experimental and Finite Element Analysis,” J. Biomech., 47(10), pp. 2467–2474. [CrossRef] [PubMed]
Mootanah, R. , Imhauser, C. W. , Reisse, F. , Carpanen, D. , Walker, R. W. , Koff, M. F. , Lenhoff, M. W. , Rozbruch, S. R. , Fragomen, A. T. , Dewan, Z. , Kirane, Y. M. , Cheah, K. , Dowell, J. K. , and Hillstrom, H. J. , 2014, “ Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis,” Comput. Methods Biomech. Biomed. Eng., 17(13), pp. 1502–1517. [CrossRef]
Aksbarshahi, M. , Fernandez, J. W. , Schache, A. G. , and Pandy, M. G. , 2014, “ Subject-Specific Evaluation of Patellofemoral Joint Biomechanics During Functional Activity,” Med. Eng. Phys., 36(4), pp. 1122–1133. [CrossRef] [PubMed]
Adouni, M. , and Shirazi-Adl, A. , 2014, “ Partitioning of the Knee Joint Internal Forces in Gait is Dictated by the Knee Adduction Angle and not by the Knee Adduction Moment,” J. Biomech., 47(7), pp. 1696–1703. [CrossRef] [PubMed]
Tanska, P. , Mononen, M. E. , and Korhonen, R. K. , 2015, “ A Multi-Scale Finite Element Model for Investigation of Chondrocyte Mechanics in Normal and Medial Meniscectomy Human Knee Joint During Walking,” J. Biomech., 48(8), pp. 1397–1406. [CrossRef] [PubMed]
Mononen, M. E. , Jurvelin, J. S. , and Korhonen, R. K. , 2015, “ Implementation of a Gait Cycle Loading Into Healthy and Meniscectomised Knee Joint Models With Fibril-Reinforced Articular Cartilage,” Comput. Methods Biomech. Biomed. Eng., 18(2), pp. 141–152. [CrossRef]
Andriacchi, T. P. , Alexander, E. J. , Toney, M. K. , Dyrby, C. , and Sum, J. , 1998, “ A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics,” ASME J. Biomech. Eng., 120(6), pp. 743–749. [CrossRef]
Kaufman, K. R. , Hughes, C. , Morrey, B. F. , Morrey, M. , and An, K. , 2001, “ Gait Characteristics of Patients With Knee Osteoarthritis,” J. Biomech., 34(7), pp. 907–915. [CrossRef] [PubMed]
Ferber, R. , Osternig, L. R. , Woollacott, M. H. , Wasielewski, N. J. , and Lee, J. , 2002, “ Gait Mechanics in Chronic ACL Deficiency and Subsequent Repair,” Clin. Biomech., 17(4), pp. 274–285. [CrossRef]
Dyrby, C. O. , and Andriacchi, T. P. , 2004, “ Secondary Motions of the Knee During Weight Bearing and Non-Weight Bearing Activities,” J. Orthop. Res., 22(4), pp. 794–800. [CrossRef] [PubMed]
Torry, M. R. , Decker, M. J. , Ellis, H. B. , and Shelburne, K. B. , 2004, “ Mechanisms of Compensating for Anterior Cruciate Ligament Deficiency During Gait,” Med. Sci. Sports Exercise, 36(8), pp. 1403–1412. [CrossRef]
Kulmala, J. , Äyrämö, S. , and Avela, J. , 2013, “ Knee Extensor and Flexor Dominant Gait Patterns Increase the Knee Frontal Plane Moment During Walking,” J. Orthop. Res., 31(7), pp. 1013–1019. [CrossRef] [PubMed]
Veldpaus, F. E. , Woltring, H. J. , and Dortmans, L. J. M. G. , 1988, “ A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates,” J. Biomech., 21(1), pp. 45–54. [CrossRef] [PubMed]
Söderkvist, I. , and Wedin, P. , 1993, “ Determining the Movements of the Skeleton Using Well-Configured Markers,” J. Biomech., 26(12), pp. 1473–1477. [CrossRef] [PubMed]
Papannagari, R. , Gill, T. J. , DeFrate, L. E. , Moses, J. M. , Petruska, A. J. , and Li, G. , 2006, “ In Vivo Kinematics of the Knee After Anterior Cruciate Ligament Reconstruction: A Clinical and Functional Evaluation,” Am. J. Sports Med., 34(12), pp. 2006–2012. [CrossRef] [PubMed]
Li, G. , Van de Velde, S. K. , and Bingham, J. T. , 2008, “ Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion,” J. Biomech., 41(7), pp. 1616–1622. [CrossRef] [PubMed]
Kozanek, M. , Hosseini, A. , Liu, F. , Van de Velde, S. K. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2009, “ Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait,” J. Biomech., 42(12), pp. 1877–1884. [CrossRef] [PubMed]
Peña, E. , Calvo, B. , Martínez, M. A. , Palanca, D. , and Doblaré, M. , 2005, “ Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics,” Clin. Biomech., 20(5), pp. 498–507. [CrossRef]
Mononen, M. E. , Mikkola, M. T. , Julkunen, P. , Ojala, R. , Nieminen, M. T. , Jurvelin, J. S. , and Korhonen, R. K. , 2012, “ Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics—A 3D Finite Element Analysis,” J. Biomech., 45(3), pp. 579–587. [CrossRef] [PubMed]
Gu, K. B. , and Li, L. P. , 2011, “ A Human Knee Joint Model Considering Fluid Pressure and Fiber Orientation in Cartilages and Menisci,” Med. Eng. Phys., 33(4), pp. 497–503. [CrossRef] [PubMed]
Klodowski, A. , Mononen, M. E. , Kulmala, J.-P. , Valkeapää, A. , Korhonen, R. K. , Avela, J. , Kiviranta, I. , Jurvelin, J. S. , and Mikkola, A. , 2015, “ Merge of Motion Analysis, Multibody Dynamics and Finite Element Method for the Subject-Specific Analysis of Cartilage Loading Patterns During Gait: Differences Between Rotation and Moment-Driven Models of Human Knee Joint,” Multibody Syst. Dyn., July, pp. 1–20.
Korhonen, R. K. , Tanska, P. , Kaartinen, S. M. , Fick, J. M. , and Mononen, M. E. , 2015, “ New Concept to Restore Normal Cell Responses in Osteoarthritic Knee Joint Cartilage,” Exercise Sport Sci. Rev., 43(3), pp. 143–152. [CrossRef]
Al Nazer, R. , Klodowski, A. , Rantalainen, T. , Heinonen, A. , Sievänen, H. , and Mikkola, A. , 2011, “ A Full Body Musculoskeletal Model Based on Flexible Multibody Simulation Approach Utilised in Bone Strain Analysis During Human Locomotion,” Comput. Methods Biomech. Biomed. Eng., 14(6), pp. 573–579. [CrossRef]
Brechter, J. H. , and Powers, C. M. , 2002, “ Patellofemoral Stress During Walking in Persons With and Without Patellofemoral Pain,” Med. Sci. Sports Exercise, 34(10), pp. 1582–1593. [CrossRef]
Krevolin, J. L. , Pandy, M. G. , and Pearce, J. C. , 2004, “ Moment Arm of the Patellar Tendon in the Human Knee for Evaluating Ligament Forces During Isometric Contractions,” J. Biomech., 37(5), pp. 785–788. [CrossRef] [PubMed]
van Eijden, T. M. G. J. , de Boer, W. , and Weijs, W. A. , 1985, “ The Orientation of the Distal Part of the Quadriceps Femoris Muscle as a Function of the Knee Flexion-Extension Angle,” J. Biomech., 18(10), pp. 803–809. [CrossRef] [PubMed]
Adouni, M. , Shirazi-Adl, A. , and Shirazi, R. , 2012, “ Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses,” J. Biomech., 45(12), pp. 2149–2156. [CrossRef] [PubMed]
Benoit, D. L. , Ramsey, D. K. , Lamontagne, M. , Xu, L. , Wretenberg, P. , and Renström, P. , 2006, “ Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo,” Gait Posture, 24(2), pp. 152–164. [CrossRef] [PubMed]
Kabada, M. P. , Ramakrishnan, H. K. , and Wootten, M. E. , 1990, “ Measurement of Lower Extremity Kinematics During Level Walking,” J. Orthop. Res., 8(3), pp. 383–392. [CrossRef] [PubMed]
Reinschmidt, C. , van den Bogert, A. J. , Nigg, B. M. , Lundberg, A. , and Murphy, N. , 1997, “ Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running,” J. Biomech., 30(7), pp. 729–732. [CrossRef] [PubMed]
Astephen, J. L. , Deluzio, K. J. , Caldwell, G. E. , and Dunbar, M. J. , 2008, “ Biomechanical Changes at the Hip, Knee, and Ankle Joints During Gait Are Associated With Knee Osteoarthritis Severity,” J. Orthop. Res., 26(3), pp. 332–341. [CrossRef] [PubMed]
Wilson, W. , van Donkelaar, C. C. , van Rietbergen, B. , Ito, K. , and Huiskes, R. , 2004, “ Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study,” J. Biomech., 37(3), pp. 357–366. [CrossRef] [PubMed]
Wilson, W. , van Donkelaar, C. C. , van Rietbergen, B. , Ito, K. , and Huiskes, R. , 2005, “ Erratum to “Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study,” [Journal of Biomechanics 37 (2004) 357–366] and “A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage” [Journal of Biomechanics 38 (2005) 1195–1204],” J. Biomech., 38(10), pp. 2138–2140. [CrossRef]
Halonen, K. S. , Mononen, M. E. , Jurvelin, J. S. , Töyräs, J. , and Korhonen, R. K. , 2013, “ Importance of Depth-Wise Distribution of Collagen and Proteoglycans in Articular Cartilage—A 3D Finite Element Study of Stresses and Strains in Human Knee Joint,” J. Biomech., 46(6), pp. 1184–1192. [CrossRef] [PubMed]
Bae, W. C. , Wong, V. W. , Hwang, J. , and Antonacci, J. M. , 2007, “ Wear-Lines and Split-Lines of Human Patellar Cartilage: Relation to Tensile Biomechanical Properties,” Osteoarthritis Cartilage, 16(7), pp. 841–845. [CrossRef]
Villegas, D. F. , Maes, J. A. , Magee, S. D. , and Haut Donahue, T. L. , 2007, “ Failure Properties and Strain Distribution Analysis of Meniscal Attachments,” J. Biomech., 40(12), pp. 2655–2662. [CrossRef] [PubMed]
Momersteeg, T. J. A. , Blankevoort, L. , Huiskes, R. , Kooloos, J. G. M. , Kauer, J. M. G. , and Hendriks, J. C. M. , 1995, “ The Effect of Variable Relative Insertion Orientation of Human Knee Bone-Ligament-Bone Complexes on the Tensile Stiffness,” J. Biomech., 28(6), pp. 745–752. [CrossRef] [PubMed]
Schatzmann, L. , Brunner, P. , and Stäubli, H. U. , 1998, “ Effect of Cyclic Preconditioning on the Tensile Properties of Human Quadriceps Tendons and Patelar Ligaments,” Knee Surg. Sports Traumatol. Arthroscopy, 6(Suppl. 1), pp. 56–61. [CrossRef]
Atkinson, P. , Atkinson, T. , Huang, C. , and Doane, R. , 2000, “ A Comparison of the Mechanical and Dimensional Properties of the Human Medial and Lateral Patellofemoral Ligaments,” Transactions for 46th Annual Meeting, Vol. 46, Orthopaedic Research Society, Rosemont, IL, p. 776.
Gantoi, F. M. , Brown, M. A. , and Shabana, A. A. , 2013, “ Finite Element Modeling of the Contact Geometry and Deformation in Biomechanics Applications,” ASME J. Comput. Nonlinear Dyn., 8(4), pp. 1–11.
Komistek, R. D. , Stiehl, J. B. , Dennis, D. A. , Paxson, R. D. , and Soutas-Little, R. W. , 1997, “ Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane's Method of Dynamics,” J. Biomech., 31(2), pp. 185–189. [CrossRef]
Cappozzo, A. , Catani, F. , Della Croce, U. , and Leardini, A. , 1995, “ Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination,” Clin. Biomech., 10(4), pp. 171–178. [CrossRef]
Mononen, M. E. , Jurvelin, J. S. , and Korhonen, R. K. , 2013, “ Effects of Radial Tears and Partial Meniscectomy of Lateral Meniscus on the Knee Joint Mechanics During the Stance Phase of the Gait Cycle—A 3D Finite Element Study,” J. Orthop. Res., 31(8), pp. 1208–1217. [CrossRef] [PubMed]
Huberti, H. H. , and Hayes, W. C. , 1984, “ Patellofemoral Contact Pressures,” J. Bone Joint Surg., 66(5), pp. 715–724.
Quintelier, J. , Lobbestael, F. , Verdonk, P. , Baets, P. , and Almqvist, F. , 2008, “ Patellofemoral Contact Pressures,” Acta Bioeng., 10(2), pp. 23–28.
Silverberg, J. L. , Dillavou, S. , Bonassar, L. , and Cohen, I. , 2012, “ Anatomic Variation of Depth-Dependent Mechanical Properties in Neonatal Bovine Articular Cartilage,” J. Orthop. Res., 31(5), pp. 686–691. [CrossRef] [PubMed]
Meachim, G. , Ghadially, F. N. , and Collins, D. H. , 1965, “ Regressive Changes in the Superficial Layer of Human Articular Cartilage,” Ann. Rheum. Dis., 24(1), pp. 23–30. [CrossRef] [PubMed]
Räsänen, L. P. , Mononen, M. E. , Nieminen, M. T. , Lammentausta, E. , Jurvelin, J. S. , and Korhonen, R. K. , 2013, “ Implementation of Subject-Specific Collagen Architecture of Cartilage Into a 2D Computational Model of a Knee Joint—Data From the Osteoarthritis Initiative (OAI),” J. Orthop. Res., 31(1), pp. 10–22. [CrossRef] [PubMed]
Woo, S. L.-Y. , Hollis, J. M. , Adams, D. J. , Lyon, R. M. , and Takai, S. , 1991, “ Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex, the Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]
Danto, M. I. , and Woo, S. L.-Y. , 1993, “ The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates,” J. Orthop. Res., 11(1), pp. 58–67. [CrossRef] [PubMed]
Andriacchi, T. P. , and Dyrby, C. O. , 2005, “ Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee,” J. Biomech., 38(2), pp. 293–298. [CrossRef] [PubMed]
Barenius, B. , Ponzer, S. , Shalabi, A. , Bujak, R. , Norlen, L. , and Eriksson, K. , 2014, “ Increased Risk of Osteoarthritis After Anterior Cruciate Ligament Reconstruction: A 14-Year Follow-Up Study of a Randomized Controlled Trial,” Am. J. Sports Med., 42(5), pp. 1049–1057. [CrossRef] [PubMed]
D'Lima, D. D. , Hashimoto, S. , Chen, P. C. , Colwell C. W., and Lotz, M. K. , 2001, “ Human Chondrocyte Apoptosis in Response to Mechanical Injury,” Osteoarthritis and Cartilage, 9(8) pp. 712–719. [CrossRef] [PubMed]
Scarwell, J. M. , Smith, P. N. , Refshauge, K. M. , Gallyway, H. R. , and Woods, K. R. , 2004, “ Comparison of Kinematic Analysis by Mapping Tibiofemoral Contact With Movement of the Femoral Condylar Centres in Healthy and Anterior Cruciate Ligament Injured Knees,” J. Orthop. Res., 22(5), pp. 955–962. [CrossRef] [PubMed]
Cappello, A. , La Palombara, P. F. , and Leardini, A. , 1996, “ Optimization and Smoothing Techniques in Movement Analysis,” Int. J. Bio-Med. Comput., 41(3), pp. 137–151. [CrossRef]
Alexander, E. J. , and Andriacchi, T. P. , 2001, “ Correcting for Deformation in Skin-Based Marker Systems,” J. Biomech., 34(3), pp. 355–361. [CrossRef] [PubMed]
Rasmussen, J. , Damsgaard, M. , and Voigt, M. , 2001, “ Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study,” J. Biomech., 34(3), pp. 409–415. [CrossRef] [PubMed]
Andersen, M. S. , Benoit, D. L. , Damsgaard, M. , Ramsey, D. K. , and Rasmussen, J. , 2010, “ Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? An In Vivo Study of Knee Kinematics,” J. Biomech., 43(2), pp. 268–273. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 5

Femoral rotations and reaction forces in tibial and patellar cartilages during gait cycle: (a) extension–flexion rotation. All the models are identical due to the input, (b) internal–external rotation, (c) varus–valgus rotation, (d) reaction forces in the lateral tibial condyle, (e) reaction forces in the medial tibial condyle, and (f) reaction forces in the patellar cartilage.

Grahic Jump Location
Fig. 4

(a) Model geometry. The reference point (through which forces, moments, and extension–flexion rotation are implemented) is coupled to the femoral cartilage–bone interface. (b) Implementation of depthwise collagen fibril orientation in all the three models and the superficial primary fibril orientation (i.e., split-line pattern).

Grahic Jump Location
Fig. 3

Simulated muscle activations from multibody modeling and experimental EMG for vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius medialis. Experimental EMG data and simulated activations of each muscle are normalized to the peak value of the activation during the stance phase of gait.

Grahic Jump Location
Fig. 2

FE model inputs, acquired from the subject's motion analysis. (a) Implemented moments and rotations. Extension–flexion input was implemented as rotation, while varus–valgus and internal–external inputs were implemented as moments. (b) Implemented total quadriceps force and its anterior–posterior and distal–proximal components. (c) Implemented translational forces.

Grahic Jump Location
Fig. 9

Average maximum principal stresses in the patellar cartilage as a function of time at different depths: (a) element layer 1 (superficial zone), (b) element layer 2 (middle zone), (c) element layer 3 (deep zone), and (d) element layer 4 (deep zone)

Grahic Jump Location
Fig. 6

Comparison between homogeneous, inhomogeneous, and osteoarthritic patellar cartilage models. Posterior view and axial view with femoral cartilage: (a)–(c) homogeneous patellar cartilage, (d)–(f) inhomogeneous patellar cartilage, and (g)–(i) osteoarthritic patellar cartilage.

Grahic Jump Location
Fig. 7

Average fibril strains in the patellar cartilage as a function of time at different depths: (a) element layer 1 (superficial zone), (b) element layer 2 (middle zone), (c) element layer 3 (deep zone), and (d) element layer 4 (deep zone)

Grahic Jump Location
Fig. 8

Average compressive strains in the patellar cartilage as a function of time at different depths: (a) element layer 1 (superficial zone), (b) element layer 2 (middle zone), (c) element layer 3 (deep zone), and (d) element layer 4 (deep zone)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In