0
Research Papers

The Influence of Normal and Early Vascular Aging on Hemodynamic Characteristics in Cardio- and Cerebrovascular Systems

[+] Author and Article Information
Hongtao Yu

Department of Mechanical and
Materials Engineering,
Wright State University,
Dayton, OH 45435
e-mail: Yu.41@wright.edu

George P. Huang

Fellow ASME
Department of Mechanical and Materials
Engineering,
Wright State University,
Dayton, OH 45435
e-mail: George.huang@wright.edu

Zifeng Yang

Department of Mechanical and
Materials Engineering,
Wright State University,
Dayton, OH 45435
e-mail: Zifeng.yang@wright.edu

Fuyou Liang

School of Naval Architecture,
Ocean and Civil Engineering,
Shanghai Jiao Tong University,
800 Dongchuan Road,
Shanghai 200240, China
e-mail: Fuyouliang@sjtu.edu.cn

Bryan Ludwig

Boonshoft School of Medicine,
Wright State University,
Dayton, OH 45435;
Department of Neurology—Division of
NeuroInterventional Surgery,
Wright State University/Premier Health-Clinical
Neuroscience Institute,
30 East Apple Street,
Dayton, OH 45409
e-mail: Brludwig@PremierHealth.com

1Corresponding author.

Manuscript received January 6, 2016; final manuscript received March 21, 2016; published online April 11, 2016. Assoc. Editor: Tim David.

J Biomech Eng 138(6), 061002 (Apr 11, 2016) (10 pages) Paper No: BIO-16-1008; doi: 10.1115/1.4033179 History: Received January 06, 2016; Revised March 21, 2016

Age-associated alterations in cardiovascular structure and function induce cardiovascular disease in elderly subjects. To investigate the effects of normal vascular aging (NVA) and early vascular aging (EVA) on hemodynamic characteristics in the circle of Willis (CoW), a closed-loop one-dimensional computational model was developed based on fluid mechanics in the vascular system. The numerical simulations revealed that higher central pulse pressure and augmentation index (AIx) appear in the EVA subjects due to early arrival of reflected waves, resulted in the increase of cardiac afterload compared with the NVA subjects. Moreover, the hemodynamic characteristics in the CoW show that the EVA subjects in an older age display a higher blood pressure than that of the NVA with a complete CoW. Herein, the increased blood pressure and flow rate coexist in the subjects with an incomplete CoW. In conclusion, the hemodynamic characteristics in the aortic tree and CoW related to aging appear to play an important role in causing cardiovascular and intravascular disease.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Thom, T. , Haase, N. , Rosamond, W. , Howard, V. J. , Rumsfeld, J. , Manolio, T. , Zheng, Z. , Flegal, K. , O'Donnell, C. , Kittner, S. , Lloyd-Jones, D. , Goff, D. C. , Hong, Y. , Adams, R. , Friday, G. , Furie, K. , Gorelick, P. , Kissela, B. , Marler, J. , Meigs, J. , Roger, V. , Sidney, S. , Sorlie, P. , Steinberger, J. , Wasserthiel-Smoller, S. , Wilson, M. , and Wolf, P. , 2006, “ Heart Disease and Stroke Statistics—2006 Update a Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, 113(6), pp. e85–e151. [CrossRef] [PubMed]
Lakatta, E. G. , and Levy, D. , 2003, “ Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises Part I: Aging Arteries: A "Set Up" for Vascular Disease,” Circulation, 107(1), pp. 139–146. [CrossRef] [PubMed]
Kotsis, V. , Stabouli, S. , Karafillis, I. , and Nilsson, P. , 2011, “ Early Vascular Aging and the Role of Central Blood Pressure,” J. Hypertens., 29(10), pp. 1847–1853. [CrossRef] [PubMed]
Lakatta, E. G. , 1993, “ Cardiovascular Regulatory Mechanisms in Advanced Age,” Physiol. Rev., 73(2), pp. 413–467. [PubMed]
Antikainen, R. L. , Jousilahti, P. , Vanhanen, H. , and Tuomilehto, J. , 2000, “ Excess Mortality Associated With Increased Pulse Pressure Among Middle Aged Men and Women is Explained by High Systolic Blood Pressure,” J. Hypertens., 18(4), pp. 417–423. [CrossRef] [PubMed]
Cunha, P. G. , Cotter, J. , Oliveira, P. , Vila, I. , Boutouyrie, P. , Laurent, S. , Nilsson, P. M. , Scuteri, A. , and Sousa, N. , 2015, “ Pulse Wave Velocity Distribution in a Cohort Study: From Arterial Stiffness to Early Vascular Aging,” J. Hypertens., 33(7), pp. 1438–1445. [CrossRef] [PubMed]
Nilsson, P. M. , 2008, “ Early Vascular Aging (EVA): Consequences and Prevention,” Vasc. Health Risk Manage., 4(3), pp. 547–552.
Nilsson, P. M. , 2014, “ Hemodynamic Aging as the Consequence of Structural Changes Associated With Early Vascular Aging (EVA),” Aging Dis., 5(2), pp. 109–113. [PubMed]
Alastruey, J. , Parker, K. H. , Peiró, J. , Byrd, S. M. , and Sherwin, S. J. , 2007, “ Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows,” J. Biomech., 40(8), pp. 1794–1805. [CrossRef] [PubMed]
Huang, P. G. , and Muller, L. O. , 2015, “ Simulation of One-Dimensional Blood Flow in Networks of Human Vessels Using a Novel TVD Scheme,” Int. J. Numer. Methods Biomed. Eng., 31(5), p. e02701. [CrossRef]
Liang, F. Y. , and Liu, H. , 2005, “ A Closed-Loop Lumped Parameter Computational Model for Human Cardiovascular System,” JSME Int. J., Ser. C, 48(4), pp. 484–493. [CrossRef]
Liang, F. Y. , Takagi, S. , Himeno, R. , and Liu, H. , 2009, “ Biomechanical Characterization of Ventricular–Arterial Coupling During Aging: A Multi-Scale Model Study,” J. Biomech., 42(6), pp. 692–704. [CrossRef] [PubMed]
Müller, L. O. , and Toro, E. F. , 2014, “ A Global Multiscale Mathematical Model for the Human Circulation With Emphasis on the Venous System,” Int. J. Numer. Methods Biomed. Eng., 30(7), pp. 681–725. [CrossRef]
Sherwin, S. J. , Franke, V. , Peiró, J. , and Parker, K. , 2003, “ One-Dimensional Modelling of a Vascular Network in Space-Time Variables,” J. Eng. Math., 47(3–4), pp. 217–250. [CrossRef]
Alastruey, J. , Khir, A. W. , Matthys, K. S. , Segers, P. , Sherwin, S. J. , Verdonck, P. R. , Parker, K. H. , and Peiró, J. , 2011, “ Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations Against In Vitro Measurements,” J. Biomech., 44(12), pp. 2250–2258. [CrossRef] [PubMed]
Liang, F. Y. , Fukasaku, K. , Liu, H. , and Takagi, S. , 2011, “ A Computational Model Study of the Influence of the Anatomy of the Circle of Willis on Cerebral Hyperperfusion Following Carotid Artery Surgery,” Biomed. Eng. Online, 10(84), pp. 1–22. [PubMed]
Stergiopulos, N. , Young, D. F. , and Rogge, T. R. , 1992, “ Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses,” J. Biomech., 25(12), pp. 1477–1488. [CrossRef] [PubMed]
Shi, Y. B. , Lawford, P. , and Hose, R. , 2011, “ Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System,” Biomed. Eng. Online, 10(1), p. 33. [CrossRef] [PubMed]
Alastruey, J. , Passerini, T. , Formaggia, L. , and Peiró, J. , 2012, “ Physical Determining Factors of the Arterial Pulse Waveform: Theoretical Analysis and Calculation Using the 1-D Formulation,” J. Eng. Math., 77(1), pp. 19–37. [CrossRef]
McEniery, C. M. , Hall, I. R. , Qasem, A. , Wilkinson, I. B. , and Cockcroft, J. R. , 2005, “ Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity: The Anglo-Cardiff Collaborative Trial (ACCT),” J. Am. College Cardiol., 46(9), pp. 1753–1760. [CrossRef]
Bullitt, E. , Zeng, D. L. , Mortamet, B. , Ghosh, A. , Aylward, S. R. , Lin, W. L. , Marks, B. L. , and Smith, K. , 2010, “ The Effects of Healthy Aging on Intracerebral Blood Vessels Visualized by Magnetic Resonance Angiography,” Neurobiol. Aging, 31(2), pp. 290–300. [CrossRef] [PubMed]
Nichols, W. W. , and O'Rourke, M. F. , 2005, McDonald's Blood Flow in Arteries, 5th ed., Arnold, London.
Nippa, J. H. , Alexander, R. H. , and Folse, R. , 1971, “ Pulse Wave Velocity in Human Veins,” J. Appl. Physiol., 30(4), pp. 558–563. [PubMed]
Nilsson, P. M. , 2015, “ Early Vascular Ageing–A Concept in Development,” Eur. Endocrinol., 11(1), pp. 26–31. [CrossRef]
Saeed, S. , Waje-Andreassen, U. , Fromm, A. , Øygarden, H. , Kokorina, M. V. , Naess, H. , and Gerdts, E. , 2014, “ Early Vascular Aging in Young and Middle-Aged Ischemic Stroke Patients: The Norwegian Stroke in the Young Study,” PloS one, 9(11), p. e112814. [CrossRef] [PubMed]
Redfield, M. M. , Jacobsen, S. J. , Borlaug, B. A. , Rodeheffer, R. J. , and Kass, D. A. , 2005, “ Age-and Gender-Related Ventricular-Vascular Stiffening a Community-Based Study,” Circulation, 112(15), pp. 2254–2262. [CrossRef] [PubMed]
Avolio, A. P. , Chen, S. G. , Wang, R. P. , Zhang, C. L. , Li, M. F. , and O'Rourke, M. F. , 1983, “ Effects of Aging on Changing Arterial Compliance and Left Ventricular Load in a Northern Chinese Urban Community,” Circulation, 68(1), pp. 50–58. [CrossRef] [PubMed]
Arbab-Zadeh, A. , Dijk, E. , Prasad, A. , Fu, Q. , Torres, P. , Zhang, R. , Thomas, J. D. , Palmer, D. , and Levine, B. D. , 2004, “ Effect of Aging and Physical Activity on Left Ventricular Compliance,” Circulation, 110(13), pp. 1799–1805. [CrossRef] [PubMed]
Aune, E. , Baekkevar, M. , Roislien, J. , Rodevand, O. , and Otterstad, J. E. , 2009, “ Normal Reference Ranges for Left and Right Atrial Volume Indexes and Ejection Fractions Obtained With Real-Time Three-Dimensional Echocardiography,” Eur. Heart J.-Cardiovasc. Imaging, 10(6), pp. 738–744.
Dexter, L. , Dow, J. W. , Haynes, F. W. , Whittenberger, J. L. , Ferris, B. G. , Goodale, W. T. , and Hellems, H. K. , 1950, “ Studies of the Pulmonary Circulation in Man at Rest. Normal Variations and the Interrelations Between Increased Pulmonary Blood Flow, Elevated Pulmonary Arterial Pressure, and High Pulmonary "Capillary" Pressures,” J. Clin. Invest., 29(5), pp. 602–613. [CrossRef] [PubMed]
Fowler, N. O. , Westcott, R. N. , and Scott, R. C. , 1953, “ Normal Pressure in the Right Heart and Pulmonary Artery,” Am. Heart J., 46(2), pp. 264–267. [CrossRef] [PubMed]
Gayat, E. , Mor-Avi, V. , Weinert, L. , Yodwut, C. , and Lang, R. M. , 2011, “ Noninvasive Quantification of Left Ventricular Elastance and Ventricular-Arterial Coupling Using Three-Dimensional Echocardiography and Arterial Tonometry,” Am. J. Physiol.-Heart Circ. Physiol., 301(5), pp. H1916–H1923. [CrossRef] [PubMed]
Han, L. L. , Bai, X. J. , Lin, H. L. , Sun, X. F. , and Chen, X. M. , 2013, “ Gender Differences in the Relationship Between Age-Related Carotid Intima-Media Thickness and Cardiac Diastolic Function in a Healthy Chinese Population,” J. Card. Fail., 19(5), pp. 325–332. [CrossRef] [PubMed]
Kawaguchi, M. , Hay, I. , Fetics, B. , and Kass, D. A. , 2003, “ Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction Implications for Systolic and Diastolic Reserve Limitations,” Circulation, 107(5), pp. 714–720. [CrossRef] [PubMed]
Salton, C. J. , Chuang, M. L. , O'Donnell, C. J. , Kupka, M. J. , Larson, M. G. , Kissinger, K. V. , Edelman, R. R. , Levy, D. , and Manning, W. J. , 2002, “ Gender Differences and Normal Left Ventricular Anatomy in an Adult Population Free of Hypertension: A Cardiovascular Magnetic Resonance Study of the Framingham Heart Study Offspring Cohort,” J. Am. College Cardiol., 39(6), pp. 1055–1060. [CrossRef]
Schlant, R. C. , Sonnenblick, E. H. , and Katz, A. M. , 1994, “ Normal Physiology of the Cardiovascular System,” Hurst's the Heart, 8th ed., McGraw-Hill, New York, pp. 113–151.
Yamaguchi, K. , Tanabe, K. , Tani, T. , Yagi, T. , Fujii, Y. , Konda, T. , Kawai, J. , Sumida, T. , Morioka, S. , and Kihara, Y. , 2006, “ Left Atrial Volume in Normal Japanese Adults,” Circ. J., 70(3), pp. 285–288. [CrossRef] [PubMed]
Cain, P. A. , Ahl, R. , Hedstrom, E. , Ugander, M. , Allansdotter-Johnsson, A. , Friberg, P. , and Arheden, H. , 2009, “ Age and Gender Specific Normal Values of Left Ventricular Mass, Volume and Function for Gradient Echo Magnetic Resonance Imaging: A Cross Sectional Study,” BMC Med. Imaging, 9(1), p. 2. [CrossRef] [PubMed]
Cheng, C. P. , Herfkens, R. J. , and Taylor, C. A. , 2003, “ Inferior Vena Caval Hemodynamics Quantified In Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging,” Am. J. Physiol.-Heart Circ. Physiol., 284(4), pp. H1161–H1167. [CrossRef] [PubMed]
Fortune, J. B. , and Feustel, P. , 2003, “ Effect of Patient Position on Size and Location of the Subclavian Vein for Percutaneous Puncture,” Arch. Surg., 138(9), pp. 996–1000. [CrossRef] [PubMed]
Nabeshima, M. , Moriyasu, F. , Nishikawa, K. , Hamato, N. , Fujimoto, M. , Nada, T. , Okuma, M. , and Shimizu, K. , 1995, “ Azygos Venous Blood Flow: Measurement With Direct Bolus Imaging,” Radiology, 195(2), pp. 467–470. [CrossRef] [PubMed]
Stoquart-ElSankari, S. , Lehmann, P. , Villette, A. , Czosnyka, M. , Meyer, M. E. , Deramond, H. , and Balédent, O. , 2009, “ A Phase-Contrast MRI Study of Physiologic Cerebral Venous Flow,” J. Cereb. Blood Flow Metab., 29(6), pp. 1208–1215. [CrossRef] [PubMed]
Nichols, W. W. , Avolio, A. P. , Kelly, R. P. , and O'Rourke, M. F. , 1993, “ Effects of Age and of Hypertension on Wave Travel and Reflections,” Arterial Vasodilatation: Mechanisms and Therapy, Edward Arnold, London, p. 32.
Hendrikse, J. , van Raamt, A. F. , van der Graaf, Y. , Mali, W. P. , and van der Grond, J. , 2005, “ Distribution of Cerebral Blood Flow in the Circle of Willis 1,” Radiology, 235(1), pp. 184–189. [CrossRef] [PubMed]
Reymond, P. , Bohraus, Y. , Perren, F. , Lazeyras, F. , and Stergiopulos, N. , 2011, “ Validation of a Patient-Specific One-Dimensional Model of the Systemic Arterial Tree,” Am. J. Physiol.-Heart Circ. Physiol., 301(3), pp. H1173–H1182. [CrossRef] [PubMed]
Alastruey, J. , Moore, S. M. , Parker, K. H. , David, T. , Peiró, J. , and Sherwin, S. J. , 2008, “ Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models,” Int. J. Numer. Methods Fluids, 56(8), pp. 1061–1067. [CrossRef]
Nichols, W. W. , O'Rourke, M. F. , Avolio, A. P. , Yaginuma, T. , Murgo, J. P. , Pepine, C. J. , and Conti, C. R. , 1985, “ Effects of Age on Ventricular-Vascular Coupling,” Am. J. Cardiol., 55(9), pp. 1179–1184. [CrossRef] [PubMed]
Lee, H. Y. , and Oh, B. H. , 2010, “ Aging and Arterial Stiffness,” Circ. J., 74(11), pp. 2257–2262. [CrossRef] [PubMed]
Sako, H. , Miura, S. I. , Kumagai, K. , and Saku, K. , 2009, “ Associations Between Augmentation Index and Severity of Atheroma or Aortic Stiffness of the Descending Thoracic Aorta by Transesophageal Echocardiography,” Circ. J., 73(6), pp. 1151–1156. [CrossRef] [PubMed]
Reference Values for Arterial Stiffness' Collaboration, “ Determinants of Pulse Wave Velocity in Healthy People and in the Presence of Cardiovascular Risk Factors: ‘Establishing Normal and Reference Values,’” Eur. Heart J., 31(19), pp. 2338–2350. [CrossRef] [PubMed]
van de Vosse, F. N. , and Stergiopulos, N. , 2011, “ Pulse Wave Propagation in the Arterial Tree,” Annu. Rev. Fluid Mech., 43(1), pp. 467–499. [CrossRef]
Muntner, P. , Whittle, J. , Lynch, A. I. , Colantonio, L. D. , Simpson, L. M. , Einhorn, P. T. , Levitan, E. B. , Whelton, P. K. , Cushman, W. C. , Louis, G. T. , Davis, B. R. , and Oparil, S. , 2015, “ Visit-to-Visit Variability of Blood Pressure and Coronary Heart Disease, Stroke, Heart Failure, and Mortality: A Cohort Study,” Ann. Intern. Med., 163(5), pp. 329–338. [CrossRef] [PubMed]
Taylor, C. L. , Yuan, Z. , Selman, W. R. , Ratcheson, R. A. , and Rimm, A. A. , 1995, “ Cerebral Arterial Aneurysm Formation and Rupture in 20,767 Elderly Patients: Hypertension and Other Risk Factors,” J. Neurosurg., 83(5), pp. 812–819. [CrossRef] [PubMed]
Kayembe, K. N. , Sasahara, M. , and Hazama, F. , 1984, “ Cerebral Aneurysms and Variations in the Circle of Willis,” Stroke, 15(5), pp. 846–850. [CrossRef] [PubMed]
Krasny, A. , Nensa, F. , Sandalcioglu, I. E. , Göricke, S. L. , Wanke, I. , Gramsch, C. , Sirin, S. , Oezkan, N. , Sure, U. , and Schlamann, M. , 2014, “ Association of Aneurysms and Variation of the A1 Segment,” J. Neurointervention. Surg., 6(3), pp. 178–183. [CrossRef]
Songsaeng, D. , Geibprasert, S. , Willinsky, R. , Tymianski, M. , TerBrugge, K. G. , and Krings, T. , 2010, “ Impact of Anatomical Variations of the Circle of Willis on the Incidence of Aneurysms and Their Recurrence Rate Following Endovascular Treatment,” Clin. Radiol., 65(11), pp. 895–901. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Arterial and venous network consist of 85 arteries and 158 veins: (a) the arterial system, (b) the venous system, and (c) RCL lumped model studied using the electrical analogy

Grahic Jump Location
Fig. 2

Simulated hemodynamics for the heart for both the NVA and EVA male 25 yrs, which consists of four cardiac chambers. RA: right atrium, RV: right ventricle, LA: left atrium, and LV: left ventricle. (a) and (b) show the blood pressure in the heart chambers, pulmonary artery, and ascending aorta; (c) and (d) show the volume in the heart chambers.

Grahic Jump Location
Fig. 3

Comparisons between the simulated data and the measured data of central systolic pressure for both the NVA and EVA

Grahic Jump Location
Fig. 4

Comparison between the simulated and the measured data for both the NVA and the EVA: (a) the central pulse pressure and (b) the central AIx

Grahic Jump Location
Fig. 5

Mean blood flow in the selected veins: computational results versus literature data

Grahic Jump Location
Fig. 6

Arterial pressure propagation along the arterial tree during one cardiac cycle

Grahic Jump Location
Fig. 7

Comparison of the total flow rate entering the CoW between the simulated NVA, EVA, and the measured data

Grahic Jump Location
Fig. 8

Comparison of the flow rate waveform between the simulated NVA, EVA, and measured waveform in four arterial sites as the large black dot indicates in the arterial tree. (a) the flow rate in the middle cerebral artery, (b) the flow rate in the VA, (c) the flow rate in the ICA, and (d) the flow rate in the CCA.

Grahic Jump Location
Fig. 9

Comparisons of the pressure and flow rate waveform in a complete CoW. Top two waveforms represent the pressure and flow rate in the ACOM artery; bottom two waveforms represent the pressure and flow rate in the PCOM artery.

Grahic Jump Location
Fig. 10

Comparisons of the pressure and flow rate waveform in an incomplete CoW. Top two waveforms represent the pressure and flow rate in the ACOM artery with missing RA1; bottom two waveforms represent the pressure and flow rate in the PCOM artery with missing RP1.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In