0
Research Papers

A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads

[+] Author and Article Information
Jonas Östh

Department of Applied Mechanics,
Chalmers University of Technology,
Gothenburg SE-412 96, Sweden
e-mail: jonas.osth@chalmers.se

Karin Brolin

Department of Applied Mechanics,
Chalmers University of Technology,
Gothenburg SE-412 96, Sweden
e-mail: karin.brolin@chalmers.se

Mats Y. Svensson

Department of Applied Mechanics,
Chalmers University of Technology,
Gothenburg SE-412 96, Sweden
e-mail: mats.svensson@chalmers.se

Astrid Linder

Statens väg-och Transportforskningsinstitut (VTI),
Gothenburg SE-402 78, Sweden
e-mail: astrid.linder@vti.se

1Corresponding author.

Manuscript received September 1, 2015; final manuscript received March 8, 2016; published online May 2, 2016. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 138(6), 061005 (May 02, 2016) (9 pages) Paper No: BIO-15-1432; doi: 10.1115/1.4032966 History: Received September 01, 2015; Revised March 08, 2016

Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic–elastic. The model has geometrical features representative of the female cervical spine—the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion–extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion–extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goel, V . K. , and Clausen, J. D. , 1998, “ Prediction of Load Sharing Among Spinal Components of a C5–C6 Motion Segment Using the Finite Element Approach,” Spine, 23(6), pp. 684–691. [CrossRef] [PubMed]
Panzer, M. , and Cronin, D. , 2009, “ C4–C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation,” J. Biomech., 42(4), pp. 480–490. [CrossRef] [PubMed]
Laville, A. , Laporte, S. , and Skalli, W. , 2009, “ Parametric and Subject-Specific Finite Element Modelling of the Lower Cervical Spine. Influence of Geometrical Parameters on the Motion Patterns,” J. Biomech., 42(10), pp. 1409–1415. [CrossRef] [PubMed]
Camacho, D. , Nightingale, R. , Robinette, J. , Vanguri, S. K. , Coates, D. J. , and Myers, B. S. , 1997, “ Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact,” 41st Stapp Car Crash Conference, Lake Buena Vista, FL, Nov. 13–14, Society of Automotive Engineers, Warrendale, PA, pp. 473–486.
Yang, K. , Zhu, F. , Luan, F. , Zhao, L. , and Begeman, P. C. , 1998, “ Development of a Finite Element Model of the Human Neck,” 42nd Stapp Car Crash Conference, Tempe, AZ, Nov. 2–4, Society of Automotive Engineers, Warrendale, PA, SAE Paper No. 983157.
Jost, R. , and Nurick, G. , 2000, “ Development of a Finite Element Model of the Human Neck Subjected to High g-Level Lateral Deceleration,” Int. J. Crashworthiness, 5(3), pp. 259–269. [CrossRef]
Halldin, P. H. , Brolin, K. , Kleiven, S. , von Holst, H. , Jakobsson, L. , and Palmertz, C. , 2000, “ Investigations of Conditions That Affect Neck Compression Flexion Injuries Using Numerical Techniques,” Stapp Car Crash J., 44, pp. 127–138. [PubMed]
Brolin, K. , and Halldin, P. , 2004, “ Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics,” Spine, 29(4), pp. 376–385. [CrossRef] [PubMed]
Meyer, F. , Bourdet, N. , Deck, C. , Willinger, R. , and Raul, J. S. , 2004, “ Human Neck Finite Element Model Development and Validation Against Original Experimental Data,” Stapp Car Crash J., 48, pp. 1–30. [PubMed]
Ejima, S. , Ono, K. , Kaneoka, K. , and Fukushima, M. , 2005, “ Development and Validation of the Human Neck Muscle Model Under Impact Loading,” International IRCOBI Conference on the Biomechanics of Impact, Prague, Czech Republic, Sept. 21–23, pp. 245–255.
Zhang, Q. , Teo, E. , and Ng, H. , 2005, “ Development and Validation of a C0–C7 FE Complex for Biomechanical Study,” ASME J. Biomech. Eng., 127(5), pp. 729–735. [CrossRef]
Kitagawa, Y. , Yasuki, T. , and Hasegawa, J. , 2008, “ Research Study on Neck Injury Lessening With Active Head Restraint Using Human Body FE Model,” Traffic Inj. Prev., 9(6), pp. 574–582. [CrossRef] [PubMed]
Panzer, M. , Fice, J. , and Cronin, D. , 2011, “ Cervical Spine Response in Frontal Crash,” Med. Eng. Phys., 33(9), pp. 1147–1159. [CrossRef] [PubMed]
O'Neill, B. , Haddon, W., Jr , Kelley, A. B. , and Sorenson, W. W. , 1972, “ Automobile Head Restraints: Frequency of Neck Injury Claims in Relation to the Presence of Head Restraints,” Am. J. Public Health, 62, pp. 399–406. [CrossRef] [PubMed]
Morris, A. P. , and Thomas, P. D. , 1996, “ Neck Injuries in the UK Co-Operative Crash Injury Study,” 40th Stapp Car Crash Conference, Albuquerque, NM, Nov. 4–6, Society of Automotive Engineers, Warrendale, PA, pp. 317–329.
Temming, J. , and Zobel, R. , 1998, “ Frequency and Risk of Cervical Spine Distortion Injuries in Passenger Car Accidents: Significance of Human Factors Data,” International IRCOBI Conference on the Biomechanics of Impact, Göteberg, Sweden, Sept. 16–18,, pp. 219–233.
Krafft, M. , Kullgren, A. , Lie, A. , and Tingvall, C. , 2003, “ The Risk of Whiplash Injury in the Rear Seat Compared to the Front Seat in Rear Impacts,” Traffic Inj. Prev., 4(2), pp. 136–140. [CrossRef] [PubMed]
Jakobsson, L. , Norin, H. , and Svensson, M. Y. , 2004, “ Parameters Influencing AIS 1 Neck Injury Outcome in Frontal Impacts,” Traffic Inj. Prev., 5(2), pp. 156–163. [CrossRef] [PubMed]
Carstensen, T. B. , Frostholm, L. , Oernboel, E. , Kongsted, A. , Kasch, H. , Jensen, T. S. , and Fink, P. , 2012, “ Are There Gender Differences in Coping With Neck Pain Following Acute Whiplash Trauma? A 12-Month Follow-Up Study,” Eur. J. Pain, 16(1), pp. 49–60. [CrossRef] [PubMed]
Watanabe, Y. , Ichikawa, H. , Kayama, O. , Ono, K. , Kaneoka, K. , and Inami, S. , 2000, “ Influence of Seat Characteristics on Occupant Motion in Low-Velocity Rear-End Impacts,” Accid. Anal. Prev., 32(2), pp. 243–250. [CrossRef] [PubMed]
Stigson, H. , Gustafsson, M. , Sunnevång, C. , Krafft, M. , and Kullgren, A. , 2015, “ Differences in Long-Term Medical Consequences Depending on Impact Direction Involving Passenger Cars,” Traffic Inj. Prev., 16(S1), pp. S133–S139. [CrossRef] [PubMed]
Kullgren, A. , Krafft, M. , Lie, A. , and Tingvall, C. , 2007, “ The Effect of Whiplash Protection Systems in Real-Life Crashes and Their Correlation to Consumer Crash Test Programmes,” 20th International Technical Conference on the Enhanced Safety of Vehicles (20th ESV), Lyon, France, June 18–21, Paper No. 07-0468.
Kullgren, A. , Stigson, H. , and Krafft, M. , 2013, “ Development of Whiplash Associated Disorders for Male and Female Car Occupants in Cars Launched Since the 80s in Different Impact Directions,” International IRCOBI Conference on the Biomechanics of Impact, Gothenberg, Sweden, Sept. 11–13,, pp. 51–62.
Svensson, M. Y. , Boström, O. , Davidsson, J. , Hansson, H.-A. , Håland, Y. , Lövsund, P. , Suneson, A. , and Säljö, A. , 2000, “ Neck Injuries in Car Collisions—A Review Covering Possible Injury Mechanism and the Development of a New Rear-Impact Dummy,” Accid. Anal. Prev., 32(2), pp. 167–175. [CrossRef] [PubMed]
Schneider, L. W. , Robbins, D. H. , Pflüg, M. A. , and Snyder, R. G. , 1983, “ Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropomorphic Dummy Family, Final Report,” Transportation Research Institute, University of Michigan, Ann Arbor, MI.
Linder, A. , Schick, S. , Hell, W. , Svensson, M. , Carlsson, A. , Lemmen, P. , Schmitt, K.-U. , Gutsche, A. , and Tomasch, E. , 2013, “ ADSEAT—Adaptive Seat to Reduce Neck Injuries for Female and Male Occupants,” Accid. Anal. Prev., 60, pp. 334–343. [CrossRef] [PubMed]
Carlsson, A. , Chang, F. , Lemmen, P. , Kullgren, A. , Schmitt, K.-U. , Linder, A. , and Svensson, M. Y. , 2014, “ Anthropometric Specifications, Development, and Evaluation of EvaRID—A 50th Percentile Female Rear Impact Finite Element Dummy Model,” Traffic Inj. Prev., 15(8), pp. 855–865. [CrossRef] [PubMed]
Vasavada, A. , Danaraj, J. , and Siegmund, G. , 2008, “ Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women,” J. Biomech., 41(1), pp. 114–121. [CrossRef] [PubMed]
Mordaka, J. , 2004, “ Finite Element Analysis of Whiplash Injury for Women,” Ph.D. thesis, Nottingham Trent University, Nottingham, UK.
Gonzales Carcedo, M. , and Brolin, K. , 2012, “ Generation of Numerical Human Models Based on Medical Imaging,” Chalmers University of Technology, Gothenburg, Sweden. Technical Report No. 2012:01.
Sato, F. , Odani, M. , Endo, Y. , Tada, M. , Myiazaki, Y. , Nakajima, T. , Ono, K. , Morikawa, S. , and Svensson, M. , 2015, “ Analysis of the Alignment of Whole Spine in Automotive Seated and Supine Postures Using and Upright Open MRI System,” JSAE Conference, Yokohama, Japan, May 20–22, Paper No. 20155331.
van Mameren, H. , Sanches, H. , Beursgens, J. , and Drucker, J. , 1992, “ Cervical Spine Motion in the Sagittal Plane II: Position of Segmental Averaged Instantaneous Centers of Rotation—A Cineradiography Study,” Spine, 17(5), pp. 467–474. [CrossRef] [PubMed]
Panjabi, M. M. , Chen, N. C. , Shin, E. K. , and Wang, J.-L. , 2001, “ The Cortical Shell Architecture of Human Cervical Vertebral Bodies,” Spine, 26(22), pp. 2478–2484. [CrossRef] [PubMed]
Reilly, D. T. , Burstein, A. H. , and Frankel, V . H. , 1974, “ The Elastic Modulus for Bone,” J. Biomech., 7(3), pp. 271–275. [CrossRef] [PubMed]
Kopperdahl, D. L. , and Keaveny, T. M. , 1998, “ Yield Strain Behavior of Trabecular Bone,” J. Biomech., 31(7), pp. 601–608. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Stemper, B. D. , Baisden, J. L. , Aktay, R. , Shender, B. S. , Paskoff, G. , and Laud, P. , 2006, “ Trabecular Bone Density of Male Human Cervical and Lumbar Vertebrae,” Bone, 39(2), pp. 336–344. [CrossRef] [PubMed]
Yamada, H. , 1970, Strength of Biological Materials, Williams & Wilkins, Baltimore, MD.
Iatridis, J. C. , Weidenbaum, M. , Setton, L. A. , and Mow, V . C. , 1996, “ Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc,” Spine, 21(10), pp. 1174–1184. [CrossRef] [PubMed]
Yang, K. H. , and Kish, V . L. , 1988, “ Compressibility Measurements of Human Intervertebral Nucleus Pulposus,” J. Biomech., 21(10), p. 865. [CrossRef]
Iatridis, J. C. , Setton, L. A. , Foster, R. J. , Rawlins, B. A. , Weidenbaum, M. , and Mow, V . C. , 1998, “ Degeneration Affects the Anisotropic and Non-Linear Behaviors of Human Anulus Fibrosus in Compression,” J. Biomech., 31(6), pp. 535–544. [CrossRef] [PubMed]
Fujita, Y. , Duncan, N. A. , and Lotz, J. C. , 1997, “ Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent,” J. Orthop. Res., 15(6), pp. 814–819. [CrossRef] [PubMed]
Holzapfel, G. A. , Shulze-Bauer, C. A. J. , Feigl, G. , and Regitnig, P. , 2005, “ Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus,” Biomech. Model. Mechanobiol., 3(3), pp. 125–140. [CrossRef] [PubMed]
Skaggs, D. L. , Weidenbaum, M. , Iatridis, J. C. , Ratcliffe, A. , and Mow, V . C. , 1994, “ Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus,” Spine, 19(12), pp. 1310–1319. [CrossRef] [PubMed]
Cassidy, J. J. , Hiltner, A. , and Baer, E. , 1989, “ Hierarchical Structure of the Intervertebral Disc,” Connect. Tissue Res., 23(1), pp. 75–88. [CrossRef] [PubMed]
Mattucci, S. F. E. , and Cronin, D. S. , 2015, “ A Method to Characterize Average Cervical Spine Ligament Response Based on Raw Data Sets for Implementation Into Injury Biomechanics Models,” J. Mech. Behav. Biomed. Mater., 41, pp. 251–260. [CrossRef] [PubMed]
Mattucci, S. F. E. , Moulton, J. A. , Chandrashekar, N. , and Cronin, D. S. , 2012, “ Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments,” J. Mech. Behav. Biomed. Mater., 10, pp. 216–226. [CrossRef] [PubMed]
Mattucci, S. F. E. , Moulton, J. A. , Chandrashekar, N. , and Cronin, D. S. , 2013, “ Strain Rate Dependent Properties of Human Craniovertebral Ligaments,” J. Mech. Behav. Biomed. Mater., 23, pp. 71–79. [CrossRef] [PubMed]
Little, J. S. , and Khalsa, P. S. , 2005, “ Material Properties of the Human Lumbar Facet Joint Capsule,” ASME J. Biomech. Eng., 127(1), pp. 15–24. [CrossRef]
Yoganandan, N. , Kumaresan, S. , and Pintar, F. A. , 2000, “ Geometric and Mechanical Properties of Human Cervical Spine Ligaments,” ASME J. Biomech. Eng., 122(6), pp. 623–629. [CrossRef]
Dvorak, J. , Schneider, E. , Saldinger, P. , and Rahn, B. , 1988, “ Biomechanics of the Craniocervical Region: The Alar and Transverse Ligaments,” J. Orthop. Res., 6(3), pp. 452–461. [CrossRef] [PubMed]
Myklebust, J. B. , Pintar, F. , Yoganandan, N. , Cusick, J. F. , Maiman, D. , Myers, T. J. , and Sances, A., Jr ., 1988, “ Tensile Strength of Spinal Ligaments,” Spine, 13(5), pp. 526–531. [CrossRef] [PubMed]
Panjabi, M. M. , Oxland, T. R. , and Parks, E. H. , 1991, “ Quantitative Anatomy of Cervical Spine Ligaments. Part II. Middle and Lower Cervical Spine,” J. Spinal Disord., 4(3), pp. 277–285. [CrossRef] [PubMed]
Mercer, S. , Phty, B. , and Bogduk, N. , 1999, “ The Ligaments and Anulus Fibrosus of Human Adult Cervical Intervertebral Discs,” Spine, 24(7), pp. 619–628. [CrossRef] [PubMed]
Standring, S. (ed.), 2008, Gray's Anatomy—The Anatomical Basis of Clinical Practice, Elsevier Churchill Livingstone, London.
Panjabi, M. M. , Oxland, T. R. , and Parks, E. H. , 1991, “ Quantitative Anatomy of Cervical Spine Ligaments. Part I. Upper Cervical Spine,” J. Spinal Disord., 4(3), pp. 270–276. [PubMed]
Quapp, K. M. , and Weiss, J. A. , 1998, “ Material Characterization of Human Collateral Medial Ligament,” ASME J. Biomech. Eng., 120(6), pp. 757–763. [CrossRef]
Nightingale, R. W. , Winkelstein, B. A. , Knaub, K. E. , Richardson, W. J. , Luck, J. F. , and Myers, B. S. , 2002, “ Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension,” J. Biomech., 35(6), pp. 725–732. [CrossRef] [PubMed]
Panjabi, M. M. , Crisco, J. J. , Vasavada, A. , Oda, T. , Cholewicki, J. , Nibu, K. , and Shin, E. , 2001, “ Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves,” Spine, 26(24), pp. 2692–2700. [CrossRef] [PubMed]
Panjabi, M. M. , Summers, D. J. , Pelker, R. R. , Videman, T. , Friedlander, G. E. , and Southwick, W. O. , 1986, “ Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine,” J. Ortho. Res., 4(2), pp. 152–161. [CrossRef]
Fice, J. B. , and Cronin, D. S. , 2012, “ Investigation of Whiplash Injuries in the Upper Cervical Spine Using a Detailed Neck Model,” J. Biomech., 45(6), pp. 1098–1102. [CrossRef] [PubMed]
Cronin, D. S. , 2014, “ Finite Element Modelling of Potential Cervical Spine Pain Sources in Neutral Position Low Speed Rear Impact,” J. Mech. Behav. Biomed. Mater., 33, pp. 55–66. [CrossRef] [PubMed]
Francis, C. C. , 1955, “ Dimensions of the Cervical Vertebrae,” Anat. Rec., 122(4), pp. 603–609. [CrossRef] [PubMed]
Burkhart, T. A. , Andrews, D. M. , and Dunning, C. E. , 2013, “ Finite Element Mesh Quality, Energy Balance and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue,” J. Biomech., 46(9), pp. 1477–1488. [CrossRef] [PubMed]
Yoganandan, N. , Pintar, F. A. , Maiman, J. , Cusick, J. F. , Sances, A., Jr. , and Walsh, P. S. , 1996, “ Human Head-Neck Biomechanics Under Axial Tension,” Med. Eng. Phys., 18(4), pp. 289–294. [CrossRef] [PubMed]
Schmitt, K.-U. , Weber, T. , Svensson, M. , Davidsson, J. , Carlsson, A. , Björklund, M. , Jakobsson, L. , Tomasch, E. , and Linder, A. , 2012, “ Seat Testing to Investigate the Female Neck Injury Risk—Preliminary Results Using a New Female Dummy Prototype,” International IRCOBI Conference on the Biomechanics of Impact, Dublin, Ireland, Sept. 12–14, p. s263.
Ono, K. , Kaneoka, K. , Wittek, A. , and Kajzer, J. , 1997, “ Cervical Injury Mechanism Based on the Analysis of Human Cervical Vertebral Motion and Head-Neck-Torso Kinematics During Low-Speed Rear Impacts,” 41st Stapp Car Crash Conference, Lake Buena Vista, FL, Nov. 13–14, pp. 339–356.
de Bruijn, E. , van der Helm, F. C. T. , and Happee, R. , 2015, “ Analysis of Isometric Cervical Strength With a Nonlinear Musculoskeletal Model With 48 Degrees of Freedom,” Multibody Syst. Dyn., 36(4), pp. 339–362. [CrossRef]
Bonet, J. , and Burton, A. J. , 1998, “ A Simple Average Nodal Pressure Tetrahedral Element for Incompressible and Nearly Incompressible Dynamic Explicit Applications,” Commun. Numer. Methods Eng., 14(5), pp. 437–449. [CrossRef]
Nightingale, R. W. , Chancey, V . C. , Ottaviano, D. , Luck, J. F. , Tran, L. , Prange, M. , and Myers, B. S. , 2007, “ Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments,” J. Biomech., 40(3), pp. 535–542. [CrossRef] [PubMed]
Stemper, B. D. , Yoganandan, N. , and Pintar, F. A. , 2004, “ Gender- and Region-Dependent Local Facet Joint Kinematics in Rear Impact,” Spine, 29(16), pp. 1764–1771. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Cervical spine model overview, from T1 to the base of the skull (left); lower cervical spine structure (middle); internal ligaments of the UCS (right). In the close-up views, some parts of the model have been blanked out for visibility.

Grahic Jump Location
Fig. 2

Flexion–extension ROM for all segments compared with experimental data from the study by Nightingale et al. [57]. Vertical bars indicate SDs for the experimental data. Lower row markers indicate FE model motion segment data. The C4C5 response is included in both (a) and (b).

Grahic Jump Location
Fig. 3

ROM at 1 Nm torque for (a) lateral bending and (b) axial rotation. All model segments in comparison with experimental data from Panjabi et al. [58]. Vertical bars indicate SDs for the experimental data.

Grahic Jump Location
Fig. 4

LCS segment compliance. Vertical error bars indicate SDs for the data measured by Panjabi et al. [59], representing the average of 18 functional spine units from the all levels of the cervical spine. AS, anterior shear; PS, posterior shear; LS, lateral shear; Tens, tension; Comp = compression.

Grahic Jump Location
Fig. 5

Flexion–extension ROM at 1 Nm for the female cervical spine model and of a 50th percentile male model [13,60,61]. The female model has larger ROM at all cervical levels except the C7T1 level.

Grahic Jump Location
Fig. 6

Flexion–extension response for OCC2, C3C4, and C7T1, showing the nonlinear segment response with low resistance around the initial position. For the C3C4 segment, one simulation with a linear elastic material model for the ligaments is included to visualize how the neutral zone is coupled to the toe-region of the ligaments.

Grahic Jump Location
Fig. 7

Verification of LCS ligaments in comparison with average characteristic curves derived by Mattucci et al. [45]

Grahic Jump Location
Fig. 8

Verification of UCS ligaments. Markers indicate experimental data (Exp.) from Mattucci et al. [46] and for the alar and apical ligaments average values scaled with failure force reported by Myklebust et al. [51]. The solid lines connecting markers are the curves fitted to the data. For the AAAM in panel (c), the AAOM curve was used as basis for the material model.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In