0
Research Papers

A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion

[+] Author and Article Information
Mohammad Kia

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: KiaM@hss.edu

Kevin Schafer

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: kevinschafer88@gmail.com

Joseph Lipman

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: LipmanJ@hss.edu

Michael Cross

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: CrossM@hss.edu

David Mayman

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: MaymanD@hss.edu

Andrew Pearle

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: PearleA@hss.edu

Thomas Wickiewicz

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: WickiewiczT@hss.edu

Carl Imhauser

Hospital for Special Surgery,
535 E 70th Street,
New York, NY 10021
e-mail: ImhauserC@hss.edu

1Corresponding author.

Manuscript received May 15, 2015; final manuscript received February 22, 2016; published online March 31, 2016. Assoc. Editor: Paul Rullkoetter.

J Biomech Eng 138(5), 051010 (Mar 31, 2016) (12 pages) Paper No: BIO-15-1242; doi: 10.1115/1.4032850 History: Received May 15, 2015; Revised February 22, 2016

A multibody model of the knee was developed and the predicted ligament forces and kinematics during passive flexion corroborated subject-specific measurements obtained from a human cadaveric knee that was tested using a robotic manipulator. The model incorporated a novel strategy to estimate the slack length of ligament fibers based on experimentally measured ligament forces at full extension and included multifiber representations for the cruciates. The model captured experimentally measured ligament forces (≤5.7 N root mean square (RMS) difference), coupled internal rotation (≤1.6 deg RMS difference), and coupled anterior translation (≤0.4 mm RMS difference) through 130 deg of passive flexion. This integrated framework of model and experiment improves our understanding of how passive structures, such as ligaments and articular geometries, interact to generate knee kinematics and ligament forces.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hefzy, M. S. , Kelly, B. P. , Cooke, T. D. , al-Baddah, A. M. , and Harrison, L. , 1997, “ Knee Kinematics In-Vivo of Kneeling in Deep Flexion Examined by Bi-Planar Radiographs,” Biomed. Sci. Instrum., 33, pp. 453–458. [PubMed]
Belvedere, C. , Leardini, A. , Giannini, S. , Ensini, A. , Bianchi, L. , and Catani, F. , 2011, “ Does Medio-Lateral Motion Occur in the Normal Knee? An In-Vitro Study in Passive Motion,” J. Biomech., 44(5), pp. 877–884. [CrossRef] [PubMed]
Most, E. , Axe, J. , Rubash, H. , and Li, G. , 2004, “ Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes,” J. Biomech., 37(11), pp. 1743–1748. [CrossRef] [PubMed]
Wilson, D. R. , Feikes, J. D. , Zavatsky, A. B. , and O'Connor, J. J. , 2000, “ The Components of Passive Knee Movement Are Coupled to Flexion Angle,” J. Biomech., 33(4), pp. 465–473. [CrossRef] [PubMed]
Victor, J. , and Bellemans, J. , 2006, “ Physiologic Kinematics as a Concept for Better Flexion in TKA,” Clin. Orthop. Relat. Res., 452, pp. 53–58. [CrossRef] [PubMed]
Shelbourne, K. D. , Urch, S. E. , Gray, T. , and Freeman, H. , 2012, “ Loss of Normal Knee Motion After Anterior Cruciate Ligament Reconstruction Is Associated With Radiographic Arthritic Changes After Surgery,” Am. J. Sports Med., 40(1), pp. 108–113. [CrossRef] [PubMed]
Blankevoort, L. , Kuiper, J. H. , Huiskes, R. , and Grootenboer, H. J. , 1991, “ Articular Contact in a Three-Dimensional Model of the Knee,” J. Biomech., 24(11), pp. 1019–1031. [CrossRef] [PubMed]
Bloemker, K. H. , Guess, T. M. , Maletsky, L. , and Dodd, K. , 2012, “ Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths,” Open Biomed. Eng. J., 6(1), pp. 33–41. [CrossRef] [PubMed]
Moglo, K. E. , and Shirazi-Adl, A. , 2005, “ Cruciate Coupling and Screw-Home Mechanism in Passive Knee Joint During Extension-Flexion,” J. Biomech., 38(5), pp. 1075–1083. [CrossRef] [PubMed]
Shelburne, K. B. , Pandy, M. G. , and Torry, M. R. , 2004, “ Comparison of Shear Forces and Ligament Loading in the Healthy and ACL-Deficient Knee During Gait,” J. Biomech., 37(3), pp. 313–319. [CrossRef] [PubMed]
Shin, C. S. , Chaudhari, A. M. , and Andriacchi, T. P. , 2007, “ The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study,” J. Biomech., 40(5), pp. 1145–1152. [CrossRef] [PubMed]
Yang, Z. , Wickwire, A. C. , and Debski, R. E. , 2010, “ Development of a Subject-Specific Model to Predict the Forces in the Knee Ligaments at High Flexion Angles,” Med. Biol. Eng. Comput., 48(11), pp. 1077–1085. [CrossRef] [PubMed]
Bertozzi, L. , Stagni, R. , Fantozzi, S. , and Cappello, A. , 2007, “ Knee Model Sensitivity to Cruciate Ligaments Parameters: A Stability Simulation Study for a Living Subject,” J. Biomech., 40(Suppl. 1), pp. S38–S44. [CrossRef] [PubMed]
Smith, C. R. , Lenhart, R. L. , Kaiser, J. , Vignos, M. F. , and Thelen, D. G. , 2015, “ Influence of Ligament Properties on Tibiofemoral Mechanics in Walking,” J. Knee Surg., 29(2), pp. 99–106. [CrossRef] [PubMed]
Blankevoort, L. , and Huiskes, R. , 1991, “ Ligament-Bone Interaction in a Three-Dimensional Model of the Knee,” ASME J. Biomech. Eng., 113(3), pp. 263–269. [CrossRef]
Blankevoort, L. , and Huiskes, R. , 1996, “ Validation of a Three-Dimensional Model of the Knee,” J. Biomech., 29(7), pp. 955–961. [CrossRef] [PubMed]
Shelburne, K. B. , Pandy, M. G. , Anderson, F. C. , and Torry, M. R. , 2004, “ Pattern of Anterior Cruciate Ligament Force in Normal Walking,” J. Biomech., 37(6), pp. 797–805. [CrossRef] [PubMed]
Shelburne, K. B. , and Pandy, M. G. , 1997, “ A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions,” J. Biomech., 30(2), pp. 163–176. [CrossRef] [PubMed]
Hoher, J. , Vogrin, T. M. , Woo, S. L. , Carlin, G. J. , Aroen, A. , and Harner, C. D. , 1999, “ In Situ Forces in the Human Posterior Cruciate Ligament in Response to Muscle Loads: A Cadaveric Study,” J. Orthop. Res., 17(5), pp. 763–768. [CrossRef] [PubMed]
Markolf, K. L. , Gorek, J. F. , Kabo, J. M. , and Shapiro, M. S. , 1990, “ Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament: An In Vitro Study Performed With a New Experimental Technique,” J. Bone Jt. Surg., Am., 72(4), pp. 557–567.
Wismans, J. , Veldpaus, F. , Janssen, J. , Huson, A. , and Struben, P. , 1980, “ A Three-Dimensional Mathematical Model of the Knee-Joint,” J. Biomech., 13(8), pp. 677–685. [CrossRef] [PubMed]
Mootanah, R. , Imhauser, C. W. , Reisse, F. , Carpanen, D. , Walker, R. W. , Koff, M. F. , Lenhoff, M. W. , Rozbruch, S. R. , Fragomen, A. T. , Dewan, Z. , Kirane, Y. M. , Cheah, K. , Dowell, J. K. , and Hillstrom, H. J. , 2014, “ Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis,” Comput Methods Biomech. Biomed. Eng., 17(13), pp. 1502–1517. [CrossRef]
Mommersteeg, T. J. , Kooloos, J. G. , Blankevoort, L. , Kauer, J. M. , Huiskes, R. , and Roeling, F. Q. , 1995, “ The Fibre Bundle Anatomy of Human Cruciate Ligaments,” J. Anat., 187(Pt. 2), pp. 461–471. [PubMed]
Hara, K. , Mochizuki, T. , Sekiya, I. , Yamaguchi, K. , Akita, K. , and Muneta, T. , 2009, “ Anatomy of Normal Human Anterior Cruciate Ligament Attachments Evaluated by Divided Small Bundles,” Am. J. Sports Med., 37(12), pp. 2386–2391. [CrossRef] [PubMed]
Mommersteeg, T. J. , Blankevoort, L. , Huiskes, R. , Kooloos, J. G. , and Kauer, J. M. , 1996, “ Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach,” J. Biomech., 29(2), pp. 151–160. [CrossRef] [PubMed]
Guess, T. M. , and Stylianou, A. , 2012, “ Simulation of Anterior Cruciate Ligament Deficiency in a Musculoskeletal Model With Anatomical Knees,” Open Biomed. Eng. J., 6(1), pp. 23–32. [CrossRef] [PubMed]
Thelen, D. G. , Won Choi, K. , and Schmitz, A. M. , 2014, “ Co-simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking,” ASME J. Biomech. Eng., 136(2), p. 021033. [CrossRef]
Shelburne, K. B. , Torry, M. R. , and Pandy, M. G. , 2006, “ Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait,” J. Orthop. Res., 24(10), pp. 1983–1990. [CrossRef] [PubMed]
Anderson, C. J. , Ziegler, C. G. , Wijdicks, C. A. , Engebretsen, L. , and LaPrade, R. F. , 2012, “ Arthroscopically Pertinent Anatomy of the Anterolateral and Posteromedial Bundles of the Posterior Cruciate Ligament,” J. Bone Jt. Surg., Am. 94(21), pp. 1936–1945. [CrossRef]
Ziegler, C. G. , Pietrini, S. D. , Westerhaus, B. D. , Anderson, C. J. , Wijdicks, C. A. , Johansen, S. , Engebretsen, L. , and LaPrade, R. F. , 2011, “ Arthroscopically Pertinent Landmarks for Tunnel Positioning in Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions,” Am. J. Sports Med., 39(4), pp. 743–752. [CrossRef] [PubMed]
Sasaki, N. , Ishibashi, Y. , Tsuda, E. , Yamamoto, Y. , Maeda, S. , Mizukami, H. , Toh, S. , Yagihashi, S. , and Tonosaki, Y. , 2012, “ The Femoral Insertion of the Anterior Cruciate Ligament: Discrepancy Between Macroscopic and Histological Observations,” Arthroscopy, 28(8), pp. 1135–1146. [CrossRef] [PubMed]
Mochizuki, T. , Fujishiro, H. , Nimura, A. , Mahakkanukrauh, P. , Yasuda, K. , Muneta, T. , and Akita, K. , 2014, “ Anatomic and Histologic Analysis of the Mid-Substance and Fan-Like Extension Fibres of the Anterior Cruciate Ligament During Knee Motion, With Special Reference to the Femoral Attachment,” Knee Surg., Sports Traumatol. Arthrosc., 22(2), pp. 336–344. [CrossRef]
Imhauser, C. , Mauro, C. , Choi, D. , Rosenberg, E. , Mathew, S. , Nguyen, J. , Ma, Y. , and Wickiewicz, T. , 2013, “ Abnormal Tibiofemoral Contact Stress and Its Association With Altered Kinematics After Center-Center Anterior Cruciate Ligament Reconstruction: An In Vitro Study,” Am. J. Sports Med., 41(4), pp. 815–825. [CrossRef] [PubMed]
Grood, E. S. , and Suntay, W. J. , 1983, “ A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Burden, R. L. , and Faires, J. D. , 1976, Numerical Analysis, Brooks/Cole, Pacific Grove, CA.
Woo, S. L.-Y. , Fox, R. J. , Sakane, M. , Livesay, G. A. , Rudy, T. W. , and Fu, F. H. , 1998, “ Biomechanics of the ACL: Measurements of In Situ Force in the ACL and Knee Kinematics,” Knee, 5(4), pp. 267–288. [CrossRef]
LaPrade, R. F. , Engebretsen, A. H. , Ly, T. V. , Johansen, S. , Wentorf, F. A. , and Engebretsen, L. , 2007, “ The Anatomy of the Medial Part of the Knee,” J. Bone Jt. Surg., Am. 89(9), pp. 2000–2010. [CrossRef]
LaPrade, R. F. , Morgan, P. M. , Wentorf, F. A. , Johansen, S. , and Engebretsen, L. , 2007, “ The Anatomy of the Posterior Aspect of the Knee. An Anatomic Study,” J. Bone Jt. Surg., Am. 89(4), pp. 758–764. [CrossRef]
Lopes, O. V., Jr. , Ferretti, M. , Shen, W. , Ekdahl, M. , Smolinski, P. , and Fu, F. H. , 2008, “ Topography of the Femoral Attachment of the Posterior Cruciate Ligament,” J. Bone Jt. Surg., Am. 90(2), pp. 249–255. [CrossRef]
Tajima, G. , Nozaki, M. , Iriuchishima, T. , Ingham, S. J. , Shen, W. , Smolinski, P. , and Fu, F. H. , 2009, “ Morphology of the Tibial Insertion of the Posterior Cruciate Ligament,” J. Bone Jt. Surg., Am. 91(4), pp. 859–866. [CrossRef]
De Maeseneer, M. , Van Roy, P. , Shahabpour, M. , Gosselin, R. , De Ridder, F. , and Osteaux, M. , 2004, “ Normal Anatomy and Pathology of the Posterior Capsular Area of the Knee: Findings in Cadaveric Specimens and in Patients,” Am. J. Roentgenol., 182(4), pp. 955–962. [CrossRef]
Giffin, J. R. , Haemmerle, M. J. , Vogrin, T. M. , and Harner, C. D. , 2002, “ Single- Versus Double-Bundle PCL Reconstruction: A Biomechanical Analysis,” J. Knee Surg., 15(2), pp. 114–120. [PubMed]
Claes, S. , Vereecke, E. , Maes, M. , Victor, J. , Verdonk, P. , and Bellemans, J. , 2013, “ Anatomy of the Anterolateral Ligament of the Knee,” J. Anat., 223(4), pp. 321–328. [CrossRef] [PubMed]
Butler, D. L. , Guan, Y. , Kay, M. D. , Cummings, J. F. , Feder, S. M. , and Levy, M. S. , 1992, “ Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament,” J. Biomech., 25(5), pp. 511–518. [CrossRef] [PubMed]
Hutchinson, M. R. , and Ash, S. A. , 2003, “ Resident's Ridge: Assessing the Cortical Thickness of the Lateral Wall and Roof of the Intercondylar Notch,” Arthroscopy, 19(9), pp. 931–935. [CrossRef] [PubMed]
Tsukada, S. , Fujishiro, H. , Watanabe, K. , Nimura, A. , Mochizuki, T. , Mahakkanukrauh, P. , Yasuda, K. , and Akita, K. , 2014, “ Anatomic Variations of the Lateral Intercondylar Ridge: Relationship to the Anterior Margin of the Anterior Cruciate Ligament,” Am. J. Sports Med., 42(5), pp. 1110–1117. [CrossRef] [PubMed]
Galante, J. , Rostoker, W. , and Ray, R. D. , 1970, “ Physical Properties of Trabecular Bone,” Calcif. Tissue Res., 5(3), pp. 236–246. [CrossRef] [PubMed]
Imhauser, C. W. , Siegler, S. , Udupa, J. K. , and Toy, J. R. , 2008, “ Subject-Specific Models of the Hindfoot Reveal a Relationship Between Morphology and Passive Mechanical Properties,” J. Biomech., 41(6), pp. 1341–1349. [CrossRef] [PubMed]
Guess, T. M. , Thiagarajan, G. , Kia, M. , and Mishra, M. , 2010, “ A Subject Specific Multibody Model of the Knee With Menisci,” Med. Eng. Phys., 32(5), pp. 505–515. [CrossRef] [PubMed]
Kia, M. , Stylianou, A. P. , and Guess, T. M. , 2014, “ Evaluation of a Musculoskeletal Model With Prosthetic Knee Through Six Experimental Gait Trials,” Med. Eng. Phys., 36(3), pp. 335–344. [CrossRef] [PubMed]
Robinson, J. R. , Bull, A. M. , and Amis, A. A. , 2005, “ Structural Properties of the Medial Collateral Ligament Complex of the Human Knee,” J. Biomech., 38(5), pp. 1067–1074. [CrossRef] [PubMed]
Harner, C. D. , Xerogeanes, J. W. , Livesay, G. A. , Carlin, G. J. , Smith, B. A. , Kusayama, T. , Kashiwaguchi, S. , and Woo, S. L. , 1995, “ The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study Ligament Morphology and Biomechanical Evaluation,” Am. J. Sports Med., 23(6), pp. 736–745. [CrossRef] [PubMed]
Wilson, W. T. , Deakin, A. H. , Payne, A. P. , Picard, F. , and Wearing, S. C. , 2012, “ Comparative Analysis of the Structural Properties of the Collateral Ligaments of the Human Knee,” J. Orthop. Sports Phys. Ther., 42(4), pp. 345–351. [CrossRef] [PubMed]
Hauch, K. N. , Villegas, D. F. , and Haut Donahue, T. L. , 2010, “ Geometry, Time-Dependent and Failure Properties of Human Meniscal Attachments,” J. Biomech., 43(3), pp. 463–468. [CrossRef] [PubMed]
Funk, J. R. , Hall, G. W. , Crandall, J. R. , and Pilkey, W. D. , 2000, “ Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments,” ASME J. Biomech. Eng., 122(1), pp. 15–22. [CrossRef]
Lasdon, L. S. , Fox, R. J. , and Margery, W. , 1974, “ Nonlinear Optimization Using the Generalized Reduced Gradient Method,” Oper. Res., 3(8), pp. 73–103.
Gear, C. W. , 1971, “ Simultaneous Numerical Solution of Differential Algebraic Equations,” IEEE Trans. Circuit Theory, 18(1), pp. 89–95. [CrossRef]
Girgis, F. G. , Marshall, J. L. , and Monajem, A. , 1975, “ The Cruciate Ligaments of the Knee Joint: Anatomical, Functional and Experimental Analysis,” Clin. Orthop. Relat. Res., 106, pp. 216–231. [CrossRef] [PubMed]
Markolf, K. L. , Park, S. , Jackson, S. R. , and McAllister, D. R. , 2008, “ Contributions of the Posterolateral Bundle of the Anterior Cruciate Ligament to Anterior-Posterior Knee Laxity and Ligament Forces,” Arthroscopy, 24(7), pp. 805–809. [CrossRef] [PubMed]
Li, G. , Papannagari, R. , DeFrate, L. E. , Yoo, J. D. , Park, S. E. , and Gill, T. J. , 2007, “ The Effects of ACL Deficiency on Mediolateral Translation and Varus-Valgus Rotation,” Acta Orthop., 78(3), pp. 355–360. [CrossRef] [PubMed]
Laz, P. J. , and Browne, M. , 2010, “ A Review of Probabilistic Analysis in Orthopaedic Biomechanics,” Proc. Inst. Mech. Eng., Part H, 224(8), pp. 927–943. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Flowchart summarizing the model development procedure (dashed gray box) and subject-specific comparison of model predictions with the physical experiment

Grahic Jump Location
Fig. 2

L-frames were rigidly fixed to the tibia and femur and identified using a 3D digitizer after the knee specimen was mounted to the six degrees-of-freedom robot in full extension

Grahic Jump Location
Fig. 3

Boolean subtraction was used to develop 3D geometries of (a) the tibial and femoral (not shown) articular cartilage and (b) the menisci. The surfaces were subsequently smoothed.

Grahic Jump Location
Fig. 4

Fibers representing the ligaments in the multibody model: (a) ACL (six fibers), (b) PCL (seven fibers), (c) sMCL (three proximal fibers and three distal fibers), POL (three fibers), (d) MPC and LPC (three fibers each), (e) OPL (two fibers), (f) FFL (one fiber), LCL (one fiber), and ALL (one fiber)

Grahic Jump Location
Fig. 5

(a) The anterior and posterior horn attachments of the menisci were each represented by one fiber (total of four fibers). The coronary ligaments were represented by seven fibers (two anterior, three medial, and two posterior) constraining the medial meniscus to the tibial plateau. (b) One fiber represented the coronary ligament constraining the lateral meniscus to the tibia/fibula.

Grahic Jump Location
Fig. 6

Overview of the multibody model including bony geometries, articular cartilage, discretized menisci, and ligament fibers

Grahic Jump Location
Fig. 7

Representative force–elongation response for a ligament fiber consisting of the slack length (l0), the toe region f* (l), linear region (K), and a term (Δt) that identifies the transition between the toe and linear regions

Grahic Jump Location
Fig. 8

The three proximal and three distal fibers of the sMCL were connected in series with 1 mm diameter spheres to simulate wrapping

Grahic Jump Location
Fig. 9

Ligament force predicted by the model (solid line) and measured in the physical experiment (dashed line) during passive flexion from 0 to 130 deg: (a) ACL, (b) PCL, (c) sMCL, (d) LCL, and (e) POL

Grahic Jump Location
Fig. 10

Tibial kinematics with respect to the femur predicted by the model (solid line) and measured in the physical experiment (dashed line) during passive flexion from 0 to 130 deg. A positive direction indicates: (a) internal rotation, (b) anterior translation, (c) distal translation, (d) varus rotation, and (e) lateral translation.

Grahic Jump Location
Fig. 11

(a) Schematic describing the transformations used to register the CT-derived geometries to the anatomical coordinate system of the physical experiment. This included the reference frames for the CT scanner (CT), the digitizer (D), and the L-frames (L) identified both in CT and via the digitizer. The anatomical coordinates systems for the tibia (T) and femur (F) were based on the digitization points (P1–P5). All the symbols are summarized in Appendix A, Table 4. (b) Image of the validation jig used to quantify the accuracy of the method employed to register the CT-derived geometries to the anatomical coordinate system.

Grahic Jump Location
Fig. 12

Predicted force in the individual fibers of the ACL throughout the flexion arc (0–130 deg): (a) AM (two fibers) and AL (one fiber); (b) PL (three fibers)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In