0
Research Papers

Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression

[+] Author and Article Information
Sébastien Demers

Department of Mechanical Engineering,
École de Technologie Supérieure,
1100 Notre-Dame West,
Montréal, QC H3C 1K3, Canada
e-mail: sebastien.demers.3@ens.etsmtl.ca

Sylvie Nadeau

Department of Mechanical Engineering,
École de Technologie Supérieure,
1100 Notre-Dame West,
Montréal, QC H3C 1K3, Canada
e-mail: sylvie.nadeau@etsmtl.ca

Abdel-Hakim Bouzid

Fellow ASME
Department of Mechanical Engineering,
École de Technologie Supérieure,
1100 Notre-Dame West,
Montréal, QC H3C 1K3, Canada
e-mail: hakim.bouzid@etsmtl.ca

Manuscript received May 15, 2015; final manuscript received January 21, 2016; published online February 25, 2016. Assoc. Editor: James C. Iatridis.

J Biomech Eng 138(4), 041004 (Feb 25, 2016) (10 pages) Paper No: BIO-15-1241; doi: 10.1115/1.4032628 History: Received May 15, 2015; Revised January 21, 2016

Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models. This paper presents an analytical method based on thin-shell, beam-on-elastic-foundation and composite materials theories to evaluate the stresses in the anulus fibrosus (AF) of an axisymmetric disk composed of multiple thin lamellae. Large deformations of the soft tissues are accounted for using an iterative method and the anisotropic material properties are derived from a published biaxial experiment. The results are compared to those obtained by FE modeling. The results demonstrate the capability of the analytical model to evaluate the stresses at any location of the simplified AF. It also demonstrates that anisotropy reduces stresses in the lamellae. This novel model is a preliminary step in developing valuable analytical models of IVDs, and represents a distinctive groundwork that is able to sustain future refinements. This paper suggests important features that may be included to improve model realism.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Guerin, H. L. , and Elliott, D. M. , 2007, “ Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model,” J. Orthop. Res., 25(4), pp. 508–516. [CrossRef] [PubMed]
Nachemson, A. , 1960, “ Lumbar Intradiscal Pressure. Experimental Studies on Post-Mortem Material,” Acta Orthop. Scand., Suppl., 43(S43), pp. 1–104. [CrossRef]
Cassidy, J. J. , Hiltner, A. , and Baer, E. , 1989, “ Hierarchical Structure of the Intervertebral Disc,” Connect. Tissue Res., 23(1), pp. 75–88. [CrossRef] [PubMed]
Holzapfel, G. A. , Schulze-Bauer, C. A. J. , Feigl, G. , and Regitnig, P. , 2005, “ Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus,” Biomech. Model. Mechanobiol., 3(3), pp. 125–140. [CrossRef] [PubMed]
Marchand, F. , and Ahmed, A. M. , 1990, “ Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine, 15(5), pp. 402–410. [CrossRef] [PubMed]
Peacock, A. , 1952, “ Observations on the Postnatal Structure of the Intervertebral Disc in Man,” J. Anat., 86(2), pp. 162–179. [PubMed]
Raj, P. P. , 2007, “ Intervertebral Disc: Anatomy-Physiology-Pathophysiology-Treatment,” Pain Pract., 8(1), pp. 18–44. [CrossRef]
Adams, M. A. , Dolan, P. , and McNally, D. S. , 2009, “ The Internal Mechanical Functioning of Intervertebral Discs and Articular Cartilage, and Its Relevance to Matrix Biology,” Matrix Biol., 28(7), pp. 384–389. [CrossRef] [PubMed]
Natarajan, R. N. , Williams, J. R. , Lavender, S. A. , An, H. S. , and Andersson, G. B. , 2008, “ Relationship Between Disc Injury and Manual Lifting: A Poroelastic Finite Element Model Study,” Proc. Inst. Mech. Eng., Part H, 222(2), pp. 195–207. [CrossRef]
Guo, Z. , Shi, X. , Peng, X. , and Caner, F. , 2012, “ Fibre–Matrix Interaction in the Human Annulus Fibrosus,” J. Biomech. Behav. Biomed. Mater., 5(1), pp. 193–205. [CrossRef]
Ezquerro, F. , Vacas, F. G. I. , Postigo, S. , Prado, M. , and Simon, A. , 2011, “ Calibration of the Finite Element Model of a Lumbar Functional Spinal Unit Using an Optimization Technique Based on Differential Evolution,” Med. Eng. Phys., 33(1), pp. 89–95. [CrossRef] [PubMed]
Niemeyer, F. , Wilke, H.-J. , and Schmidt, H. , 2012, “ Geometry Strongly Influences the Response of Numerical Models of the Lumbar Spine—A Probabilistic Finite Element Analysis,” J. Biomech., 45(8), pp. 1414–1423. [CrossRef] [PubMed]
Hickey, D. S. , and Hukins, D. W. , 1980, “ Relation Between the Structure of the Annulus Fibrosus and the Function and Failure of the Intervertebral Disc,” Spine (Philadelphia Pa 1976), 5(2), pp. 106–116. [CrossRef]
Hukins, D. W. L. , 1992, “ A Simple Model for the Function of Proteoglycans and Collagen in the Response to Compression of the Intervertebral Disc,” Proc. Biol. Sci. R. Soc., 249(1326), pp. 281–285. [CrossRef]
Prud'Homme, D. , 2008, Mécanisme de la hernie discale: modélisation non-linéaire, École de technologie supérieure, Montréal, QC, Canada.
McNally, D. S. , and Arridge, R. G. C. , 1995, “ An Analytical Model of Intervertebral Disc Mechanics,” J. Biomech., 28(1), pp. 53–68. [CrossRef] [PubMed]
Demers, S. , Bouzid, A.-H. , and Nadeau, S. , 2013, “ On the Modeling of an Intervertebral Disc Using a Novel Large Deformation Multi-Shell Approach,” ASME J. Biomech. Eng., 135(5), p. 051003. [CrossRef]
Gregory, D. E. , Bae, W. C. , Sah, R. L. , and Masuda, K. , 2012, “ Anular Delamination Strength of Human Lumbar Intervertebral Disc,” Eur. Spine J., 21(9), pp. 1716–1723. [CrossRef] [PubMed]
Eijkelkamp, M. F. , 2002, “ On the Development of an Artificial Intervertebral Disc,” Ph.D. thesis, University of Groningen, Groningen, The Netherlands.
Zingoni, A. , 1995, “ On Membrane Solutions for Elevated Shell-of-Revolution Tanks of Certain Meridional Profiles,” Thin-Walled Struct., 22(2), pp. 121–142. [CrossRef]
Johnson, E. F. , Chetty, K. , Moore, I. M. , Stewart, A. , and Jones, W. , 1982, “ The Distribution and Arrangement of Elastic Fibres in the Intervertebral Disc of the Adult Human,” J. Anat., 135(2), pp. 301–309. [PubMed]
Iatridis, J. C. , Weidenbaum, M. , Setton, L. A. , and Mow, V. C. , 1996, “ Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc,” Spine, 21(10), pp. 1174–1184. [CrossRef] [PubMed]
Adams, M. A. , McNally, D. S. , and Dolan, P. , 1996, “ ‘Stress' Distributions Inside Intervertebral Discs,” J. Bone Jt. Surg., 78(6), pp. 965–972. [CrossRef]
Proteau, R.-A. , 2014, Repères pour l'évaluation des risques lors de la manutention de charges, Objectif Prévention, 37(1), pp. 11–13.
Nachemson, A. , 1981, “ Disc Pressure Measurements,” Spine, 6(1), pp. 93–97. [CrossRef] [PubMed]
Lamé, G. , 1866, Leçons sur la Théorie Mathématique de l'Élasticité des Corps Solides, 2nd ed., Gauthier-Villars, Paris, France.
Little, J. P. , Adam, C. J. , Evans, J. H. , Pettet, G. J. , and Pearcy, M. J. , 2007, “ Nonlinear Finite Element Analysis of Anular Lesions in the L4/5 Intervertebral Disc,” J. Biomech., 40(12), pp. 2744–2751. [CrossRef] [PubMed]
Zingoni, A. , 2001, “ Stresses and Deformations in Egg-Shaped Sludge Digestors: Discontinuity Effects,” Eng. Struct., 23(11), pp. 1373–1382. [CrossRef]
Gibson, R. F. , 2007, Principles of Composite Material Mechanics, McGraw-Hill, New York.
O'Connell, G. D. , Sen, S. , and Elliott, D. M. , 2012, “ Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling are Altered With Degeneration,” Biomech. Model. Mechanobiol., 11(3), pp. 493–503. [CrossRef] [PubMed]
Vasiliev, V. V. , 2009, Composite Pressure Vessels, Analysis, Design, and Manufacturing, Bull Ridge Publishing, Blacksburg, VA.
ANSYS, 2011, Release 14.0. Software, ANSYS, Inc., Southpointe, PA.
O'Connell, G. D. , Vresilovic, E. J. , and Elliott, D. M. , 2010, “ Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration,” J. Orthop. Res., 29(4), pp. 547–555. [CrossRef] [PubMed]
Smith, L. J. , and Fazzalari, N. L. , 2009, “ The Elastic Fibre Network of the Human Lumbar Anulus Fibrosus: Architecture, Mechanical Function and Potential Role in the Progression of Intervertebral Disc Degeneration,” Eur. Spine J., 18(4), pp. 439–448. [CrossRef] [PubMed]
Rodrigues, S. A. , Wade, K. R. , Thambyah, A. , and Broom, N. D. , 2012, “ Micromechanics of Annulus-End Plate Integration in the Intervertebral Disc,” Spine J., 12(2), pp. 143–150. [CrossRef] [PubMed]
Noailly, J. , Planell, J. A. , and Lacroix, D. , 2011, “ On the Collagen Criss-Cross Angles in the Annuli Fibrosi of Lumbar Spine Finite Element Models,” Biomech. Model. Mechanobiol., 10(2), pp. 203–219. [CrossRef] [PubMed]
Klein, J. A. , and Hukins, D. W. , 1982, “ X-Ray Diffraction Demonstrates Reorientation of Collagen Fibres in the Annulus Fibrosus During Compression of the Intervertebral Disc,” Biochim. Biophys. Acta, 717(1), pp. 61–64. [CrossRef] [PubMed]
Ambard, D. , and Cherblanc, F. , 2009, “ Mechanical Behavior of Annulus Fibrosus: A Microstructural Model of Fibers Reorientation,” Ann. Biomed. Eng., 37(11), pp. 2256–2265. [CrossRef] [PubMed]
Guerin, H. A. , and Elliott, D. M. , 2006, “ Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load,” J. Biomech., 39(8), pp. 1410–1418. [CrossRef] [PubMed]
Holzapfel, G. A. , 2000, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Chichester, UK.
Gunzburg, R. , Hutton, W. C. , Crane, G. , and Fraser, R. D. , 1992, “ Role of the Capsulo-Ligamentous Structures in Rotation and Combined Flexion-Rotation of the Lumbar Spine,” J. Spinal Disord., 5(4), pp. 1–7. [CrossRef] [PubMed]
Roaf, R. , 1960, “ A Study of the Mechanics of Spinal Injuries,” J. Bone Jt. Surg., 42(4), pp. 810–823.

Figures

Grahic Jump Location
Fig. 2

Free body diagrams: (a) force equilibrium on a membrane element isolated from lamella j, at equilibrium plane i, shown with geometrical parameters and (b) force equilibrium along vertical axis z, using the compressive force Fcomp, the force induced by intradiscal pressure pNP, and the vertical component of the longitudinal membrane force Nφ,i,j in each lamella

Grahic Jump Location
Fig. 3

Boundary conditions for the application of the beam-on-elastic-foundation theory. At the endplates, the displacements δ[m] induced by pressure are counteracted by δ[d] induced by edge forces F to cancel the displacements. At the midtransverse plane, the displacement δ[m] is counteracted by δ[d] to yield the final the displacement δ[f].

Grahic Jump Location
Fig. 5

Contact pressure between adjacent lamellae at the midtransverse plane

Grahic Jump Location
Fig. 6

(a) Final circumferential stress obtained analytically in the innermost lamella, and divided into membrane and discontinuity stresses and (b) comparison of the final analytical circumferential stress to that of FE model

Grahic Jump Location
Fig. 7

Stresses through the AF thickness at the midtransverse plane

Grahic Jump Location
Fig. 8

Initial and deformed shape of the lamellae obtained bythe analytical and FE modeling. The initial shape and the analytical deformed shape are only shown for the innermost and outermost lamellae.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In