Research Papers

Hemodynamic Characterization of Geometric Cerebral Aneurysm Templates Treated With Embolic Coils

[+] Author and Article Information
Priya Nair

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287
e-mail: priyanair@asu.edu

Brian W. Chong

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287;
Mayo Clinic Hospital,
Phoenix AZ 85054
e-mail: Brian.W.Chong@asu.edu

Aprinda Indahlastari

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287
e-mail: Aprinda.Indahlastari@asu.edu

Justin Ryan

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287;
Phoenix Children's Hospital,
Phoenix, AZ 85006
e-mail: jrryan@asu.edu

Christopher Workman

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287
e-mail: cworkma2@asu.edu

M. Haithem Babiker

Scottsdale, AZ 85257
e-mail: haithem.babiker@endovantage.com

Hooman Yadollahi Farsani

School for Engineering of Matter,
Transport, and Energy,
Arizona State University,
Tempe, AZ 85287
e-mail: hyadolla@asu.edu

Carlos E. Baccin

Centro de NeuroAngiografia (CNA),
Hospital Beneficencia Portuguesa de São Paulo,
São Paulo, SP 01323-900, Brazil
e-mail: edubaccin@hotmail.com

David Frakes

School of Biological and Health Systems Engineering,
Arizona State University,
501 E Tyler Mall,
Tempe, AZ 85287;
School of Electrical, Computer, and Energy Engineering,
Arizona State University,
Tempe, AZ 85287
e-mail: dfrakes@asu.edu

1Corresponding author.

Manuscript received August 4, 2015; final manuscript received November 5, 2015; published online January 27, 2016. Editor: Victor H. Barocas.

J Biomech Eng 138(2), 021011 (Jan 27, 2016) (8 pages) Paper No: BIO-15-1390; doi: 10.1115/1.4032046 History: Received August 04, 2015; Revised November 05, 2015

Embolic coiling is one of the most effective treatments for cerebral aneurysms (CAs), largely due to the hemodynamic modifications that the treatment effects in the aneurysmal environment. However, coiling can have very different hemodynamic outcomes in aneurysms with different geometries. Previous work in the field of biofluid mechanics has demonstrated on a general level that geometry is a driving factor behind aneurysmal hemodynamics. The goal of this study was to relate two specific geometric factors that describe CAs (i.e., dome size (DS) and parent-vessel contact-angle (PV-CA)) and one factor that describes treatment (i.e., coil packing density (PD)) to three clinically relevant hemodynamic responses (i.e., aneurysmal root-mean-square velocity (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Idealized models of basilar tip aneurysms were created in both virtual and physical forms to satisfy two-level multifactorial experimental designs. Steady and pulsatile flow hemodynamics were then evaluated in the virtual models using computational fluid dynamics (CFD) (before and after virtual treatment with finite element (FE) embolic coil models), and hemodynamics were also evaluated in the physical models using particle image velocimetry (PIV) (before and after treatment with actual embolic coils). Results showed that among the factors considered, PD made the greatest contributions to effects on hemodynamic responses in and around the aneurysmal sac (i.e., Vrms and WSS), while DS made the greatest contributions to effects on hemodynamics at the neck (i.e., CNF). Results also showed that while a geometric factor (e.g., PV-CA) may play a relatively minor role in dictating hemodynamics in the untreated case, the same factor can play a much greater role after coiling. We consider the significance of these findings in the context of aneurysmal recurrence and rupture, and explore potential roles for the proposed methods in endovascular treatment planning.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Schievink, W. I. , 1997, “ Intracranial Aneurysms,” N. Engl. J. Med., 336(1), pp. 28–40. [CrossRef] [PubMed]
Meng, H. , Wang, Z. , Hoi, Y. , Gao, L. , Metaxa, E. , Swartz, D. D. , and Kolega, J. , 2007, “ Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation,” Stroke, 38(6), pp. 1924–1931. [CrossRef] [PubMed]
Connolly, E. S. , Rabinstein, A. A. , Carhuapoma, J. R. , Derdeyn, C. P. , Dion, J. , Higashida, R. T. , Hoh, B. L. , Kirkness, C. J. , Naidech, A. M. , Ogilvy, C. S. , Patel, A. B. , Thompson, B. G. , and Vespa, P. , 2012, “ Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association,” Stroke, 43(6), pp. 1711–1737. [CrossRef] [PubMed]
Johnston, S. C. , Wilson, C. B. , Halbach, V. V. , Higashida, R. T. , Dowd, C. F. , McDermott, M. W. , Applebury, C. B. , Farley, T. L. , and Gress, D. R. , 2000, “ Endovascular and Surgical Treatment of Unruptured Cerebral Aneurysms: Comparison of Risks,” Ann. Neurol., 48(1), pp. 11–19. [CrossRef] [PubMed]
Babiker, M. H. , Gonzalez, L. F. , Albuquerque, F. , Collins, D. , Elvikis, A. , and Frakes, D. H. , 2010, “ Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study,” Ann. Biomed. Eng., 38(7), pp. 2293–2301. [CrossRef] [PubMed]
Morales, H. G. , Kim, M. , Vivas, E. E. , Villa-Uriol, M. C. , Larrabide, I. , Sola, T. , Guimaraens, L. , and Frangi, A. F. , 2011, “ How Do Coil Configuration and Packing Density Influence Intra-Aneurysmal Hemodynamics?,” Am. J. Neuroradiol., 32(10), pp. 1935–1941. [CrossRef]
Johnston, S. C. , 2000, “ Effect of Endovascular Services and Hospital Volume on Cerebral Aneurysm Treatment Outcomes,” Stroke, 31(1), pp. 111–117. [CrossRef] [PubMed]
Brinjikji, W. , Cloft, H. J. , and Kallmes, D. F. , 2009, “ Difficult Aneurysms for Endovascular Treatment: Overwide or Undertall?,” Am. J. Neuroradiol., 30(8), pp. 1513–1517. [CrossRef]
Debrun, G. M. , Aletich, V. A. , Kehrli, P. , Misra, M. , Ausman, J. I. , Charbel, F. , and Shownkeen, H. , 1998, “ Aneurysm Geometry: An Important Criterion in Selecting Patients for Guglielmi Detachable Coiling,” Neurol. Med.-Chir., 38(suppl), pp. 1–20. [CrossRef]
Sforza, D. M. , Putman, C. M. , and Cebral, J. R. , 2009, “ Hemodynamics of Cerebral Aneurysms,” Annu. Rev. Fluid Mech., 41(1), pp. 91–107. [CrossRef] [PubMed]
Cebral, J. R. , Mut, F. , Weir, J. , and Putman, C. M. , 2011, “ Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture,” Am. J. Neuroradiol., 32(2), pp. 264–270. [CrossRef]
Hoi, Y. , Meng, H. , Woodward, S. H. , Bendok, B. R. , Hanel, R. A. , Guterman, L. R. , and Hopkins, L. N. , 2004, “ Effects of Arterial Geometry on Aneurysm Growth: Three-Dimensional Computational Fluid Dynamics Study,” J. Neurosurg., 101(4), pp. 676–681. [CrossRef] [PubMed]
Lasheras, J. C. , 2007, “ The Biomechanics of Arterial Aneurysms,” Annu. Rev. Fluid Mech., 39(1), pp. 293–319. [CrossRef]
Raymond, J. , Guilbert, F. , Weill, A. , Georganos, S. A. , Juravsky, L. , Lambert, A. , Lamoureux, J. , Chagnon, M. , and Roy, D. , 2003, “ Long-Term Angiographic Recurrences After Selective Endovascular Treatment of Aneurysms With Detachable Coils,” Stroke, 34(6), pp. 1398–1403. [CrossRef] [PubMed]
Sluzewski, M. , van Rooij, W. J. , Slob, M. J. , Bescós, J. O. , Slump, C. H. , and Wijnalda, D. , 2004, “ Relation Between Aneurysm Volume, Packing, and Compaction in 145 Cerebral Aneurysms Treated With Coils,” Radiology, 231(3), pp. 653–658. [CrossRef] [PubMed]
Babiker, M. H. , Gonzalez, L. F. , Ryan, J. , Albuquerque, F. , Collins, D. , Elvikis, A. , and Frakes, D. H. , 2012, “ Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics,” J. Biomech., 45(3), pp. 440–447. [CrossRef] [PubMed]
Xiang, J. , Natarajan, S. K. , Tremmel, M. , Ma, D. , Mocco, J. , Hopkins, L. N. , Siddiqui, A. H. , Levy, E. I. , and Meng, H. , 2011, “ Hemodynamic–Morphologic Discriminants For Intracranial Aneurysm Rupture,” Stroke, 42(1), pp. 144–152. [CrossRef] [PubMed]
Mut, F. , Löhner, R. , Chien, A. , Tateshima, S. , Viñuela, F. , Putman, C. , and Cebral, J. R. , 2011, “ Computational Hemodynamics Framework For The Analysis of Cerebral Aneurysms,” Int. J. Numer. Methods Biomed. Eng., 27(6), pp. 822–839. [CrossRef]
Baharoglu, M. I. , Schirmer, C. M. , Hoit, D. A. , Gao, B. L. , and Malek, A. M. , 2010, “ Aneurysm Inflow-Angle as a Discriminant For Rupture in Sidewall Cerebral Aneurysms Morphometric and Computational Fluid Dynamic Analysis,” Stroke, 41(7), pp. 1423–1430. [CrossRef] [PubMed]
Cebral, J. R. , Castro, M. A. , Burgess, J. E. , Pergolizzi, R. S. , Sheridan, M. J. , and Putman, C. M. , 2005, “ Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models,” Am. J. Neuroradiol., 26(10), pp. 2550–2559.
Wardlaw, J. M. , and White, P. M. , 2000, “ The Detection and Management of Unruptured Intracranial Aneurysms,” Brain, 123(2), pp. 205–221. [CrossRef] [PubMed]
Brisman, J. L. , Song, J. K. , and Newell, D. W. , 2006, “ Cerebral Aneurysms,” N. Engl. J. Med., 355(9), pp. 928–939. [CrossRef] [PubMed]
Loewenstein, J. E. , Gayle, S. C. , Duffis, E. J. , Prestigiacomo, C. J. , and Gandhi, C. D. , 2012, “ The Natural History and Treatment Options for Unruptured Intracranial Aneurysms,” Int. J. Vasc. Med., 2012, p. 898052. [PubMed]
van Eijck, M. , Bechan, R. S. , Sluzewski, M. , Peluso, J. P. , Roks, G. , and van Rooij, W. J. , “ Clinical and Imaging Follow-Up of Patients With Coiled Basilar Tip Aneurysms Up to 20 Years,” Am. J. Neuroradiol., 36(11), pp. 2108–2113. [CrossRef]
Vallée, J. N. , Aymard, A. , Vicaut, E. , Reis, M. , and Merland, J. J. , 2003, “ Endovascular Treatment of Basilar Tip Aneurysms With Guglielmi Detachable Coils: Predictors of Immediate and Long-term Results with Multivariate Analysis—6-year Experience1,” Radiology, 226(3), pp. 867–879. [CrossRef] [PubMed]
Jou, L. D. , Mohamed, A. , Lee, D. H. , and Mawad, M. E. , 2007, “ 3D Rotational Digital Subtraction Angiography May Underestimate Intracranial Aneurysms: Findings From Two Basilar Aneurysms,” Am. J. Neuroradiol., 28(9), pp. 1690–1692. [CrossRef]
Babiker, M. H. , Chong, B. , Gonzalez, L. F. , Cheema, S. , and Frakes, D. H. , 2013, “ Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics,” J. Biomech., 46(16), pp. 2809–2816. [CrossRef] [PubMed]
Ford, M. D. , Alperin, N. , Lee, S. H. , Holdsworth, D. W. , and Steinman, D. A. , 2005, “ Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries,” Physiol. Meas., 26(4), pp. 477–488. [CrossRef] [PubMed]
Rhew, R. D. , and Parker, P. A. , 2007, “ A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE),” U.S. Air Force T&E Days, Destin, FL, Feb. 13–15, AIAA Paper No. 2007-1615.
Taylor, R. , 1990, “ Interpretation of the Correlation Coefficient: A Basic Review,” J. Diag. Med. Sonography, 6(1), pp. 35–39. [CrossRef]
Lecler, A. , Raymond, J. , Rodriguez-Régent, C. , Al Shareef, F. , Trystram, D. , Godon-Hardy, S. , Hassen, W. B. , Meder, J. F. , Oppenheim, C. , and Naggara, O. N. , 2015, “ Intracranial Aneurysms: Recurrences More Than 10 Years After Endovascular Treatment—A Prospective Cohort Study, Systematic Review, and Meta-Analysis,” Radiology, 277(1), pp. 173–180. [CrossRef] [PubMed]
Boogaarts, H. D. , van Lieshout, J. H. , van Amerongen, M. J. , de Vries, J. , Verbeek, A. L. , Grotenhuis, J. A. , Westert, G. P. , and Bartels, R. H. , 2015, “ Aneurysm Diameter as a Risk Factor for Pretreatment Rebleeding: A Meta-Analysis,” J. Neurosurg., 122(4), pp. 921–928. [CrossRef] [PubMed]
Roszelle, B. N. , Gonzalez, L. F. , Babiker, M. H. , Ryan, J. , Albuquerque, F. C. , and Frakes, D. H. , 2013, “ Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline,” Neuroradiology, 55(6), pp. 751–758. [CrossRef] [PubMed]
Babiker, M. , Gonzalez, L. F. , Albuquerque, F. , Collins, D. , Elvikis, A. , Zwart, C. , Roszelle, B. , and Frakes, D. H. , 2013, “ An In Vitro Study of Pulsatile Fluid Dynamics in Intracranial Aneurysm Models Treated With Embolic Coils And Flow Diverters,” IEEE Trans. Biomed. Eng., 60(4), pp. 1150–1159. [CrossRef] [PubMed]
Roszelle, B. N. , Nair, P. , Gonzalez, L. F. , Babiker, M. H. , Ryan, J. , and Frakes, D. , 2014, “ Comparison Among Different High Porosity Stent Configurations: Hemodynamic Effects of Treatment in a Large Cerebral Aneurysm,” ASME J. Biomech. Eng., 136(2), p. 021013. [CrossRef]
Marsden, A. L. , and Esmaily-Moghadam, M. , 2015, “ Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support,” ASME Appl. Mech. Rev., 67(3), p. 030804. [CrossRef]
Cebral, J. R. , Castro, M. , Appanaboyina, S. , Putman, C. M. , Millan, D. , and Frangi, A. F. , 2005, “ Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity,” IEEE Trans. Med. Imaging, 24(4), pp. 457–467. [CrossRef] [PubMed]
Valencia, A. , Zarate, A. , Galvez, M. , and Badilla, L. , 2006, “ Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm,” Int. J. Numer. Methods Fluids, 50(6), pp. 751–764. [CrossRef]


Grahic Jump Location
Fig. 1

An anatomical basilar tip aneurysm

Grahic Jump Location
Fig. 2

Two-level full-factorial design including two geometric factors: DS and PV-CA. Numbers outside the parenthesis indicate the model numbers, and the numbers within are the DS (in mm) and PV-CA (in deg).

Grahic Jump Location
Fig. 3

Computational IBTA templates (top) pre- and (bottom) post-treatment with embolic coils

Grahic Jump Location
Fig. 4

WSS distribution in the idealized BTA templates pre- and post-treatment at a 3 ml/s steady inflow rate

Grahic Jump Location
Fig. 5

Effect of increasing DS (change from black to red) on CNF keeping PV-CA constant. The solid and patterned boxes represent changes in untreated and treated aneurysms, respectively.

Grahic Jump Location
Fig. 6

Aneurysmal Vrms calculated in IBTA-1 under steady (solid boxes) and pulsatile (patterned boxes) inflow conditions, before and after treatment with embolic coils

Grahic Jump Location
Fig. 7

Percentage contributions of DS, PV-CA and PD on (a) RMS velocity magnitude, (b) WSS, and (c) CNF

Grahic Jump Location
Fig. 8

Percentage contributions of DS and PV-CA on untreated (solid boxes) and treated (patterned boxes) aneurysmal (a) RMS velocity magnitude, (b) WSS, and (c) CNF

Grahic Jump Location
Fig. 9

CFD to PIV comparison of CNF in untreated (solid boxes) and treated (patterned boxes) IBTA models at a 3 ml/s steady inflow rate

Grahic Jump Location
Fig. 10

CFD (left) and PIV (right) velocity vector distribution plots, color-coded by velocity magnitude, in IBTA-4 at a 3 ml/s steady inflow rate

Grahic Jump Location
Fig. 11

WSS distributions in an anatomical bifurcation aneurysm model, before and after treatment, at a steady inflow rate of 3 ml/s



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In