0
Research Papers

Tissue-Engineering for the Study of Cardiac Biomechanics

[+] Author and Article Information
Stephen P. Ma

Department of Biomedical Engineering,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail: spm2145@columbia.edu

Gordana Vunjak-Novakovic

Department of Biomedical Engineering
and Department of Medicine,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail: gv2131@columbia.edu

1Corresponding author.

Manuscript received November 11, 2015; final manuscript received December 15, 2015; published online January 27, 2016. Editor: Victor H. Barocas.

J Biomech Eng 138(2), 021010 (Jan 27, 2016) (14 pages) Paper No: BIO-15-1576; doi: 10.1115/1.4032355 History: Received November 11, 2015

The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Butler, D. L. , Goldstein, S. A. , Guldberg, R. E. , Guo, X. E. , Kamm, R. , Laurencin, C. T. , McIntire, L. V. , Mow, V. C. , Nerem, R. M. , Sah, R. L. , Soslowsky, L. J. , Spilker, R. L. , and Tranquillo, R. T. , 2009, “ The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine,” Tissue Eng. Part B: Rev., 15(4), pp. 477–484. [CrossRef] [PubMed]
Langer, R. , and Vacanti, J. P. , 1993, “ Tissue Engineering,” Science, 260(5110), pp. 920–926. [CrossRef] [PubMed]
Salameh, A. , Karl, S. , Djilali, H. , Dhein, S. , Janousek, J. , and Daehnert, I. , 2010, “ Opposing and Synergistic Effects of Cyclic Mechanical Stretch and α- or β-Adrenergic Stimulation on the Cardiac Gap Junction Protein Cx43,” Pharmacol. Res., 62(6), pp. 506–513. [CrossRef] [PubMed]
Salameh, A. , Wustmann, A. , Karl, S. , Blanke, K. , Apel, D. , Rojas-Gomez, D. , Franke, H. , Mohr, F. W. , Janousek, J. , and Dhein, S. , 2010, “ Cyclic Mechanical Stretch Induces Cardiomyocyte Orientation and Polarization of the Gap Junction Protein Connexin43,” Circ. Res., 106(10), pp. 1592–1602. [CrossRef] [PubMed]
Jalife, J. , and Zipes, D. P. , 2013, Cardiac Electrophysiology: From Cell to Beside, Saunders, Philadelphia, PA.
Calaghan, S. C. , Belus, A. , and White, E. , 2003, “ Do Stretch-Induced Changes in Intracellular Calcium Modify the Electrical Activity of Cardiac Muscle?,” Prog. Biophys. Mol. Biol., 82(1–3), pp. 81–95. [CrossRef] [PubMed]
Von Lewinski, D. , 2004, “ Functional Relevance of the Stretch-Dependent Slow Force Response in Failing Human Myocardium,” Circ. Res., 94(10), pp. 1392–1398. [CrossRef] [PubMed]
Radisic, M. , Park, H. , Gerecht, S. , Cannizzaro, C. , Langer, R. , and Vunjak-Novakovic, G. , 2007, “ Biomimetic Approach to Cardiac Tissue Engineering,” Philos. Trans. R. Soc. B: Biol. Sci., 362(1484), pp. 1357–1368. [CrossRef]
Engler, A. J. , Rehfeldt, F. , Sen, S. , and Discher, D. E. , 2007, “ Microtissue Elasticity: Measurements by Atomic Force Microscopy and its Influence on Cell Differentiation,” Methods Cell Biol., 83, pp. 521–545. [PubMed]
Engler, A. J. , Sen, S. , Sweeney, H. L. , and Discher, D. E. , 2006, “ Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–689. [CrossRef] [PubMed]
Kim, Y. J. , Sah, R. L. Y. , Grodzinsky, A. J. , Plaas, A. H. K. , and Sandy, J. D. , 1994, “ Mechanical Regulation of Cartilage Biosynthetic Behavior: Physical Stimuli,” Arch. Biochem. Biophys., 311(1), pp. 1–12. [CrossRef] [PubMed]
Mauck, R. L. , Soltz, M. A. , Wang, C. C. , Wong, D. D. , Chao, P. H. , Valhmu, W. B. , Hung, C. T. , and Ateshian, G. A. , 2000, “ Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels,” ASME J. Biomech. Eng., 122(3), pp. 252–260. [CrossRef]
Niklason, L. E. , Gao, J. , Abbott, W. M. , Hirschi, K. K. , Houser, S. , Marini, R. , and Langer, R. , 1999, “ Functional Arteries Grown In Vitro,” Science, 284(5413), pp. 489–493. [CrossRef] [PubMed]
Syedain, Z. H. , Weinberg, J. S. , and Tranquillo, R. T. , 2008, “ Cyclic Distension of Fibrin-Based Tissue Constructs: Evidence of Adaptation During Growth of Engineered Connective Tissue,” Proc. Natl. Acad. Sci. U.S.A., 105(18), pp. 6537–6542. [CrossRef] [PubMed]
Datta, N. , Pham, Q. P. , Sharma, U. , Sikavitsas, V. I. , Jansen, J. A. , and Mikos, A. G. , 2006, “ In Vitro Generated Extracellular Matrix and Fluid Shear Stress Synergistically Enhance 3D Osteoblastic Differentiation,” Proc. Natl. Acad. Sci. U.S.A., 103(8), pp. 2488–2493. [CrossRef] [PubMed]
Opie, L. H. , Commerford, P. J. , Gersh, B. J. , and Pfeffer, M. A. , 2006, “ Controversies in Ventricular Remodelling,” Lancet (London, England), 367(9507), pp. 356–367. [CrossRef] [PubMed]
Pfeffer, J. M. , Pfeffer, M. A. , and Braunwald, E. , 1985, “ Influence of Chronic Captopril Therapy on the Infarcted Left Ventricle of the Rat,” Circ. Res., 57(1), pp. 84–95. [CrossRef] [PubMed]
Grossman, W. , Jones, D. , and McLaurin, L. P. , 1975, “ Wall Stress and Patterns of Hypertrophy in the Human Left Ventricle,” J. Clin. Invest., 56(1), pp. 56–64. [CrossRef] [PubMed]
Zimmermann, W.-H. , 2013, “ Biomechanical Regulation of In Vitro Cardiogenesis for Tissue-Engineered Heart Repair,” Stem Cell Res. Ther., 4(6), p. 137. [CrossRef] [PubMed]
Lilly, L. S. , and School., H. M. , 2011, Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, Wolters Kluwer/Lippincott Williams and Wilkins, Baltimore, MD.
Sciarretta, S. , and Sadoshima, J. , 2010, “ New Insights Into the Molecular Phenotype of Eccentric Hypertrophy,” J. Mol. Cell. Cardiol., 49(2), pp. 153–156. [CrossRef] [PubMed]
Toischer, K. , Rokita, A. G. , Unsold, B. , Zhu, W. , Kararigas, G. , Sossalla, S. , Reuter, S. P. , Becker, A. , Teucher, N. , Seidler, T. , Grebe, C. , Preuss, L. , Gupta, S. N. , Schmidt, K. , Lehnart, S. E. , Kruger, M. , Linke, W. A. , Backs, J. , Regitz-Zagrosek, V. , Schafer, K. , Field, L. J. , Maier, L. S. , and Hasenfuss, G. , 2010, “ Differential Cardiac Remodeling in Preload Versus Afterload,” Circulation, 122(10), pp. 993–1003. [CrossRef] [PubMed]
Russell, B. , Curtis, M. W. , Koshman, Y. E. , and Samarel, A. M. , 2010, “ Mechanical Stress-Induced Sarcomere Assembly for Cardiac Muscle Growth in Length and Width,” J. Mol. Cell. Cardiol., 48(5), pp. 817–823. [CrossRef] [PubMed]
Sabri, A. , Rafiq, K. , Seqqat, R. , Kolpakov, M. A. , Dillon, R. , and Dell'italia, L. J. , 2008, “ Sympathetic Activation Causes Focal Adhesion Signaling Alteration in Early Compensated Volume Overload Attributable to Isolated Mitral Regurgitation in the Dog,” Circ. Res., 102(9), pp. 1127–1136. [CrossRef] [PubMed]
Linke, W. A. , 2008, “ Sense and Stretchability: The Role of Titin and Titin-Associated Proteins in Myocardial Stress-Sensing and Mechanical Dysfunction,” Cardiovasc. Res., 77(4), pp. 637–648. [PubMed]
Frank, D. , Kuhn, C. , Katus, H. A. , and Frey, N. , 2006, “ The Sarcomeric Z-Disc: A Nodal Point in Signalling and Disease,” J. Mol. Med., 84(6), pp. 446–468. [CrossRef] [PubMed]
Knöll, R. , Hoshijima, M. , Hoffman, H. M. , Person, V. , Lorenzen-Schmidt, I. , Bang, M.-L. , Hayashi, T. , Shiga, N. , Yasukawa, H. , Schaper, W. , McKenna, W. , Yokoyama, M. , Schork, N. J. , Omens, J. H. , McCulloch, A. D. , Kimura, A. , Gregorio, C. C. , Poller, W. , Schaper, J. , Schultheiss, H. P. , and Chien, K. R. , 2002, “ The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex That is Defective in a Subset of Human Dilated Cardiomyopathy,” Cell, 111(7), pp. 943–955. [CrossRef] [PubMed]
Sugden, P. H. , 2001, “ Mechanotransduction in Cardiomyocyte Hypertrophy,” Circulation, 103(10), pp. 1375–1377. [CrossRef] [PubMed]
Zou, Y. , Akazawa, H. , Qin, Y. , Sano, M. , Takano, H. , Minamino, T. , Makita, N. , Iwanaga, K. , Zhu, W. , Kudoh, S. , Toko, H. , Tamura, K. , Kihara, M. , Nagai, T. , Fukamizu, A. , Umemura, S. , Iiri, T. , Fujita, T. , and Komuro, I. , 2004, “ Mechanical Stress Activates Angiotensin II Type 1 Receptor Without the Involvement of Angiotensin II,” Nat. Cell Biol., 6(6), pp. 499–506. [CrossRef] [PubMed]
Sadoshima, J. , and Izumo, S. , 1997, “ The Cellular and Molecular Response of Cardiac Myocytes to Mechanical Stress,” Annu. Rev. Physiol., 59(1), pp. 551–71. [CrossRef] [PubMed]
Baines, C. P. , and Molkentin, J. D. , 2005, “ Stress Signaling Pathways That Modulate Cardiac Myocyte Apoptosis,” J. Mol. Cell. Cardiol., 38(1), pp. 47–62. [CrossRef] [PubMed]
Palmieri, E. A. , Benincasa, G. , Di Rella, F. , Casaburi, C. , Monti, M. G. , De Simone, G. , Chiariotti, L. , Palombini, L. , Bruni, C. B. , Saccà, L. , and Cittadini, A. , 2002, “ Differential Expression of TNF-Alpha, IL-6, and IGF-1 by Graded Mechanical Stress in Normal Rat Myocardium,” Am. J. Physiol. Heart Circ. Physiol., 282(3), pp. H926–H934. [CrossRef] [PubMed]
Oral, H. , Sivasubramanian, N. , Dyke, D. B. , Mehta, R. H. , Grossman, P. M. , Briesmiester, K. , Fay, W. P. , Pagani, F. D. , Bolling, S. F. , Mann, D. L. , and Starling, M. R. , 2003, “ Myocardial Proinflammatory Cytokine Expression and Left Ventricular Remodeling in Patients With Chronic Mitral Regurgitation,” Circulation, 107(6), pp. 831–837. [CrossRef] [PubMed]
Nakaoka, Y. , Shioyama, W. , Kunimoto, S. , Arita, Y. , Higuchi, K. , Yamamoto, K. , Fujio, Y. , Nishida, K. , Kuroda, T. , Hirota, H. , Yamauchi-Takihara, K. , Hirano, T. , Komuro, I. , and Mochizuki, N. , 2010, “ SHP2 Mediates gp130-Dependent Cardiomyocyte Hypertrophy Via Negative Regulation of Skeletal Alpha-Actin Gene,” J. Mol. Cell. Cardiol., 49(2), pp. 157–164. [CrossRef] [PubMed]
Levy, D. , 1996, “ The Progression From Hypertension to Congestive Heart Failure,” JAMA J. Am. Med. Assoc., 275(20), pp. 1557–1562. [CrossRef]
Hirt, M. N. , Sörensen, N. A. , Bartholdt, L. M. , Boeddinghaus, J. , Schaaf, S. , Eder, A. , Vollert, I. , Stöhr, A. , Schulze, T. , Witten, A. , Stoll, M. , Hansen, A. , and Eschenhagen, T. , 2012, “ Increased Afterload Induces Pathological Cardiac Hypertrophy: A New In Vitro Model,” Basic Res. Cardiol., 107(6), p. 307. [CrossRef] [PubMed]
Taegtmeyer, H. , Sen, S. , and Vela, D. , 2010, “ Return to the Fetal Gene Program,” Ann. N. Y. Acad. Sci., 1188(1), pp. 191–198. [CrossRef] [PubMed]
Toischer, K. , Kogler, H. , Tenderich, G. , Grebe, C. , Seidler, T. , Van, P. N. , Jung, K. , Knoll, R. , Korfer, R. , and Hasenfuss, G. , 2008, “ Elevated Afterload, Neuroendocrine Stimulation, and Human Heart Failure Increase BNP Levels and Inhibit Preload-Dependent SERCA Upregulation,” Circ. Heart Fail., 1(4), pp. 265–271. [CrossRef] [PubMed]
Kögler, H. , Schott, P. , Toischer, K. , Milting, H. , Van, P. N. , Kohlhaas, M. , Grebe, C. , Kassner, A. , Domeier, E. , Teucher, N. , Seidler, T. , Knöll, R. , Maier, L. S. , El-Banayosy, A. , Körfer, R. , and Hasenfuss, G. , 2006, “ Relevance of Brain Natriuretic Peptide in Preload-Dependent Regulation of Cardiac Sarcoplasmic Reticulum Ca2+ ATPase Expression,” Circulation, 113(23), pp. 2724–2732. [CrossRef] [PubMed]
Sugden, P. H. , and Clerk, A. , 1998, “ Cellular Mechanisms of Cardiac Hypertrophy,” J. Mol. Med. (Berl)., 76(11), pp. 725–746. [CrossRef] [PubMed]
Sopontammarak, S. , Aliharoob, A. , Ocampo, C. , Arcilla, R. A. , Gupta, M. P. , and Gupta, M. , 2005, “ Mitogen-Activated Protein Kinases (p38 and c-Jun NH2-Terminal kinase) are Differentially Regulated During Cardiac Volume and Pressure Overload Hypertrophy,” Cell Biochem. Biophys., 43(1), pp. 61–76. [CrossRef] [PubMed]
Mitchell, G. F. , Lamas, G. A. , Vaughan, D. E. , and Pfeffer, M. A. , 1992, “ Left Ventricular Remodeling in the Year After First Anterior Myocardial Infarction: A Quantitative Analysis of Contractile Segment Lengths and Ventricular Shape,” J. Am. Coll. Cardiol., 19(6), pp. 1136–1144. [CrossRef] [PubMed]
Bradham, W. S. , Bozkurt, B. , Gunasinghe, H. , Mann, D. , and Spinale, F. G. , 2002, “ Tumor Necrosis Factor-Alpha and Myocardial Remodeling in Progression of Heart Failure: A Current Perspective,” Cardiovasc. Res., 53(4), pp. 822–830. [CrossRef] [PubMed]
Antonini-Canterin, F. , Huang, G. , Cervesato, E. , Faggiano, P. , Pavan, D. , Piazza, R. , and Nicolosi, G. L. , 2003, “ Symptomatic Aortic Stenosis: Does Systemic Hypertension Play an Additional Role?,” Hypertension, 41(6), pp. 1268–1272. [CrossRef] [PubMed]
Van Heerebeek, L. , 2006, “ Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure,” Circulation, 113(16), pp. 1966–1973. [CrossRef] [PubMed]
Borlaug, B. A. , 2013, “ Heart Failure With Preserved and Reduced Ejection Fraction: Different Risk Profiles for Different Diseases,” Eur. Heart J., 34(19), pp. 1393–1395. [CrossRef] [PubMed]
Udelson, J. E. , 2011, “ Heart Failure With Preserved Ejection Fraction,” Circulation, 124(21), pp. e540–e543. [CrossRef] [PubMed]
Middlekauff, H. R. , and Mark, A. L. , 1998, “ The Treatment of Heart Failure: The Role of Neurohumoral Activation,” Intern. Med., 37(2), pp. 112–122. [CrossRef] [PubMed]
Trevett, T. N. , and Cotton, J. , 2004, “ Idiopathic Constriction of the Fetal Ductus Arteriosus,” Ultrasound Obstet. Gynecol., 23(5), pp. 517–519. [CrossRef] [PubMed]
Eschenhagen, T. , Fink, C. , Remmers, U. , Scholz, H. , Wattchow, J. , Weil, J. , Zimmermann, W. , Dohmen, H. H. , Schäfer, H. , Bishopric, N. , Wakatsuki, T. , and Elson, E. L. , 1997, “ Three-Dimensional Reconstitution of Embryonic Cardiomyocytes in a Collagen Matrix: A New Heart Muscle Model System,” FASEB J., 11(8), pp. 683–694. [PubMed]
Zimmermann, W.-H. , Melnychenko, I. , Wasmeier, G. , Didié, M. , Naito, H. , Nixdorff, U. , Hess, A. , Budinsky, L. , Brune, K. , Michaelis, B. , Dhein, S. , Schwoerer, A. , Ehmke, H. , and Eschenhagen, T. , 2006, “ Engineered Heart Tissue Grafts Improve Systolic and Diastolic Function in Infarcted Rat Hearts,” Nat. Med., 12(4), pp. 452–458. [CrossRef] [PubMed]
Boudou, T. , Legant, W. R. , Mu, A. , Borochin, M. A. , Thavandiran, N. , Radisic, M. , Zandstra, P. W. , Epstein, J. A. , Margulies, K. B. , and Chen, C. S. , 2012, “ A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues,” Tissue Eng. Part A, 18(9–10), pp. 910–919. [CrossRef] [PubMed]
Legant, W. R. , Pathak, A. , Yang, M. T. , Deshpande, V. S. , McMeeking, R. M. , and Chen, C. S. , 2009, “ Microfabricated Tissue Gauges to Measure and Manipulate Forces From 3D Microtissues,” Proc. Natl. Acad. Sci. U.S.A., 106(25), pp. 10097–10102. [CrossRef] [PubMed]
Schaaf, S. , Shibamiya, A. , Mewe, M. , Eder, A. , Stöhr, A. , Hirt, M. N. , Rau, T. , Zimmermann, W.-H. , Conradi, L. , Eschenhagen, T. , and Hansen, A. , 2011, “ Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology,” PLoS One, 6(10), p. e26397. [CrossRef] [PubMed]
Zimmermann, W.-H. , Schneiderbanger, K. , Schubert, P. , Didié, M. , Münzel, F. , Heubach, J. F. , Kostin, S. , Neuhuber, W. L. , and Eschenhagen, T. , 2002, “ Tissue Engineering of a Differentiated Cardiac Muscle Construct,” Circ. Res., 90(2), pp. 223–230. [CrossRef] [PubMed]
Tulloch, N. L. , Muskheli, V. , Razumova, M. V. , Korte, F. S. , Regnier, M. , Hauch, K. D. , Pabon, L. , Reinecke, H. , and Murry, C. E. , 2011, “ Growth of Engineered Human Myocardium With Mechanical Loading and Vascular Coculture,” Circ. Res., 109(1), pp. 47–59. [CrossRef] [PubMed]
Kensah, G. , Gruh, I. , Viering, J. , Schumann, H. , Dahlmann, J. , Meyer, H. , Skvorc, D. , Bär, A. , Akhyari, P. , Heisterkamp, A. , Haverich, A. , and Martin, U. , 2011, “ A Novel Miniaturized Multimodal Bioreactor for Continuous In Situ Assessment of Bioartificial Cardiac Tissue During Stimulation and Maturation,” Tissue Eng. Part C: Methods, 17(4), pp. 463–473. [CrossRef] [PubMed]
Fink, C. , Ergun, S. , Kralisch, D. , Remmers, U. , Weil, J. , and Eschenhagen, T. , 2000, “ Chronic Stretch of Engineered Heart Tissue Induces Hypertrophy and Functional Improvement,” FASEB J., 14(5), pp. 669–679. [PubMed]
Akhyari, P. , Fedak, P. W. M. , Weisel, R. D. , Lee, T.-Y. J. , Verma, S. , Mickle, D. A. G. , and Li, R.-K. , 2002, “ Mechanical Stretch Regimen Enhances the Formation of Bioengineered Autologous Cardiac Muscle Grafts,” Circulation, 106(12 Suppl. 1), pp. I137–I142. [PubMed]
Zhang, S. J. , Truskey, G. A. , and Kraus, W. E. , 2007, “ Effect of Cyclic Stretch on Beta1D-Integrin Expression and Activation of FAK and RhoA,” Am. J. Physiol. Cell Physiol., 292(6), pp. C2057–C2069. [CrossRef] [PubMed]
Lauriol, J. , Keith, K. , Jaffre, F. , Couvillon, A. , Saci, A. , Goonasekera, S. A. , McCarthy, J. R. , Kessinger, C. W. , Wang, J. , Ke, Q. , Kang, P. M. , Molkentin, J. D. , Carpenter, C. , and Kontaridis, M. I. , 2014, “ RhoA Signaling in Cardiomyocytes Protects Against Stress-Induced Heart Failure But Facilitates Cardiac Fibrosis,” Sci. Signal., 7(348), p. ra100. [CrossRef] [PubMed]
Kensah, G. , Roa Lara, A. , Dahlmann, J. , Zweigerdt, R. , Schwanke, K. , Hegermann, J. , Skvorc, D. , Gawol, A. , Azizian, A. , Wagner, S. , Maier, L. S. , Krause, A. , Dräger, G. , Ochs, M. , Haverich, A. , Gruh, I. , and Martin, U. , 2013, “ Murine and Human Pluripotent Stem Cell-Derived Cardiac Bodies Form Contractile Myocardial Tissue In Vitro,” Eur. Heart J., 34(15), pp. 1134–1146. [CrossRef] [PubMed]
Radisic, M. , Park, H. , Shing, H. , Consi, T. , Schoen, F. J. , Langer, R. , Freed, L. E. , and Vunjak-Novakovic, G. , 2004, “ Functional Assembly of Engineered Myocardium by Electrical Stimulation of Cardiac Myocytes Cultured on Scaffolds,” Proc. Natl. Acad. Sci. U.S.A., 101(52), pp. 18129–18134. [CrossRef] [PubMed]
Lasher, R. A. , Pahnke, A. Q. , Johnson, J. M. , Sachse, F. B. , and Hitchcock, R. W. , 2012, “ Electrical Stimulation Directs Engineered Cardiac Tissue to an Age-Matched Native Phenotype,” J. Tissue Eng., 3(1), p. 2041731412455354. [CrossRef] [PubMed]
Llucià-Valldeperas, A. , Sanchez, B. , Soler-Botija, C. , Gálvez-Montón, C. , Prat-Vidal, C. , Roura, S. , Rosell-Ferrer, J. , Bragos, R. , and Bayes-Genis, A. , 2013, “ Electrical Stimulation of Cardiac Adipose Tissue-Derived Progenitor Cells Modulates Cell Phenotype and Genetic Machinery,” J. Tissue Eng. Regener. Med., 9(11), pp. E76–E83.
Nunes, S. S. , Miklas, J. W. , Liu, J. , Aschar-Sobbi, R. , Xiao, Y. , Zhang, B. , Jiang, J. , Massé, S. , Gagliardi, M. , Hsieh, A. , Thavandiran, N. , Laflamme, M. A. , Nanthakumar, K. , Gross, G. J. , Backx, P. H. , Keller, G. , and Radisic, M. , 2013, “ Biowire: A Platform for Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Nat. Methods, 10(8), pp. 781–787. [CrossRef] [PubMed]
Miklas, J. W. , Nunes, S. S. , Sofla, A. , Reis, L. A. , Pahnke, A. , Xiao, Y. , Laschinger, C. , and Radisic, M. , 2014, “ Bioreactor for Modulation of Cardiac Microtissue Phenotype by Combined Static Stretch and Electrical Stimulation,” Biofabrication, 6(2), p. 024113. [CrossRef] [PubMed]
Wang, B. , Wang, G. , To, F. , Butler, J. R. , Claude, A. , McLaughlin, R. M. , Williams, L. N. , de Jongh Curry, A. L. , and Liao, J. , 2013, “ Myocardial Scaffold-Based Cardiac Tissue Engineering: Application of Coordinated Mechanical and Electrical Stimulations,” Langmuir, 29(35), pp. 11109–11117. [CrossRef] [PubMed]
Morgan, K. Y. , and Black, L. D. , 2014, “ Mimicking Isovolumic Contraction With Combined Electromechanical Stimulation Improves the Development of Engineered Cardiac Constructs,” Tissue Eng. Part A, 20(11–12), pp. 1654–1667. [CrossRef] [PubMed]
Yamamoto, K. , Dang, Q. N. , Maeda, Y. , Huang, H. , Kelly, R. A. , and Lee, R. T. , 2001, “ Regulation of Cardiomyocyte Mechanotransduction by the Cardiac Cycle,” Circulation, 103(10), pp. 1459–1464. [CrossRef] [PubMed]
Godier-Furnémont, A. F. G. , Tiburcy, M. , Wagner, E. , Dewenter, M. , Lämmle, S. , El-Armouche, A. , Lehnart, S. E. , Vunjak-Novakovic, G. , and Zimmermann, W.-H. , 2015, “ Physiologic Force-Frequency Response in Engineered Heart Muscle by Electromechanical Stimulation,” Biomaterials, 60, pp. 82–91. [CrossRef] [PubMed]
Senyo, S. E. , Koshman, Y. E. , and Russell, B. , 2007, “ Stimulus Interval, Rate and Direction Differentially Regulate Phosphorylation for Mechanotransduction in Neonatal Cardiac Myocytes,” FEBS Lett., 581(22), pp. 4241–4247. [CrossRef] [PubMed]
Shimko, V. F. , and Claycomb, W. C. , 2008, “ Effect of Mechanical Loading on Three-Dimensional Cultures of Embryonic Stem Cell-Derived Cardiomyocytes,” Tissue Eng. Part A, 14(1), pp. 49–58. [CrossRef] [PubMed]
Frank, D. , Kuhn, C. , Brors, B. , Hanselmann, C. , Lüdde, M. , Katus, H. A. , and Frey, N. , 2008, “ Gene Expression Pattern in Biomechanically Stretched Cardiomyocytes: Evidence for a Stretch-Specific Gene Program,” Hypertension, 51(2), pp. 309–318. [CrossRef] [PubMed]
Lee, A. A. , Delhaas, T. , Waldman, L. K. , MacKenna, D. A. , Villarreal, F. J. , and McCulloch, A. D. , 1996, “ An Equibiaxial Strain System for Cultured Cells,” Am. J. Physiol.: Cell Physiol., 271(4 Pt. 1), pp. C1400–C1408.
Malhotra, R. , Sadoshima, J. , Brosius, F. C. , and Izumo, S. , 1999, “ Mechanical Stretch and Angiotensin II Differentially Upregulate the Renin-Angiotensin System in Cardiac Myocytes In Vitro,” Circ. Res., 85(2), pp. 137–146. [CrossRef] [PubMed]
Mansour, H. , de Tombe, P. P. , Samarel, A. M. , and Russell, B. , 2004, “ Restoration of Resting Sarcomere Length After Uniaxial Static Strain is Regulated by Protein Kinase Cepsilon and Focal Adhesion Kinase,” Circ. Res., 94(5), pp. 642–649. [CrossRef] [PubMed]
Ertl, G. , and Bauersachs, J. , 2004, “ Endothelin Receptor Antagonists in Heart Failure: Current Status and Future Directions,” Drugs, 64(10), pp. 1029–1040. [CrossRef] [PubMed]
Sakai, S. , Miyauchi, T. , Kobayashi, M. , Yamaguchi, I. , Goto, K. , and Sugishita, Y. , 1996, “ Inhibition of Myocardial Endothelin Pathway Improves Long-Term Survival in Heart Failure,” Nature, 384(6607), pp. 353–355. [CrossRef] [PubMed]
Guo, Y. , Zhang, X. , Wei, Y. , Guo, C. , Li, R. , Zeng, Q. , and Zhang, Y. , 2009, “ Culturing of Ventricle Cells at High Density and Construction of Engineered Cardiac Cell Sheets Without Scaffold,” Int. Heart J., 50(5), pp. 653–662. [CrossRef] [PubMed]
Xin, M. , Olson, E. N. , and Bassel-Duby, R. , 2013, “ Mending Broken Hearts: Cardiac Development as a Basis for Adult Heart Regeneration and Repair,” Nat. Rev. Mol. Cell Biol., 14(8), pp. 529–541. [CrossRef] [PubMed]
Brutsaert, D. L. , 2003, “ Cardiac Endothelial-Myocardial Signaling: Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity,” Physiol. Rev., 83(1), pp. 59–115. [CrossRef] [PubMed]
Zhang, D. , Shadrin, I. Y. , Lam, J. , Xian, H.-Q. , Snodgrass, H. R. , and Bursac, N. , 2013, “ Tissue-Engineered Cardiac Patch for Advanced Functional Maturation of Human ESC-Derived Cardiomyocytes,” Biomaterials, 34(23), pp. 5813–5820. [CrossRef] [PubMed]
Steendjik, P. , Tulner, S. A. F. , Wiemer, M. , Bleasdale, R. A. , Bax, J. J. , van der Wall, E. e. , Vogt, J. , and Schalij, M. J. , 2004, “ Pressure-Volume Measurements by Conductance Catheter During Cardiac Resynchronization Therapy,” Eur. Heart J. Suppl., 6(Suppl. D), pp. D35–D42. [CrossRef]
Schmitt, B. , Steendijk, P. , Lunze, K. , Ovroutski, S. , Falkenberg, J. , Rahmanzadeh, P. , Maarouf, N. , Ewert, P. , Berger, F. , and Kuehne, T. , 2009, “ Integrated Assessment of Diastolic and Systolic Ventricular Function Using Diagnostic Cardiac Magnetic Resonance Catheterization: Validation in Pigs and Application in a Clinical Pilot Study,” JACC Cardiovasc. Imaging, 2(11), pp. 1271–1281. [CrossRef] [PubMed]
Brands, P. J. , Hoeks, A. P. G. , Rutten, M. C. M. , and Reneman, R. S. , 1996, “ A Noninvasive Method to Estimate Arterial Impedance by Means of Assessment of Local Diameter Change and the Local Center-Line Blood Flow Velocity Using Ultrasound,” Ultrasound Med. Biol., 22(7), pp. 895–905. [CrossRef] [PubMed]
Pfeffer, M. A. , Pfeffer, J. M. , Fishbein, M. C. , Fletcher, P. J. , Spadaro, J. , Kloner, R. A. , and Braunwald, E. , 1979, “ Myocardial Infarct Size and Ventricular Function in Rats,” Circ. Res., 44(4), pp. 503–512. [CrossRef] [PubMed]
Fletcher, P. J. , Pfeffer, J. M. , Pfeffer, M. A. , and Braunwald, E. , 1981, “ Left Ventricular Diastolic Pressure-Volume Relations in Rats With Healed Myocardial Infarction. Effects on Systolic Function,” Circ. Res., 49(3), pp. 618–626. [CrossRef] [PubMed]
Pfeffer, M. A. , Pfeffer, J. M. , Steinberg, C. , and Finn, P. , 1985, “ Survival After an Experimental Myocardial Infarction: Beneficial Effects of Long-Term Therapy With Captopril,” Circulation, 72(2), pp. 406–412. [CrossRef] [PubMed]
Pfeffer, M. A. , Braunwald, E. , Moyé, L. A. , Basta, L. , Brown, E. J. , Cuddy, T. E. , Davis, B. R. , Geltman, E. M. , Goldman, S. , and Flaker, G. C. , 1992, “ Effect of Captopril on Mortality and Morbidity in Patients With Left Ventricular Dysfunction After Myocardial Infarction. Results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators,” N. Engl. J. Med., 327(10), pp. 669–677. [CrossRef] [PubMed]
St. John Sutton, M. , Pfeffer, M. A. , Plappert, T. , Rouleau, J. L. , Moye, L. A. , Dagenais, G. R. , Lamas, G. A. , Klein, M. , Sussex, B. , and Goldman, S. , 1994, “ Quantitative Two-Dimensional Echocardiographic Measurements are Major Predictors of Adverse Cardiovascular Events After Acute Myocardial Infarction. The Protective Effects of Captopril,” Circulation, 89(1), pp. 68–75. [CrossRef] [PubMed]
Packer, M. , McMurray, J. , Massie, B. M. , Caspi, A. , Charlon, V. , Cohen-Solal, A. , Kiowski, W. , Kostuk, W. , Krum, H. , Levine, B. , Rizzon, P. , Soler, J. , Swedberg, K. , Anderson, S. , and Demets, D. L. , 2005, “ Clinical Effects of Endothelin Receptor Antagonism With Bosentan in Patients With Severe Chronic Heart Failure: Results of a Pilot Study,” J. Cardiol. Fail., 11(1), pp. 12–20. [CrossRef]
Handoko, M. L. , de Man, F. S. , and Vonk-Noordegraaf, A. , 2011, “ The Rise and Fall of Endothelin Receptor Antagonists in Congestive Heart Failure,” Eur. Respir. J., 37(3), pp. 484–485. [CrossRef] [PubMed]
Rockman, H. A. , Ross, R. S. , Harris, A. N. , Knowlton, K. U. , Steinhelper, M. E. , Field, L. J. , Ross, J. , and Chien, K. R. , 1991, “ Segregation of Atrial-Specific and Inducible Expression of an Atrial Natriuretic Factor Transgene in an In Vivo Murine Model of Cardiac Hypertrophy,” Proc. Natl. Acad. Sci. U.S.A., 88(18), pp. 8277–8281. [CrossRef] [PubMed]
deAlmeida, A. C. , van Oort, R. J. , and Wehrens, X. H. T. , 2010, “ Transverse Aortic Constriction in Mice,” J. Visualized Exp., 38, epub.
Mohammed, S. F. , Storlie, J. R. , Oehler, E. A. , Bowen, L. A. , Korinek, J. , Lam, C. S. P. , Simari, R. D. , Burnett, J. C. , and Redfield, M. M. , “ Variable Phenotype in Murine Transverse Aortic Constriction,” Cardiovasc. Pathol., 21(3), pp. 188–198. [CrossRef] [PubMed]
Barrick, C. J. , Rojas, M. , Schoonhoven, R. , Smyth, S. S. , and Threadgill, D. W. , 2007, “ Cardiac Response to Pressure Overload in 129S1/SvImJ and C57BL/6J Mice: Temporal- and Background-Dependent Development of Concentric Left Ventricular Hypertrophy,” Am. J. Physiol. Heart Circ. Physiol., 292(5), pp. H2119–H2130. [CrossRef] [PubMed]
Weinberg, E. O. , Schoen, F. J. , George, D. , Kagaya, Y. , Douglas, P. S. , Litwin, S. E. , Schunkert, H. , Benedict, C. R. , and Lorell, B. H. , 1994, “ Angiotensin-Converting Enzyme Inhibition Prolongs Survival and Modifies the Transition to Heart Failure in Rats With Pressure Overload Hypertrophy Due to Ascending Aortic Stenosis,” Circulation, 90(3), pp. 1410–1422. [CrossRef] [PubMed]
Patten, R. D. , and Hall-Porter, M. R. , 2009, “ Small Animal Models of Heart Failure: Development of Novel Therapies, Past and Present,” Circ. Heart Fail., 2(2), pp. 138–144. [CrossRef] [PubMed]
Toischer, K. , Kochhäuser, S. , Nguyen van, P. , Leineweber, K. , Hasenfuss, G. , and Kögler, H. , 2012, “ Mechanical Load-Dependent Cardiac ER Stress In Vitro and In Vivo: Effects of Preload and Afterload,” FEBS Lett., 586(9), pp. 1363–1369. [CrossRef] [PubMed]
Takahashi, K. , Tanabe, K. , Ohnuki, M. , Narita, M. , Ichisaka, T. , Tomoda, K. , and Yamanaka, S. , 2007, “ Induction of Pluripotent Stem Cells From Adult Human Fibroblasts by Defined Factors,” Cell, 131(5), pp. 861–872. [CrossRef] [PubMed]
Yu, J. , Vodyanik, M. A. , Smuga-Otto, K. , Antosiewicz-Bourget, J. , Frane, J. L. , Tian, S. , Nie, J. , Jonsdottir, G. A. , Ruotti, V. , Stewart, R. , Slukvin, I. I. , and Thomson, J. A. , 2007, “ Induced Pluripotent Stem Cell Lines Derived From Human Somatic Cells,” Science, 318(5858), pp. 1917–1920. [CrossRef] [PubMed]
Dimos, J. T. , Rodolfa, K. T. , Niakan, K. K. , Weisenthal, L. M. , Mitsumoto, H. , Chung, W. , Croft, G. F. , Saphier, G. , Leibel, R. , Goland, R. , Wichterle, H. , Henderson, C. E. , and Eggan, K. , 2008, “ Induced Pluripotent Stem Cells Generated From Patients With ALS Can be Differentiated Into Motor Neurons,” Science, 321(5893), pp. 1218–1221. [CrossRef] [PubMed]
Park, I.-H. , Arora, N. , Huo, H. , Maherali, N. , Ahfeldt, T. , Shimamura, A. , Lensch, M. W. , Cowan, C. , Hochedlinger, K. , and Daley, G. Q. , 2008, “ Disease-Specific Induced Pluripotent Stem Cells,” Cell, 134(5), pp. 877–886. [CrossRef] [PubMed]
Zhang, J. , Wilson, G. F. , Soerens, A. G. , Koonce, C. H. , Yu, J. , Palecek, S. P. , Thomson, J. A. , and Kamp, T. J. , 2009, “ Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells,” Circ. Res., 104(4), pp. e30–e41. [CrossRef] [PubMed]
Zwi, L. , Caspi, O. , Arbel, G. , Huber, I. , Gepstein, A. , Park, I.-H. , and Gepstein, L. , 2009, “ Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells,” Circulation, 120(15), pp. 1513–1523. [CrossRef] [PubMed]
Burridge, P. W. , Matsa, E. , Shukla, P. , Lin, Z. C. , Churko, J. M. , Ebert, A. D. , Lan, F. , Diecke, S. , Huber, B. , Mordwinkin, N. M. , Plews, J. R. , Abilez, O. J. , Cui, B. , Gold, J. D. , and Wu, J. C. , 2014, “ Chemically Defined Generation of Human Cardiomyocytes,” Nat. Methods, 11(8), pp. 855–860. [CrossRef] [PubMed]
Burridge, P. W. , Holmström, A. , and Wu, J. C. , 2015, “ Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells,” Curr. Protoc. Hum. Genet., 87, pp. 21.3.1–21.3.15.
Moretti, A. , Bellin, M. , Welling, A. , Jung, C. B. , Lam, J. T. , Bott-Flügel, L. , Dorn, T. , Goedel, A. , Höhnke, C. , Hofmann, F. , Seyfarth, M. , Sinnecker, D. , Schömig, A. , and Laugwitz, K.-L. , 2010, “ Patient-Specific Induced Pluripotent Stem-Cell Models for Long-QT Syndrome,” N. Engl. J. Med., 363(15), pp. 1397–1409. [CrossRef] [PubMed]
Carvajal-Vergara, X. , Sevilla, A. , D'Souza, S. L. , Ang, Y.-S. , Schaniel, C. , Lee, D.-F. , Yang, L. , Kaplan, A. D. , Adler, E. D. , Rozov, R. , Ge, Y. , Cohen, N. , Edelmann, L. J. , Chang, B. , Waghray, A. , Su, J. , Pardo, S. , Lichtenbelt, K. D. , Tartaglia, M. , Gelb, B. D. , and Lemischka, I. R. , 2010, “ Patient-Specific Induced Pluripotent Stem-Cell-Derived Models of LEOPARD Syndrome,” Nature, 465(7299), pp. 808–812. [CrossRef] [PubMed]
Itzhaki, I. , Maizels, L. , Huber, I. , Zwi-Dantsis, L. , Caspi, O. , Winterstern, A. , Feldman, O. , Gepstein, A. , Arbel, G. , Hammerman, H. , Boulos, M. , and Gepstein, L. , 2011, “ Modelling the Long QT Syndrome With Induced Pluripotent Stem Cells,” Nature, 471(7337), pp. 225–229. [CrossRef] [PubMed]
Yazawa, M. , Hsueh, B. , Jia, X. , Pasca, A. M. , Bernstein, J. A. , Hallmayer, J. , and Dolmetsch, R. E. , 2011, “ Using Induced Pluripotent Stem Cells to Investigate Cardiac Phenotypes in Timothy Syndrome,” Nature, 471(7337), pp. 230–234. [CrossRef] [PubMed]
Eschenhagen, T. , Mummery, C. , and Knollmann, B. C. , 2015, “ Modelling Sarcomeric Cardiomyopathies in the Dish: From Human Heart Samples to iPSC Cardiomyocytes,” Cardiovasc. Res., 105(4), pp. 424–438. [CrossRef] [PubMed]
Xue, H. , Wu, J. , Li, S. , Rao, M. S. , and Liu, Y. , 2016, “ Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System,” Methods Mol. Biol., 1307, pp. 173–190. [PubMed]
Mali, P. , Yang, L. , Esvelt, K. M. , Aach, J. , Guell, M. , DiCarlo, J. E. , Norville, J. E. , and Church, G. M. , 2013, “ RNA-Guided Human Genome Engineering Via Cas9,” Science, 339(6121), pp. 823–826. [CrossRef] [PubMed]
Cong, L. , Ran, F. A. , Cox, D. , Lin, S. , Barretto, R. , Habib, N. , Hsu, P. D. , Wu, X. , Jiang, W. , Marraffini, L. A. , and Zhang, F. , 2013, “ Multiplex Genome Engineering Using CRISPR/Cas Systems,” Science, 339(6121), pp. 819–823. [CrossRef] [PubMed]
Jinek, M. , East, A. , Cheng, A. , Lin, S. , Ma, E. , and Doudna, J. , 2013, “ RNA-Programmed Genome Editing in Human Cells,” Elife, 2, p. e00471. [CrossRef]
Cho, S. W. , Kim, S. , Kim, J. M. , and Kim, J.-S. , 2013, “ Targeted Genome Engineering in Human Cells With the Cas9 RNA-Guided Endonuclease,” Nat. Biotechnol., 31(3), pp. 230–232. [CrossRef] [PubMed]
Herman, D. S. , Lam, L. , Taylor, M. R. G. , Wang, L. , Teekakirikul, P. , Christodoulou, D. , Conner, L. , DePalma, S. R. , McDonough, B. , Sparks, E. , Teodorescu, D. L. , Cirino, A. L. , Banner, N. R. , Pennell, D. J. , Graw, S. , Merlo, M. , Di Lenarda, A. , Sinagra, G. , Bos, J. M. , Ackerman, M. J. , Mitchell, R. N. , Murry, C. E. , Lakdawala, N. K. , Ho, C. Y. , Barton, P. J. R. , Cook, S. A. , Mestroni, L. , Seidman, J. G. , and Seidman, C. E. , 2012, “ Truncations of Titin Causing Dilated Cardiomyopathy,” N. Engl. J. Med., 366(7), pp. 619–628. [CrossRef] [PubMed]
Hinson, J. T. , Chopra, A. , Nafissi, N. , Polacheck, W. J. , Benson, C. C. , Swist, S. , Gorham, J. , Yang, L. , Schafer, S. , Sheng, C. C. , Haghighi, A. , Homsy, J. , Hubner, N. , Church, G. , Cook, S. A. , Linke, W. A. , Chen, C. S. , Seidman, J. G. , and Seidman, C. E. , 2015, “ Titin Mutations in iPS Cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy,” Science, 349(6251), pp. 982–986. [CrossRef] [PubMed]
Lasser, K. E. , 2002, “ Timing of New Black Box Warnings and Withdrawals for Prescription Medications,” JAMA, 287(17), pp. 2215–2220. [CrossRef] [PubMed]
Fung, M. , Thornton, A. , Mybeck, K. , Wu, J. H.-H. , Hornbuckle, K. , and Muniz, E. , 2001, “ Evaluation of the Characteristics of Safety Withdrawal of Prescription Drugs From Worldwide Pharmaceutical Markets-1960 to 1999,” Ther. Innov. Regul. Sci., 35(1), pp. 293–317. [CrossRef]
EMA, 2008, “Guideline on Repeated Dose Toxicity,” European Medicines Agency, London.
ICH, 2005, “The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals,” International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Safety Guideline S7B.
Mandenius, C.-F. , Steel, D. , Noor, F. , Meyer, T. , Heinzle, E. , Asp, J. , Arain, S. , Kraushaar, U. , Bremer, S. , Class, R. , and Sartipy, P. , 2011, “ Cardiotoxicity Testing Using Pluripotent Stem Cell-Derived Human Cardiomyocytes and State-of-the-Art Bioanalytics: A Review,” J. Appl. Toxicol., 31(3), pp. 191–205. [CrossRef] [PubMed]
Vunjak-Novakovic, G. , Bhatia, S. , Chen, C. , and Hirschi, K. , 2013, “ HeLiVa Platform: Integrated Heart-Liver-Vascular Systems for Drug Testing in Human Health and Disease,” Stem Cell Res. Ther., 4(Suppl. 1), p. S8. [CrossRef] [PubMed]
Lan, F. , Lee, A. S. , Liang, P. , Sanchez-Freire, V. , Nguyen, P. K. , Wang, L. , Han, L. , Yen, M. , Wang, Y. , Sun, N. , Abilez, O. J. , Hu, S. , Ebert, A. D. , Navarrete, E. G. , Simmons, C. S. , Wheeler, M. , Pruitt, B. , Lewis, R. , Yamaguchi, Y. , Ashley, E. A. , Bers, D. M. , Robbins, R. C. , Longaker, M. T. , and Wu, J. C. , 2013, “ Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells,” Cell Stem Cell, 12(1), pp. 101–113. [CrossRef] [PubMed]
Liang, P. , Lan, F. , Lee, A. S. , Gong, T. , Sanchez-Freire, V. , Wang, Y. , Diecke, S. , Sallam, K. , Knowles, J. W. , Wang, P. J. , Nguyen, P. K. , Bers, D. M. , Robbins, R. C. , and Wu, J. C. , 2013, “ Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity,” Circulation, 127(16), pp. 1677–1691. [CrossRef] [PubMed]
Sun, N. , Yazawa, M. , Liu, J. , Han, L. , Sanchez-Freire, V. , Abilez, O. J. , Navarrete, E. G. , Hu, S. , Wang, L. , Lee, A. , Pavlovic, A. , Lin, S. , Chen, R. , Hajjar, R. J. , Snyder, M. P. , Dolmetsch, R. E. , Butte, M. J. , Ashley, E. A. , Longaker, M. T. , Robbins, R. C. , and Wu, J. C. , 2012, “ Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy,” Sci. Transl. Med., 4(130), p. 130ra47. [CrossRef] [PubMed]
Spirito, P. , Seidman, C. E. , McKenna, W. J. , and Maron, B. J. , 1997, “ The Management of Hypertrophic Cardiomyopathy,” N. Engl. J. Med., 336(11), pp. 775–785. [CrossRef] [PubMed]
Watkins, H. , Seidman, C. E. , Seidman, J. G. , Feng, H. S. , and Sweeney, H. L. , 1996, “ Expression and Functional Assessment of a Truncated Cardiac Troponin T That Causes Hypertrophic Cardiomyopathy. Evidence for a Dominant Negative Action,” J. Clin. Invest., 98(11), pp. 2456–2461. [CrossRef] [PubMed]
Olson, T. M. , Michels, V. V. , Thibodeau, S. N. , Tai, Y. S. , and Keating, M. T. , 1998, “ Actin Mutations in Dilated Cardiomyopathy, A Heritable Form of Heart Failure,” Science, 280(5364), pp. 750–752. [CrossRef] [PubMed]
Acker, M. A. , Bolling, S. , Shemin, R. , Kirklin, J. , Oh, J. K. , Mann, D. L. , Jessup, M. , Sabbah, H. N. , Starling, R. C. , and Kubo, S. H. , 2006, “ Mitral Valve Surgery in Heart Failure: Insights From the Acorn Clinical Trial,” J. Thorac. Cardiovasc. Surg., 132(3), pp. 568–577. [CrossRef] [PubMed]
Mann, D. L. , Kubo, S. H. , Sabbah, H. N. , Starling, R. C. , Jessup, M. , Oh, J. K. , and Acker, M. A. , 2012, “ Beneficial Effects of the CorCap Cardiac Support Device: Five-Year Results From the Acorn Trial,” J. Thorac. Cardiovasc. Surg., 143(5), pp. 1036–1042. [CrossRef] [PubMed]
Cheng, A. , Nguyen, T. C. , Malinowski, M. , Langer, F. , Liang, D. , Daughters, G. T. , Ingels, N. B. , and Miller, D. C. , 2006, “ Passive Ventricular Constraint Prevents Transmural Shear Strain Progression in Left Ventricle Remodeling,” Circulation, 114(1 Suppl.), pp. I79–I86. [PubMed]
Blom, A. S. , Mukherjee, R. , Pilla, J. J. , Lowry, A. S. , Yarbrough, W. M. , Mingoia, J. T. , Hendrick, J. W. , Stroud, R. E. , McLean, J. E. , Affuso, J. , Gorman, R. C. , Gorman, J. H. , Acker, M. A. , and Spinale, F. G. , 2005, “ Cardiac Support Device Modifies Left Ventricular Geometry and Myocardial Structure After Myocardial Infarction,” Circulation, 112(9), pp. 1274–1283. [CrossRef] [PubMed]
Chang, Y. , Lai, P.-H. , Wei, H.-J. , Lin, W.-W. , Chen, C.-H. , Hwang, S.-M. , Chen, S.-C. , and Sung, H.-W. , 2007, “ Tissue Regeneration Observed in a Basic Fibroblast Growth Factor-Loaded Porous Acellular Bovine Pericardium Populated With Mesenchymal Stem Cells,” J. Thorac. Cardiovasc. Surg., 134(1), pp. 65–73. [CrossRef] [PubMed]
Freytes, D. O. , Santambrogio, L. , and Vunjak-Novakovic, G. , 2012, “ Optimizing Dynamic Interactions Between a Cardiac Patch and Inflammatory Host Cells,” Cells Tissues Organs, 195(1–2), pp. 171–182. [CrossRef] [PubMed]
Godier-Furnémont, A. F. G. , Tekabe, Y. , Kollaros, M. , Eng, G. , Morales, A. , Vunjak-Novakovic, G. , and Johnson, L. L. , 2013, “ Noninvasive Imaging of Myocyte Apoptosis Following Application of a Stem Cell-Engineered Delivery Platform to Acutely Infarcted Myocardium,” J. Nucl. Med., 54(6), pp. 977–983. [CrossRef] [PubMed]
Dipla, K. , Mattiello, J. A. , Jeevanandam, V. , Houser, S. R. , and Margulies, K. B. , 1998, “ Myocyte Recovery After Mechanical Circulatory Support in Humans With End-Stage Heart Failure,” Circulation, 97(23), pp. 2316–2322. [CrossRef] [PubMed]
Yu, C.-M. , Fung, W.-H. , Lin, H. , Zhang, Q. , Sanderson, J. E. , and Lau, C.-P. , 2003, “ Predictors of Left Ventricular Reverse Remodeling After Cardiac Resynchronization Therapy for Heart Failure Secondary to Idiopathic Dilated or Ischemic Cardiomyopathy,” Am. J. Cardiol., 91(6), pp. 684–688. [CrossRef] [PubMed]
Hwang, G.-T. , Park, H. , Lee, J.-H. , Oh, S. , Park, K.-I. , Byun, M. , Park, H. , Ahn, G. , Jeong, C. K. , No, K. , Kwon, H. , Lee, S.-G. , Joung, B. , and Lee, K. J. , 2014, “ Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester,” Adv. Mater., 26(28), pp. 4880–4887. [CrossRef] [PubMed]
Dagdeviren, C. , Yang, B. D. , Su, Y. , Tran, P. L. , Joe, P. , Anderson, E. , Xia, J. , Doraiswamy, V. , Dehdashti, B. , Feng, X. , Lu, B. , Poston, R. , Khalpey, Z. , Ghaffari, R. , Huang, Y. , Slepian, M. J. , and Rogers, J. A. , 2014, “ Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm,” Proc. Natl. Acad. Sci. U.S.A., 111(5), pp. 1927–1932. [CrossRef] [PubMed]
Zurbuchenn, A. , Haeberlin, A. , Schaerer, J. , Wagner, J. , Pfenninger, A. , Vandenberghe, S. , Huber, C. H. , Fuhrer, J. , and Vogel, R. , 2014, “ A Batteryless Cardiac Pacemaker Powered by Cardiac Motion,” Eur. Heart J., 35, pp. 173–512. [CrossRef]
Dagdeviren, C. , Shi, Y. , Joe, P. , Ghaffari, R. , Balooch, G. , Usgaonkar, K. , Gur, O. , Tran, P. L. , Crosby, J. R. , Meyer, M. , Su, Y. , Chad Webb, R. , Tedesco, A. S. , Slepian, M. J. , Huang, Y. , and Rogers, J. A. , 2015, “ Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics,” Nat. Mater., 14(7), pp. 728–736. [CrossRef] [PubMed]
Martiradonna, L. , 2014, “ Bioresorbable Organic Electronics,” Nat. Mater., 13(5), pp. 428–428. [CrossRef]
Boyden, E. S. , Zhang, F. , Bamberg, E. , Nagel, G. , and Deisseroth, K. , 2005, “ Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity,” Nat. Neurosci., 8(9), pp. 1263–1268. [CrossRef] [PubMed]
Nagel, G. , Szellas, T. , Huhn, W. , Kateriya, S. , Adeishvili, N. , Berthold, P. , Ollig, D. , Hegemann, P. , and Bamberg, E. , 2003, “ Channelrhodopsin-2, A Directly Light-Gated Cation-Selective Membrane Channel,” Proc. Natl. Acad. Sci. U.S.A., 100(24), pp. 13940–13945. [CrossRef] [PubMed]
Gerwert, K. , and Siebert, F. , 1986, “ Evidence for Light-Induced 13-cis, 14-s-cis Isomerization in Bacteriorhodopsin Obtained by FTIR Difference Spectroscopy Using Isotopically Labelled Retinals,” EMBO J., 5(4), pp. 805–811. [PubMed]
Gradinaru, V. , Thompson, K. R. , and Deisseroth, K. , 2008, “ eNpHR: A Natronomonas Halorhodopsin Enhanced for Optogenetic Applications,” Brain Cell Biol., 36(1–4), pp. 129–139. [CrossRef] [PubMed]
Kleinlogel, S. , Terpitz, U. , Legrum, B. , Gökbuget, D. , Boyden, E. S. , Bamann, C. , Wood, P. G. , and Bamberg, E. , 2011, “ A Gene-Fusion Strategy for Stoichiometric and Co-Localized Expression of Light-Gated Membrane Proteins,” Nat. Methods, 8(12), pp. 1083–1088. [CrossRef] [PubMed]
Entcheva, E. , 2013, “ Cardiac Optogenetics,” Am. J. Physiol. Heart Circ. Physiol., 304(9), pp. H1179–H1191. [CrossRef] [PubMed]
Ambrosi, C. M. , and Entcheva, E. , 2014, “ Optogenetic Control of Cardiomyocytes via Viral Delivery,” Methods Mol. Biol., 1181, pp. 215–228. [PubMed]
Arrenberg, A. B. , Stainier, D. Y. R. , Baier, H. , and Huisken, J. , 2010, “ Optogenetic Control of Cardiac Function,” Science, 330(6006), pp. 971–974. [CrossRef] [PubMed]
Bruegmann, T. , Malan, D. , Hesse, M. , Beiert, T. , Fuegemann, C. J. , Fleischmann, B. K. , and Sasse, P. , 2010, “ Optogenetic Control of Heart Muscle In Vitro and In Vivo,” Nat. Methods, 7(11), pp. 897–900. [CrossRef] [PubMed]
Jia, Z. , Valiunas, V. , Lu, Z. , Bien, H. , Liu, H. , Wang, H.-Z. , Rosati, B. , Brink, P. R. , Cohen, I. S. , and Entcheva, E. , 2011, “ Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery,” Circ. Arrhythm. Electrophysiol., 4(5), pp. 753–760. [CrossRef] [PubMed]
Park, S. A. , Lee, S.-R. , Tung, L. , and Yue, D. T. , 2014, “ Optical Mapping of Optogenetically Shaped Cardiac Action Potentials,” Sci. Rep., 4, p. 6125. [CrossRef] [PubMed]
Nussinovitch, U. , and Gepstein, L. , 2015, “ Optogenetics for In Vivo Cardiac Pacing and Resynchronization Therapies,” Nat. Biotechnol., 33(7), pp. 750–754. [CrossRef] [PubMed]
Bingen, B. O. , Engels, M. C. , Schalij, M. J. , Jangsangthong, W. , Neshati, Z. , Feola, I. , Ypey, D. L. , Askar, S. F. A. , Panfilov, A. V. , Pijnappels, D. A. , and de Vries, A. A. F. , 2014, “ Light-Induced Termination of Spiral Wave Arrhythmias by Optogenetic Engineering of Atrial Cardiomyocytes,” Cardiovasc. Res., 104(1), pp. 194–205. [CrossRef] [PubMed]
Kaplitt, M. G. , Feigin, A. , Tang, C. , Fitzsimons, H. L. , Mattis, P. , Lawlor, P. A. , Bland, R. J. , Young, D. , Strybing, K. , Eidelberg, D. , and During, M. J. , 2007, “ Safety and Tolerability of Gene Therapy With an Adeno-Associated Virus (AAV) Borne GAD Gene for Parkinson's Disease: An Open Label, Phase I Trial,” Lancet, 369(9579), pp. 2097–2105. [CrossRef] [PubMed]
Zsebo, K. , Yaroshinsky, A. , Rudy, J. J. , Wagner, K. , Greenberg, B. , Jessup, M. , and Hajjar, R. J. , 2014, “ Long-Term Effects of AAV1/SERCA2a Gene Transfer in Patients With Severe Heart Failure: Analysis of Recurrent Cardiovascular Events and Mortality,” Circ. Res., 114(1), pp. 101–108. [CrossRef] [PubMed]
Doetschman, T. , and Azhar, M. , 2012, “ Cardiac-Specific Inducible and Conditional Gene Targeting in Mice,” Circ. Res., 110(11), pp. 1498–1512. [CrossRef] [PubMed]
Lin, J. Y. , Knutsen, P. M. , Muller, A. , Kleinfeld, D. , and Tsien, R. Y. , 2013, “ ReaChR: a Red-Shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation,” Nat. Neurosci., 16(10), pp. 1499–1508. [CrossRef] [PubMed]
Siuda, E. R. , McCall, J. G. , Al-Hasani, R. , Shin, G. , Il Park, S. , Schmidt, M. J. , Anderson, S. L. , Planer, W. J. , Rogers, J. A. , and Bruchas, M. R. , 2015, “ Optodynamic Simulation of β-Adrenergic Receptor Signalling,” Nat. Commun., 6, p. 8480. [CrossRef] [PubMed]
Masseck, O. A. , Rubelowski, J. M. , Spoida, K. , and Herlitze, S. , 2011, “ Light- and Drug-Activated G-Protein-Coupled Receptors to Control Intracellular Signalling,” Exp. Physiol., 96(1), pp. 51–56. [CrossRef] [PubMed]
Hisatomi, O. , Takeuchi, K. , Zikihara, K. , Ookubo, Y. , Nakatani, Y. , Takahashi, F. , Tokutomi, S. , and Kataoka, H. , 2012, “ Blue Light-Induced Conformational Changes in a Light-Regulated Transcription Factor, Aureochrome-1,” Plant Cell Physiol., 54(1), pp. 93–106. [CrossRef] [PubMed]
Thavandiran, N. , Dubois, N. , Mikryukov, A. , Massé, S. , Beca, B. , Simmons, C. A. , Deshpande, V. S. , McGarry, J. P. , Chen, C. S. , Nanthakumar, K. , Keller, G. M. , Radisic, M. , and Zandstra, P. W. , 2013, “ Design and Formulation of Functional Pluripotent Stem Cell-Derived Cardiac Microtissues,” Proc. Natl. Acad. Sci. U.S.A., 110(49), pp. E4698–E4707. [CrossRef] [PubMed]
Wang, H. , Svoronos, A. A. , Boudou, T. , Sakar, M. S. , Schell, J. Y. , Morgan, J. R. , Chen, C. S. , and Shenoy, V. B. , 2013, “ Necking and Failure of Constrained 3D Microtissues Induced by Cellular Tension,” Proc. Natl. Acad. Sci. U.S.A., 110(52), pp. 20923–20928. [CrossRef] [PubMed]
Eschenhagen, T. , Didié, M. , Heubach, J. , Ravens, U. , and Zimmermann, W.-H. , 2002, “ Cardiac Tissue Engineering,” Transpl. Immunol., 9(2–4), pp. 315–321. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Mechanical function of the heart. (a) The heart consists of four chambers that circulate blood through the systemic and venous circulations. (b) Blood flow through the heart is controlled by the four valves as depicted pictorially in the diagrams. The opening and closing of the valves is controlled by the relative pressures between the various compartments. The contours of the left ventricular PV loop for each contractile cycle are partially determined by the intrinsic properties of the heart (EDPVR and ESPVR). (c) Changes in mechanical stiffness change the EDPVR. (d) Changes in ionotropy change the ESPVR. (Images in (a) and (b) were modified from work done by Eric Pierce, available under a GNU Free Documentation License or a Creative Commons Attribution-ShareAlike License.)

Grahic Jump Location
Fig. 2

Normal and pathological conditions of preload and afterload in the heart. The contours of the left ventricular PV loop are further modified by mechanical loading, which depend on (a) the volume of blood in the ventricle prior to the stroke and (b) the pressure against which the ventricle contracts. (c) Chronic increases in these loads can lead to pathological changes in the heart. (Images in C were reproduced from Servier Medical Art library of images.)

Grahic Jump Location
Fig. 3

Mechanical and electrical stimulation strategies for the maturation of cardiac tissue constructs. (a) Brightfield and α-actinin staining depict cardiac response to static, isometric stretch in a biaxial arrangement (reproduced with permission from [167]). (b) Auxotonic stretch is more biomimetic, and allows for the tuning of tissue properties by adjusting the spring constant of the resisting material [168]. The sequence of brightfield images shows shrinkage of the gel and alignment of the tissue over seven days. The bar graphs depict changes in cross-sectional area and force generation as a function of the pillar spring constant and collagen concentration (reproduced with permission from [168]). (c) Cyclic stretch substitutes active dynamic loading [169] for the passive loads described in (a) and (b) (reproduced with permission from [169]). (d) Electrical stimulation of tissue constructs subjected to auxotonic stretch (spring device on the left) is commonly achieved through the use of bioreactors with carbon rod electrodes (black rectangular blocks on the right), and have produced aligned tissues with electrophysiological maturity (reproduced with permission from [71]).

Grahic Jump Location
Fig. 4

In vitro methods for studying preload and afterload. (a) Increased preload is commonly modeled by stretching cardiomyocytes grown on 2D membranes (reproduced with permission from [75]). (b) Increased afterload can be modeled by actively changing the spring constant of the resisting material after tissues have been formed (reproduced with permission from [36]).

Grahic Jump Location
Fig. 5

The use of engineered human cardiac tissues to model cardiac disease. (a) Titin mutations are a common cause of dilated cardiomyopathy. The structure of the cardiac sarcomere is depicted on the left, with TTN, thick filaments (rods with globular heads), and thin filaments (coiled ovals). TTN protein segments (Z disk, I band, A band, M band) are shown below, along with the locations of patient-derived (p) and CRISPR-induced (c) mutations. hiPS-CMs carrying these mutations were used to create microtissues (center, brightfield and immunofluorescence of phalloidin staining). These in vitro models recapitulated a number of relevant parameters including the change incontractile force [120] in mutated lines as shown on the right (reproduced with permission from [120]). (b) The development of organ-on-a-chip models using hiPS-derived cells has advanced to the point where multi-organ integration is a possibility. One avenue of exploration is to combine heart, liver, and vasculature for the purpose of drug testing [126]. The CAD drawings on the left depict a modular platform with different compartments specifically designed for the culture of heart and liver tissues. The bottom photos on the left show cardiac microtissues. The middle column of images from top to bottom depict (1) the scale of the individual modules, (2) dissolvable sugar lattices for the introduction of vasculature, (3) a cardiac microtissue, and (4) the even propagation of electrical signals through cardiac tissue. The images on the right depict angiogenic sprouting from the initial channels created through the use of sacrificial sugar filaments coated by human endothelial stem cells (reproduced with permission from [126]).

Grahic Jump Location
Fig. 6

The application of optogenetics in cardiology. (a) Light-induced multisite pacing of a Lagendorff-perfused heart was demonstrated through the use of AAV-9 as a vector for ChR2 delivery, recapitulating the benefits of multisite electrode pacing (reproduced with permission from [158]). (b) Optogenetics is also being used as a basic science tool in vivo to probe the mechanisms that underlie spiral wave arrhythmias and their termination, such as an increased first half winding distance (1/2 W.D.) (reproduced with permission from [159]).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In