0
Research Papers

Finite Element Modeling of Mitral Valve Repair

[+] Author and Article Information
Ashley E. Morgan

University of California,
San Francisco—East Bay Surgical Residency,
Oakland, CA 94602
e-mail: amorgan@alamedahealthsystem.org

Joe Luis Pantoja

School of Medicine,
University of California, San Francisco,
San Francisco, CA 94143
e-mail: Propantoja@gmail.com

Jonathan Weinsaft

Department of Cardiology,
Cornell University School of Medicine,
New York, NY 10065
e-mail: Jww2001@med.cornell.edu

Eugene Grossi

Department of Cardiothoracic Surgery,
NYU School of Medicine,
New York, NY 10016
e-mail: Eugene.grossi@nyumc.org

Julius M. Guccione

Department of Surgery and Bioengineering,
University of California, San Francisco,
San Francisco, CA 94143
e-mail: Julius.guccione@ucsf.edu

Liang Ge

Department of Surgery and Bioengineering,
Veterans Affairs Medical Center,
University of California, San Francisco,
San Francisco, CA 94121
e-mail: Liang.ge@gmail.com

Mark Ratcliffe

Surgical Service (112)
Departments of Surgery and Bioengineering,
Veterans Affairs Medical Center,
University of California, San Francisco,
4150 Clement Street,
San Francisco, CA 94121
e-mail: Mark.Ratcliffe@va.gov

1Corresponding author.

Manuscript received August 15, 2015; final manuscript received November 18, 2015; published online January 27, 2016. Editor: Victor H. Barocas.

J Biomech Eng 138(2), 021009 (Jan 27, 2016) (8 pages) Paper No: BIO-15-1408; doi: 10.1115/1.4032125 History: Received August 15, 2015; Revised November 18, 2015

The mitral valve is a complex structure regulating forward flow of blood between the left atrium and left ventricle (LV). Multiple disease processes can affect its proper function, and when these diseases cause severe mitral regurgitation (MR), optimal treatment is repair of the native valve. The mitral valve (MV) is a dynamic structure with multiple components that have complex interactions. Computational modeling through finite element (FE) analysis is a valuable tool to delineate the biomechanical properties of the mitral valve and understand its diseases and their repairs. In this review, we present an overview of relevant mitral valve diseases, and describe the evolution of FE models of surgical valve repair techniques.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nishimura, R. A. , Otto, C. M. , Bonow, R. O. , Carabello, B. A. , Erwin, J. P., III , Guyton, R. A. , O'Gara, P. T. , Ruiz, C. E. , Skubas, N. J. , Sorajja, P. , Sundt, T. M., III , Thomas, J. D. , Anderson, J. L. , Halperin, J. L. , Albert, N. M. , Bozkurt, B. , Brindis, R. G. , Creager, M. A. , Curtis, L. H. , DeMets, D. , Guyton, R. A. , Hochman, J. S. , Kovacs, R. J. , Ohman, E. M. , Pressler, S. J. , Sellke, F. W. , Shen, W.-K. , Stevenson, W. G. , and Yancy, C. W. , 2014, “ 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease,” J. Thorac. Cardiovasc. Surg., 148(1), pp. e1–e132. [CrossRef] [PubMed]
Foster, E. , 2010, “ Mitral Regurgitation Due to Degenerative Mitral-Valve Disease,” N. Engl. J. Med., 363(2), pp. 156–165. [CrossRef] [PubMed]
Freed, L. A. , Levy, D. , Levine, R. A. , Larson, M. G. , Evans, J. C. , Fuller, D. L. , Lehman, B. , and Benjamin, E. J. , 1999, “ Prevalence and Clinical Outcome of Mitral-Valve Prolapse,” N. Engl. J. Med., 341(1), pp. 1–7. [CrossRef] [PubMed]
Verma, S. , and Mesana, T. G. , 2009, “ Mitral-Valve Repair for Mitral-Valve Prolapse,” N. Engl. J. Med., 361(23), pp. 2261–2269. [CrossRef] [PubMed]
Atluri, P. , Gorman, R. C. , Gorman, J. H., III , and Acker, M. A. , 2003, “ Ischemic Mitral Regurgitation,” Cardiac Surgery in the Adult, L. H. Cohn , ed., McGraw-Hill, New York, pp. 1751–1770.
Bolling, S. F. , Li, S. , O'Brien, S. M. , Brennan, J. M. , Prager, R. L. , and Gammie, J. S. , 2010, “ Predictors of Mitral Valve Repair: Clinical and Surgeon Factors,” Ann. Thorac. Surg., 90(6), pp. 1904–1912. [CrossRef] [PubMed]
Filsoufi, F. , and Carpentier, A. , 2007, “ Principles of Reconstructive Surgery in Degenerative Mitral Valve Disease,” Semin. Thorac. Cardiovasc. Surg., 19(2), pp. 103–110. [CrossRef] [PubMed]
Matsunaga, A. , Sa, T. , and Duran, C. M. , 2004, “ Failure of Reduction Annuloplasty for Functional Ischemic Mitral Regurgitation,” J. Heart Valve Dis., 13(3), pp. 390–397; discussion 397–398. [PubMed]
McGee, E. C. , Gillinov, A. M. , Blackstone, E. H. , Rajeswaran, J. , Cohen, G. , Najam, F. , Shiota, T. , Sabik, J. F. , Lytle, B. W. , McCarthy, P. M. , and Cosgrove, D. M. , 2004, “ Recurrent Mitral Regurgitation After Annuloplasty for Functional Ischemic Mitral Regurgitation,” J. Thorac. Cardiovasc. Surg., 128(6), pp. 916–924. [CrossRef] [PubMed]
De Bonis, M. , Lapenna, E. , Verzini, A. , La Canna, G. , Grimaldi, A. , Torracca, L. , Maisano, F. , and Alfieri, O. , 2008, “ Recurrence of Mitral Regurgitation Parallels the Absence of Left Ventricular Reverse Remodeling After Mitral Repair in Advanced Dilated Cardiomyopathy,” Ann. Thorac. Surg., 85(3), pp. 932–939. [CrossRef] [PubMed]
Kron, I. L. , Green, G. R. , and Cope, J. T. , 2002, “ Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Ann. Thorac. Surg., 74(2), pp. 600–601. [CrossRef] [PubMed]
Langer, F. , Kunihara, T. , Hell, K. , Schramm, R. , Schmidt, K. I. , Aicher, D. , Kindermann, M. , and Schafers, H.-J. , 2009, “ RING+STRING: Successful Repair Technique for Ischemic Mitral Regurgitation With Severe Leaflet Tethering,” Circulation, 120(11 Suppl.), pp. S85–S91. [CrossRef] [PubMed]
Grossi, E. A. , Woo, Y. J. , Schwartz, C. F. , Gangahar, D. M. , Subramanian, V. A. , Patel, N. , Wudel, J. , DiGiorgi, P. L. , Singh, A. , and Davis, R. D. , 2006, “ Comparison of Coapsys Annuloplasty and Internal Reduction Mitral Annuloplasty in the Randomized Treatment of Functional Ischemic Mitral Regurgitation: Impact on the Left Ventricle,” J. Thorac. Cardiovasc. Surg., 131(5), pp. 1095–1098. [CrossRef] [PubMed]
Mauri, L. , Foster, E. , Glower, D. D. , Apruzzese, P. , Massaro, J. M. , Herrmann, H. C. , Hermiller, J. , Gray, W. , Wang, A. , Pedersen, W. R. , Bajwa, T. , Lasala, J. , Low, R. , Grayburn, P. , Feldman, T. , and Investigators, E. I. , 2013, “ 4-Year Results of a Randomized Controlled Trial of Percutaneous Repair Versus Surgery for Mitral Regurgitation,” J. Am. Coll. Cardiol., 62(4), pp. 317–328. [CrossRef] [PubMed]
Jan, K. M. , 1985, “ Distribution of Myocardial Stress and Its Influence on Coronary Blood Flow,” J. Biomech., 18(11), pp. 815–820. [CrossRef] [PubMed]
Grossman, W. , 1980, “ Cardiac Hypertrophy: Useful Adaptation or Pathologic Process?” Am. J. Med., 69(4), pp. 576–584. [CrossRef] [PubMed]
Huisman, R. , Elzinga, G. , Westerhof, N. , and Sipkema, P. , 1980, “ Measurement of Left Ventricular Wall Stress,” Cardiovasc. Res., 14(3), pp. 142–153. [CrossRef] [PubMed]
Yin, F. C. , 1981, “ Ventricular Wall Stress,” Circ. Res., 49(4), pp. 829–842. [CrossRef] [PubMed]
Gupta, K. B. , Ratcliffe, M. B. , Fallert, M. A. , Edmunds, L. H., Jr. , and Bogen, D. K. , 1994, “ Changes in Passive Mechanical Stiffness of Myocardial Tissue With Aneurysm Formation,” Circulation, 89(5), pp. 2315–2326. [CrossRef] [PubMed]
McCulloch, A. , Waldman, L. , Rogers, J. , and Guccione, J. , 1992, “ Large-Scale Finite Element Analysis of the Beating Heart,” Crit. Rev. Biomed. Eng., 20(5–6), pp. 427–449. [PubMed]
Kunzelman, K. S. , Cochran, R. P. , Chuong, C. , Ring, W. S. , Verrier, E. D. , and Eberhart, R. D. , 1993, “ Finite Element Analysis of the Mitral Valve,” J. Heart Valve Dis., 2(3), pp. 326–340. [PubMed]
Cochran, R. P. , Kunzelman, K. S. , Chuong, C. J. , Sacks, M. S. , and Eberhart, R. C. , 1991, “ Nondestructive Analysis of Mitral Valve Collagen Fiber Orientation,” ASAIO Trans., 37(3), pp. M447–M448. [PubMed]
Kunzelman, K. S. , and Cochran, R. P. , 1992, “ Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation,” J. Card. Surg., 7(1), pp. 71–78. [CrossRef] [PubMed]
Kunzelman, K. S. , and Cochran, R. P. , 1990, “ Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae,” ASAIO Trans., 36(3), pp. M405–M408. [PubMed]
Krishnamurthy, G. , Ennis, D. B. , Itoh, A. , Bothe, W. , Swanson, J. C. , Karlsson, M. , Kuhl, E. , Miller, D. C. , and Ingels, N. B., Jr. , 2008, “ Material Properties of the Ovine Mitral Valve Anterior Leaflet In Vivo From Inverse Finite Element Analysis,” Am. J. Physiol. Heart Circ. Physiol., 295(3), pp. H1141–H1149. [CrossRef] [PubMed]
Siefert, A. W. , Rabbah, J. P. , Saikrishnan, N. , Kunzelman, K. S. , and Yoganathan, A. P. , 2015, “ Isolated Effect of Geometry on Mitral Valve Function for In Silico Model Development,” Comput. Methods Biomech. Biomed. Eng., 18(6), pp. 618–627. [CrossRef]
Lee, C.-H. , Oomen, P. J. , Rabbah, J. P. , Yoganathan, A. P. , Gorman, R. C. , Gorman, J. H. I. , Amini, R. , and Sacks, M. S. , 2013, “ A High Fidelity and Microanatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve,” Functional Imaging and Modeling of the Heart, Springer, Berlin, Germany, pp. 416–424.
Choi, A. , Rim, Y. , Mun, J. S. , and Kim, H. , 2014, “ A Novel Finite Element-Based Patient-Specific Mitral Valve Repair: Virtual Ring Annuloplasty,” Biomed. Mater. Eng., 24(1), pp. 341–347. [PubMed]
Sturla, F. , Onorati, F. , Votta, E. , Pechlivanidis, K. , Stevanella, M. , Milano, A. D. , Puppini, G. , Mazzucco, A. , Redaelli, A. , and Faggian, G. , 2014, “ Is It Possible to Assess the Best Mitral Valve Repair in the Individual Patient? Preliminary Results of a Finite Element Study From Magnetic Resonance Imaging Data,” J. Thorac. Cardiovasc. Surg., 148(3), pp. 1025–1034. [CrossRef] [PubMed]
Salgo, I. S. , Gorman, J. H., 3rd , Gorman, R. C. , Jackson, B. M. , Bowen, F. W. , Plappert, T. , St John Sutton, M. G. , and Edmunds, L. H., Jr. , 2002, “ Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress,” Circulation, 106(6), pp. 711–717. [CrossRef] [PubMed]
Maisano, F. , Redaeli, A. , Soncini, M. , Votta, E. , Arcobasso, L. , and Alfieri, O. , 2005, “ An Annular Prosthesis for the Treatment of Functional Mitral Regurgitation: Finite Element Model Analysis of a Dog Bone-Shaped Ring Prosthesis,” Ann. Thorac. Surg., 79(4), pp. 1268–1275. [CrossRef] [PubMed]
Votta, E. , Maisano, F. , Bolling, S. F. , Alfieri, O. , Montevecchi, F. M. , and Redaelli, A. , 2007, “ The Geoform Disease-Specific Annuloplasty System: A Finite Element Study,” Ann. Thorac. Surg., 84(1), pp. 92–101. [CrossRef] [PubMed]
Toma, M. , Jensen, M. O. , Einstein, D. R. , Yoganathan, A. P. , Cochran, R. P. , and Kunzelman, K. S. , “ Fluid–Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model With 3D Chordal Structure,” Ann. Biomed. Eng. (online).
Wang, Q. , and Sun, W. , 2013, “ Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans,” Ann. Biomed. Eng., 41(1), pp. 142–153. [CrossRef] [PubMed]
Guccione, J. M. , McCulloch, A. D. , and Waldman, L. K. , 1991, “ Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model,” ASME J. Biomech. Eng., 113(1), pp. 42–55. [CrossRef]
Guccione, J. M. , and McCulloch, A. D. , 1993, “ Mechanics of Active Contraction in Cardiac Muscle: Part I—Constitutive Relations for Fiber Stress That Describe Deactivation,” ASME J. Biomech. Eng., 115(1), pp. 72–81. [CrossRef]
Saucerman, J. J. , Burnton, L. L. , Michailova, A. P. , and McCulloch, A. D. , 2003, “ Modeling Beta-Adrenergic Control of Cardiac Myocyte Contractility In Silico,” J. Biol. Chem., 278(48), pp. 47997–48003. [CrossRef] [PubMed]
Sarris, G. E. , Cahill, P. D. , Hansen, D. E. , Derby, G. C. , and Miller, D. C. , 1988, “ Restoration of Left Ventricular Systolic Performance After Reattachment of the Mitral Chordae Tendineae. The Importance of Valvular–Ventricular Interaction,” J. Thorac. Cardiovasc. Surg., 95(6), pp. 969–979. [PubMed]
Te, D. , Uden, D. E. , and Strauss, H. D. , 1983, “ The Importance of the Mitral Apparatus in Left Ventricular Function After Correction of Mitral Regurgitation,” Circulation, 68(3 pt 2), pp. II76–II82. [PubMed]
Wenk, J. F. , Zhang, Z. , Cheng, G. , Malhotra, D. , Acevedo-Bolton, G. , Burger, M. , Suzuki, T. , Saloner, D. A. , Wallace, A. W. , Guccione, J. M. , and Ratcliffe, M. B. , 2010, “ First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation,” Ann. Thorac. Surg., 89(5), pp. 1546–1553. [CrossRef] [PubMed]
Ritchie, J. , Warnock, J. N. , and Yoganathan, A. P. , 2005, “ Structural Characterization of the Chordae Tendineae in Native Porcine Mitral Valves,” Ann. Thorac. Surg., 80(1), pp. 189–197. [CrossRef] [PubMed]
Omens, J. H. , May, K. D. , and McCulloch, A. D. , 1991, “ Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle,” Am. J. Physiol., 261(3 Pt 2), pp. H918–H928. [PubMed]
Ge, L. , Morrel, W. G. , Ward, A. , Mishra, R. , Zhang, Z. , Guccione, J. M. , Grossi, E. A. , and Ratcliffe, M. B. , 2014, “ Measurement of Mitral Leaflet and Annular Geometry and Stress After Repair of Posterior Leaflet Prolapse: Virtual Repair Using a Patient-Specific Finite Element Simulation,” Ann. Thorac. Surg., 97(5), pp. 1496–1503. [CrossRef] [PubMed]
Wong, V. M. , Wenk, J. F. , Zhang, Z. , Cheng, G. , Acevedo-Bolton, G. , Burger, M. , Saloner, D. A. , Wallace, A. W. , Guccione, J. M. , Ratcliffe, M. B. , and Ge, L. , 2012, “ The Effect of Mitral Annuloplasty Shape in Ischemic Mitral Regurgitation: A Finite Element Simulation,” Ann. Thorac. Surg., 93(3), pp. 776–782. [CrossRef] [PubMed]
Morrel, W. G. , Ge, L. , Zhang, Z. , Grossi, E. A. , Guccione, J. M. , and Ratcliffe, M. B. , 2014, “ Effect of Mitral Annuloplasty Device Shape and Size on Leaflet and Myofiber Stress Following Repair of Posterior Leaflet Prolapse: A Patient-Specific Finite Element Simulation,” J. Heart Valve Dis., 23(6), pp. 727–734. [PubMed]
Pantoja, J. L. , Ge, L. , Zhang, Z. , Morrel, W. G. , Guccione, J. M. , Grossi, E. A. , and Ratcliffe, M. B. , 2014, “ Posterior Papillary Muscle Anchoring Affects Remote Myofiber Stress and Pump Function: Finite Element Analysis,” Ann. Thorac. Surg., 98(4), pp. 1355–1362. [CrossRef] [PubMed]
Carrick, R. , Ge, L. , Lee, L. C. , Zhang, Z. , Mishra, R. , Axel, L. , Guccione, J. M. , Grossi, E. A. , and Ratcliffe, M. B. , 2012, “ Patient-Specific Finite Element-Based Analysis of Ventricular Myofiber Stress After Coapsys: Importance of Residual Stress,” Ann. Thorac. Surg., 93(6), pp. 1964–1971. [CrossRef] [PubMed]
Tenenholtz, N. A. , Hammer, P. E. , Schneider, R. J. , Vasilyev, N. V. , and Howe, R. D. , 2011, “ On the Design of an Interactive, Patient-Specific Surgical Simulator for Mitral Valve Repair,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, Sept. 25–30, pp. 1327–1332.

Figures

Grahic Jump Location
Fig. 1

(a) Intraoperative image of floppy valve with “flail” posterior segment: AL = anterior leaflet, PL = posterior leaflet. (b) Intraoperative image of subvalvular apparatus demonstrating chordae and papillary muscles. (c) Intraoperative image of repaired and reshaped mitral valve.

Grahic Jump Location
Fig. 2

(a) 2D echocardiogram of MR secondary to isolated prolapse of the center segment of the posterior leaflet (P2), with color image showing regurgitant blood flow. (b) Echocardiogram of patient with functional MR, showing normal valve leaflets and regurgitant flow of blood. (c) Mitral valve after surgical repair, showing normal leaflet coaptation and no regurgitant flow of blood.

Grahic Jump Location
Fig. 3

Wenk model of LV + MV [40]. (a) Exterior view of the LV showing postero-basal MI. (b) Interior view of LV with chordae connected to the papillary muscles.

Grahic Jump Location
Fig. 4

Ge model of human LV + M V with P2 prolapse [43]

Grahic Jump Location
Fig. 5

FE simulation of triangular resection of P2 prolapse and annuloplasty [43]. (a) Pre-operative model showing prolapse of the P2 leaflet. (b) After triangular resection of the P2 section of the posterior leaflet. (c) Postoperative model in early diastole. (d) Postoperative model at end-systole with valve closed.

Grahic Jump Location
Fig. 6

PPM anchoring suture placed between the PPM and either the AC, PC, or the CP [46]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In